On solving the 1 + 1 routing, wavelength and network coding assignment problem with a bi-objective integer linear programming model

Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of failure recovery in optical networks. The combination of near-instantaneous recovery achieved by dedicated protections and capacity efficiency ena...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Telecommunication systems Ročník 71; číslo 2; s. 155 - 165
Hlavní autor: Hai, Dao Thanh
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2019
Springer Nature B.V
Témata:
ISSN:1018-4864, 1572-9451
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of failure recovery in optical networks. The combination of near-instantaneous recovery achieved by dedicated protections and capacity efficiency enabled by network coding brings about new opportunities to challenge the well-established trade-off of trading speed recovery for capacity efficiency and vice versa. In this context, the use of all-optical XOR network coding has reshaped the traditional 1 + 1 optical path protection in transparent WDM optical networks and established a new problem, called, 1 + 1 routing, wavelength and network coding assignment (1 + 1 RWNCA) as the extension of the conventional 1 + 1 routing and wavelength assignment (1 + 1 RWA). In this paper, we propose a bi-objective integer linear programming model of the 1 + 1 RWNCA problem aiming at minimizing the wavelength resources as the primary objective and simultaneously minimizing the wavelength link usage as the secondary objective. Our formulation uses a weighting method to combine two objectives into an integrated one and we provide insights on setting up the weight vectors to capture the priority of individual objectives. The effectiveness of our integrated objective model in comparison with reference designs based on the single-objective model, 1 + 1 RWA and 1 + 1 RWNCA, is numerically evaluated on different realistic topologies and traffic sets. Extensive simulation highlights that our proposal uses as efficient as around 60 % of the required wavelength link resources of reference designs and simultaneously achieve the highest performance on the primary objective of minimizing the wavelength resources while its computation time is a few time longer than its single objective counterpart model.
AbstractList Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of failure recovery in optical networks. The combination of near-instantaneous recovery achieved by dedicated protections and capacity efficiency enabled by network coding brings about new opportunities to challenge the well-established trade-off of trading speed recovery for capacity efficiency and vice versa. In this context, the use of all-optical XOR network coding has reshaped the traditional 1 + 1 optical path protection in transparent WDM optical networks and established a new problem, called, 1 + 1 routing, wavelength and network coding assignment (1 + 1 RWNCA) as the extension of the conventional 1 + 1 routing and wavelength assignment (1 + 1 RWA). In this paper, we propose a bi-objective integer linear programming model of the 1 + 1 RWNCA problem aiming at minimizing the wavelength resources as the primary objective and simultaneously minimizing the wavelength link usage as the secondary objective. Our formulation uses a weighting method to combine two objectives into an integrated one and we provide insights on setting up the weight vectors to capture the priority of individual objectives. The effectiveness of our integrated objective model in comparison with reference designs based on the single-objective model, 1 + 1 RWA and 1 + 1 RWNCA, is numerically evaluated on different realistic topologies and traffic sets. Extensive simulation highlights that our proposal uses as efficient as around 60 % of the required wavelength link resources of reference designs and simultaneously achieve the highest performance on the primary objective of minimizing the wavelength resources while its computation time is a few time longer than its single objective counterpart model.
Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of failure recovery in optical networks. The combination of near-instantaneous recovery achieved by dedicated protections and capacity efficiency enabled by network coding brings about new opportunities to challenge the well-established trade-off of trading speed recovery for capacity efficiency and vice versa. In this context, the use of all-optical XOR network coding has reshaped the traditional 1 + 1 optical path protection in transparent WDM optical networks and established a new problem, called, 1 + 1 routing, wavelength and network coding assignment (1 + 1 RWNCA) as the extension of the conventional 1 + 1 routing and wavelength assignment (1 + 1 RWA). In this paper, we propose a bi-objective integer linear programming model of the 1 + 1 RWNCA problem aiming at minimizing the wavelength resources as the primary objective and simultaneously minimizing the wavelength link usage as the secondary objective. Our formulation uses a weighting method to combine two objectives into an integrated one and we provide insights on setting up the weight vectors to capture the priority of individual objectives. The effectiveness of our integrated objective model in comparison with reference designs based on the single-objective model, 1 + 1 RWA and 1 + 1 RWNCA, is numerically evaluated on different realistic topologies and traffic sets. Extensive simulation highlights that our proposal uses as efficient as around \[60\%\] of the required wavelength link resources of reference designs and simultaneously achieve the highest performance on the primary objective of minimizing the wavelength resources while its computation time is a few time longer than its single objective counterpart model.
Author Hai, Dao Thanh
Author_xml – sequence: 1
  givenname: Dao Thanh
  surname: Hai
  fullname: Hai, Dao Thanh
  email: haidt102@gmail.com
  organization: Institute of Technology, Hanoi University of Industry
BookMark eNp9kM9O3DAQh60KpLLAA3CzxBHSehLnj49oRaES0l7K2XKSSfA2sRfbuyseoO_Bs_Bk2NpKlZDKySP7941nvgU5MtYgIRfAvgFj9XcPkBdlxqDJGK95Jr6QEyjrPBO8hKNYpxfeVPwrWXi_ZixR4oT8WRnq7bTTZqThCSm8vV69vQJ1dhvi3TXdqx1OaMbwRJXpqcGwt-437WyfEOW9Hs2MJtCNs-2EM93rFKWtzmy7xi7oHVJtAo7o6KQNKpeio1PznDrMtsfpjBwPavJ4_vc8JY8_bn8t77OH1d3P5c1D1hVQhYwzgW1fsLaGkqscAUsl6qYtu7gLy8UwMBxUqwQoXlV53tUKGmyLTvSiAoXFKbk89I0TPG_RB7m2W2filzJnTWQKXoqYqg-pzlnvHQ6y00EFbU1wSk8SmEz25MG5jGZlci4TCR_IjdOzci-fMvmB8TFroqV_M_0fegd9QpkI
CitedBy_id crossref_primary_10_1007_s11082_019_2104_5
crossref_primary_10_1016_j_yofte_2024_103730
crossref_primary_10_1007_s11082_022_03628_5
crossref_primary_10_1016_j_yofte_2023_103394
crossref_primary_10_1515_joc_2024_0163
crossref_primary_10_1016_j_yofte_2020_102364
crossref_primary_10_1016_j_ijleo_2019_163563
crossref_primary_10_1038_s41467_023_40341_7
crossref_primary_10_1007_s11082_023_05123_x
crossref_primary_10_1007_s11082_021_03279_y
crossref_primary_10_1109_TNSM_2023_3283880
crossref_primary_10_1016_j_comcom_2018_08_006
crossref_primary_10_1016_j_iot_2024_101445
crossref_primary_10_1016_j_iot_2025_101668
crossref_primary_10_1016_j_comcom_2019_08_005
crossref_primary_10_1109_JSYST_2019_2938590
Cites_doi 10.1109/LCOMM.2013.111113.132000
10.1109/HPSR.2014.6900886
10.1109/TCOMM.2011.102910.090178
10.1364/JOCN.2.000175
10.1109/ICC.2010.5502271
10.1109/18.850663
10.1109/GLOCOM.2008.ECP.516
10.1109/ICC.2009.5199219
10.1016/j.comnet.2013.03.015
10.1109/TNET.2009.2020503
10.1016/j.osn.2013.06.006
10.1002/dac.3410
10.1049/iet-opt.2017.0013
10.1109/MCOM.2011.5681026
10.1109/ITW.2004.1405308
10.1109/JPHOT.2015.2418264
10.1007/978-3-642-13161-5-7
10.1109/MCOM.2016.7537185
10.1364/PS.2014.PW1B.3
10.1109/ICIST.2017.7926753
10.1364/JOCN.3.000040
10.1109/ICC.2012.6363928
10.1109/SIGTELCOM.2017.7849819
10.1109/LCOMM.2017.2720661
10.1002/dac.3075
10.1016/j.yofte.2017.11.009
10.1109/LEOS.2009.5343425
10.1364/OFC.2009.OThO3
10.1109/GLOCOM.2004.1378328
10.1587/comex.4.8
10.1109/SIGTELCOM.2017.7849820
10.1007/s00158-009-0460-7
10.1109/ICACT.2014.6779143
10.1109/CSNDSP.2014.6923998
10.1007/s11235-015-0089-3
10.1109/DRCN.2014.6816136
10.1109/TNET.2003.818197
10.1109/JPROC.2011.2182589
10.1109/LPT.2012.2204972
10.1109/LCOMM.2011.110711.111382
10.1587/comex.1.228
10.1049/el.2013.0010
10.1109/65.885666
10.1109/ICIST.2017.7926494
10.1016/j.engappai.2013.03.005
10.1109/ACCESS.2017.2761809
10.1109/ICCNC.2016.7440672
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Telecommunication Systems is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Telecommunication Systems is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7SP
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
L.-
L7M
L~C
L~D
M0C
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11235-018-0474-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-9451
EndPage 165
ExternalDocumentID 10_1007_s11235_018_0474_9
GroupedDBID -4X
-57
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29Q
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
88I
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M0C
M2P
M4Y
MA-
MK~
ML~
MS~
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S27
S3B
SAP
SBE
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z92
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
HZ~
IHE
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZD
RZK
S1Z
S26
S28
SCF
SCLPG
T16
TEORI
UZXMN
VFIZW
ZYFGU
3V.
7SC
7SP
7XB
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-409ebd30b7154a2e1e5a978b5c079029ff0efaba91a46622c7a18eb3c9d961ae3
IEDL.DBID RSV
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466174200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1018-4864
IngestDate Tue Nov 04 22:31:09 EST 2025
Sat Nov 29 03:55:24 EST 2025
Tue Nov 18 20:00:22 EST 2025
Fri Feb 21 02:27:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Integer linear programming
Transparent WDM networks
Multi-objective pptimization
Dedicated path protection
Routing and wavelength assignment
All-optical XOR network coding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-409ebd30b7154a2e1e5a978b5c079029ff0efaba91a46622c7a18eb3c9d961ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2084663459
PQPubID 45633
PageCount 11
ParticipantIDs proquest_journals_2084663459
crossref_citationtrail_10_1007_s11235_018_0474_9
crossref_primary_10_1007_s11235_018_0474_9
springer_journals_10_1007_s11235_018_0474_9
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Modelling, Analysis, Design and Management
PublicationTitle Telecommunication systems
PublicationTitleAbbrev Telecommun Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Amazons multi-million dollar server outage caused by it worker typo. https://www.rt.com/news/379398-amazon-server-outage-typo/. Accessed 30 April 2017.
Thanh, H. D., Morvan, M., Gravey, P., Cugini, F., & Cerutti, I. (2014). On the spectrum-efficiency of transparent optical transport network design with variable-rate forward error correction codes. In 16th International conference on advanced communication technology (pp. 1173–1177). https://doi.org/10.1109/ICACT.2014.6779143.
Gravey, P., Hai, D., & Morvan, M. (2014). On the advantages of co-OFDM transponder in network-side protection. In Advanced photonics for communications (p. PW1B.3). Optical Society of America. https://doi.org/10.1364/PS.2014.PW1B.3, http://www.osapublishing.org/abstract.cfm?URI=PS-2014-PW1B.3.
Al MuktadirAHOkiEDifferential delay aware instantaneous recovery scheme with traffic splittingInternational Journal of Communication Systems2017305e307510.1002/dac.3075
LiYNiWZhangHLiYZhengXAvailability analytical model for permanent dedicated path protection in wdm networksIEEE Communications Letters2012161959710.1109/LCOMM.2011.110711.111382
Agarwal, A., & Charikar, M. (2004). On the advantage of network coding for improving network throughput. In Information theory workshop, 2004 (pp. 247–249). IEEE. https://doi.org/10.1109/ITW.2004.1405308.
KoetterRMedardMAn algebraic approach to network codingIEEE/ACM Transactions on Networking200311578279510.1109/TNET.2003.818197
Porzi, C., et al. (2009). All-optical XOR gate by means of a single semiconductor optical amplifier without assist probe light. In LEOS ’09 (pp. 617–618). IEEE. https://doi.org/10.1109/LEOS.2009.5343425.
ManleyEDDeogunJXuLAlexanderDRAll-optical network codingIEEE/OSA Journal of Optical Communications and Networking20102417519110.1364/JOCN.2.000175
Aly, S. A., & Kamal, A. E. (2009) Network coding-based protection strategy against node failures. In 2009 IEEE international conference on communications (pp. 1–5). https://doi.org/10.1109/ICC.2009.5199219.
MonoyiosDVlachosKMultiobjective genetic algorithms for solving the impairment-aware routing and wavelength assignment problemIEEE/OSA Journal of Optical Communications and Networking201131404710.1364/JOCN.3.000040
PhongPVMuktadirAHAOkiEA hybrid instantaneous recovery route design scheme with two different coding aware scenariosIEICE Communications Express20154181310.1587/comex.4.8
Ramirez, W., Masip-Bruin, X., Yannuzzi, M., Montero, D., Martinez, A., & Lopez, V. (2014). Network coding-based protection scheme for elastic optical networks. In 2014 10th international conference on the design of reliable communication networks (DRCN) (pp. 1–8). https://doi.org/10.1109/DRCN.2014.6816136.
Aly, S. A., & Kamal, A. E. (2008). Network protection codes against link failures using network coding. In IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–6). https://doi.org/10.1109/GLOCOM.2008.ECP.516.
Hai, D. T. & Hoang, K. M. (2017). An efficient genetic algorithm approach for solving routing and spectrum assignment problem. 2017 International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), Da Nang (pp. 187–192). https://doi.org/10.1109/SIGTELCOM.2017.7849820.
BabarcziPRealization strategies of dedicated path protection: A bandwidth cost perspectiveComputer Networks20135791974199010.1016/j.comnet.2013.03.015
Al MuktadirAHOkiEA coding-aware reliable route design scheme for instantaneous recoveryTelecommunication Systems201662349550910.1007/s11235-015-0089-3
DaoHMorvanMGraveyPAn efficient network-side path protection scheme in OFDM-based elastic optical networksInternational Journal of Communication Systems2018
Kim, M., Médard, M., & O’Reilly, U. M. (2009). Network coding and its implications on optical networking. In Optical fiber communication conference and national fiber optic engineers conference (p. OThO3). Optical Society of America. https://doi.org/10.1364/OFC.2009.OThO3, http://www.osapublishing.org/abstract.cfm?URI=OFC-2009-OThO3.
Barla, I. B., Rambach, F., Schupke, D. A. & Thakur, M. (2010) Network coding for protection against multiple link failures in multi-domain networks. In 2010 IEEE International conference on communications (pp. 1–6). https://doi.org/10.1109/ICC.2010.5502271.
ZhouDSubramaniamSSurvivability in optical networksIEEE Network2000146162310.1109/65.885666
ChenLKLiMLiewSCBreakthroughs in photonics 2014: Optical physical-layer network coding, recent developments, and challengesIEEE Photonics Journal20157316
KongDLiYWangHZhouSZangJZhangJWuJLinJAll-optical XOR gates for QPSK signal based optical networksElectronics Letters201349748648810.1049/el.2013.0010
KamalAEMohandespourMNetwork coding-based protectionOptical Switching and Networking201411Part B18920110.1016/j.osn.2013.06.006
lvaroR-LVega-RodrguezMAApplying MOEAs to solve the static routing and wavelength assignment problem in optical WDM networksEngineering Applications of Artificial Intelligence2013265616021619
MarlerRAroraJThe weighted sum method for multi-objective optimization: New insightsStructural and Multidisciplinary Optimization201041685386210.1007/s00158-009-0460-7
Rubio-Largo, l., Vega-Rodrguez, M., Gmez-Pulido, J., & Snchez-Prez, J. (2010). Solving the routing and wavelength assignment problem in WDM networks by using a multiobjective variable neighborhood search algorithm. In E. Corchado, P. Novais, C. Analide, J. Sedano (Eds.), Soft computing models in industrial and environmental applications, 5th international workshop (SOCO 2010). Advances in intelligent and soft computing (Vol. 73, pp. 47–54). Berlin: Springer. https://doi.org/10.1007/978-3-642-13161-5-7.
MuktadirAHAOkiEA mathematical model for routing in 1 + 1 protection with network coding for instantaneous recoveryIEICE Communications Express20121622823310.1587/comex.1.228
Hai, D. T. (2017). Multi-objective genetic algorithm for solving routing and spectrum assignment problem. In 2017 Seventh international conference on information science and technology (ICIST) (pp. 177–180). https://doi.org/10.1109/ICIST.2017.7926753.
KamalAEAl-KofahiOEfficient and agile 1 + n protectionIEEE Transactions on Communications201159116918010.1109/TCOMM.2011.102910.090178
SalehASimmonsJMTechnology and architecture to enable the explosive growth of the internetIEEE Communications Magazine201149112613210.1109/MCOM.2011.5681026
Hai, D. T. (2017). A novel adaptive operation of multi-line rate transponder for dedicated protection in WDM network. In 2017 Seventh international conference on information science and technology (ICIST) (pp. 69–74). https://doi.org/10.1109/ICIST.2017.7926494
DaoTHOn optimal designs of transparent WDM networks with 1 + 1 protection leveraged by all-optical XOR network coding schemesOptical Fiber Technology2018409310010.1016/j.yofte.2017.11.009
Skorin-KapovNFurdekMZsigmondSWosinskaLPhysical-layer security in evolving optical networksIEEE Communications Magazine201654811011710.1109/MCOM.2016.7537185
Hai, D. T., & Hoang, K. M. (2017). On the efficient use of multi-line rate transponder for shared protection in wdm network. In 2017 International conference on recent advances in signal processing, telecommunications computing (SigTelCom) (pp. 181–186). https://doi.org/10.1109/SIGTELCOM.2017.7849819.
Belzner, M., & Haunstein, H. (2009). Performance of network coding in transport networks with traffic protection. In 2009 ITG symposium on photonic networks (pp. 1–7).
XuZArchambaultETremblayCChenJWosinskaLBelangerMPLittlewoodP1+1 Dedicated optical-layer protection strategy for filterless optical networksIEEE Communications Letters20141819810110.1109/LCOMM.2013.111113.132000
AhlswedeRNetwork information flowIEEE Transactions on Information Theory20004641204121610.1109/18.850663
KamalAE1 + n Network protection for mesh networks: Network coding-based protection using p-cyclesIEEE/ACM Transactions on Networking2010181678010.1109/TNET.2009.2020503
Muktadir, A. H. A., & Oki, E. (2014). A heuristic routing algorithm for network coding aware 1 + 1 protection route design for instantaneous recovery. In 2014 IEEE 15th international conference on high performance switching and routing (HPSR) (pp. 84–89). https://doi.org/10.1109/HPSR.2014.6900886.
Thanh, H. D., Morvan, M., & Gravey, P. (2014). On the usage of flexible transponder in survivable transparent flex-grid optical network. In 2014 9th International symposium on communication systems, networks digital sign (CSNDSP) (pp. 1123–1127). https://doi.org/10.1109/CSNDSP.2014.6923998.
SalehASimmonsJMAll-optical networking: Evolution, benefits, challenges, and future visionProceedings of the IEEE201210051105111710.1109/JPROC.2011.2182589
HaiDTMorvanMGraveyPCombining heuristic and exact approaches for solving the routing and spectrum assignment problemIET Optoelectronics2018122657210.1049/iet-opt.2017.0013
Jaumard, B., Meyer, C., Thiongane, B., & Yu, X. (2004). Ilp formulations and optimal solutions for the RWA problem. In Global telecommunications conference, 2004. GLOBECOM ’04 (vol. 3, pp. 1918–1924). IEEE. https://doi.org/10.1109/GLOCOM.2004.1378328.
Yang, L., Gong, L., & Zhu, Z. (2016). Incorporating network coding to formulate multicast sessions in elastic optical networks. In 2016 International conference on computing, networking and communications (ICNC) (pp. 1–5). https://doi.org/10.1109/ICCNC.2016.7440672.
HaiDTAn optimal design framework for 1 + 1 routing and network coding assignment problem in wdm optical networksIEEE Access20175222912229810.1109/ACCESS.2017.2761809
CPLEX, I. I. (2016). High-performance mathematical programming engine. http://www.ibm.com.
Hai, D., Morvan, M., & Gravey, P. (2014). On the routing and spectrum assignment with multiple objectives. In Advanced photonics for communications (p. JT3A.12). Optical Society of America. http://www.opticsinfobase.org/abstract.cfm?URI=PS-2014-JT3A.12.
HaiDTLeveraging the survivable all-optical WDM network design with network coding assignmentIEEE Communications Letters201721102190219310.110
R Koetter (474_CR17) 2003; 11
474_CR16
PV Phong (474_CR38) 2015; 4
474_CR15
P Babarczi (474_CR32) 2013; 57
AE Kamal (474_CR24) 2014; 11
AH Al Muktadir (474_CR37) 2017; 30
ED Manley (474_CR41) 2010; 2
474_CR23
474_CR21
Z Liu (474_CR18) 2012; 24
Y Li (474_CR11) 2012; 16
AE Kamal (474_CR26) 2010; 18
D Monoyios (474_CR44) 2011; 3
DT Hai (474_CR36) 2017; 5
R Ahlswede (474_CR14) 2000; 46
A Saleh (474_CR2) 2012; 100
474_CR28
474_CR25
474_CR29
474_CR30
D Kong (474_CR50) 2013; 49
474_CR35
474_CR33
R-L lvaro (474_CR47) 2013; 26
TH Dao (474_CR20) 2018; 40
AE Kamal (474_CR27) 2011; 59
474_CR39
H Dao (474_CR9) 2018
474_CR3
474_CR42
N Skorin-Kapov (474_CR7) 2016; 54
474_CR1
474_CR40
474_CR45
474_CR43
AHA Muktadir (474_CR31) 2012; 1
474_CR8
474_CR5
DT Hai (474_CR19) 2017; 21
LK Chen (474_CR49) 2015; 7
DT Hai (474_CR22) 2018; 12
D Zhou (474_CR6) 2000; 14
Z Xu (474_CR12) 2014; 18
AH Al Muktadir (474_CR34) 2016; 62
474_CR52
A Saleh (474_CR4) 2011; 49
474_CR53
474_CR51
474_CR13
R Marler (474_CR46) 2010; 41
474_CR10
J Clímaco (474_CR48) 2016
References_xml – reference: KoetterRMedardMAn algebraic approach to network codingIEEE/ACM Transactions on Networking200311578279510.1109/TNET.2003.818197
– reference: Al MuktadirAHOkiEDifferential delay aware instantaneous recovery scheme with traffic splittingInternational Journal of Communication Systems2017305e307510.1002/dac.3075
– reference: Al MuktadirAHOkiEA coding-aware reliable route design scheme for instantaneous recoveryTelecommunication Systems201662349550910.1007/s11235-015-0089-3
– reference: Overby, H., et al. (2012). Cost comparison of 1 + 1 path protection schemes: A case for coding. In ICC 2012, IEEE (pp. 3067–3072). https://doi.org/10.1109/ICC.2012.6363928.
– reference: Porzi, C., et al. (2009). All-optical XOR gate by means of a single semiconductor optical amplifier without assist probe light. In LEOS ’09 (pp. 617–618). IEEE. https://doi.org/10.1109/LEOS.2009.5343425.
– reference: Aly, S. A., & Kamal, A. E. (2009) Network coding-based protection strategy against node failures. In 2009 IEEE international conference on communications (pp. 1–5). https://doi.org/10.1109/ICC.2009.5199219.
– reference: LiYNiWZhangHLiYZhengXAvailability analytical model for permanent dedicated path protection in wdm networksIEEE Communications Letters2012161959710.1109/LCOMM.2011.110711.111382
– reference: Rubio-Largo, l., Vega-Rodrguez, M., Gmez-Pulido, J., & Snchez-Prez, J. (2010). Solving the routing and wavelength assignment problem in WDM networks by using a multiobjective variable neighborhood search algorithm. In E. Corchado, P. Novais, C. Analide, J. Sedano (Eds.), Soft computing models in industrial and environmental applications, 5th international workshop (SOCO 2010). Advances in intelligent and soft computing (Vol. 73, pp. 47–54). Berlin: Springer. https://doi.org/10.1007/978-3-642-13161-5-7.
– reference: Hai, D., Morvan, M., & Gravey, P. (2014). On the routing and spectrum assignment with multiple objectives. In Advanced photonics for communications (p. JT3A.12). Optical Society of America. http://www.opticsinfobase.org/abstract.cfm?URI=PS-2014-JT3A.12.
– reference: ClímacoJCraveirinhaJGirão-SilvaRMulticriteria analysis in telecommunication network planning and design: A survey2016New YorkSpringer11671233
– reference: MonoyiosDVlachosKMultiobjective genetic algorithms for solving the impairment-aware routing and wavelength assignment problemIEEE/OSA Journal of Optical Communications and Networking201131404710.1364/JOCN.3.000040
– reference: AhlswedeRNetwork information flowIEEE Transactions on Information Theory20004641204121610.1109/18.850663
– reference: Jaumard, B., Meyer, C., Thiongane, B., & Yu, X. (2004). Ilp formulations and optimal solutions for the RWA problem. In Global telecommunications conference, 2004. GLOBECOM ’04 (vol. 3, pp. 1918–1924). IEEE. https://doi.org/10.1109/GLOCOM.2004.1378328.
– reference: Amazons multi-million dollar server outage caused by it worker typo. https://www.rt.com/news/379398-amazon-server-outage-typo/. Accessed 30 April 2017.
– reference: Hai, D. T. (2017). Multi-objective genetic algorithm for solving routing and spectrum assignment problem. In 2017 Seventh international conference on information science and technology (ICIST) (pp. 177–180). https://doi.org/10.1109/ICIST.2017.7926753.
– reference: DaoHMorvanMGraveyPAn efficient network-side path protection scheme in OFDM-based elastic optical networksInternational Journal of Communication Systems2018
– reference: SalehASimmonsJMTechnology and architecture to enable the explosive growth of the internetIEEE Communications Magazine201149112613210.1109/MCOM.2011.5681026
– reference: KamalAEMohandespourMNetwork coding-based protectionOptical Switching and Networking201411Part B18920110.1016/j.osn.2013.06.006
– reference: KongDLiYWangHZhouSZangJZhangJWuJLinJAll-optical XOR gates for QPSK signal based optical networksElectronics Letters201349748648810.1049/el.2013.0010
– reference: KamalAE1 + n Network protection for mesh networks: Network coding-based protection using p-cyclesIEEE/ACM Transactions on Networking2010181678010.1109/TNET.2009.2020503
– reference: XuZArchambaultETremblayCChenJWosinskaLBelangerMPLittlewoodP1+1 Dedicated optical-layer protection strategy for filterless optical networksIEEE Communications Letters20141819810110.1109/LCOMM.2013.111113.132000
– reference: Kim, M., Médard, M., & O’Reilly, U. M. (2009). Network coding and its implications on optical networking. In Optical fiber communication conference and national fiber optic engineers conference (p. OThO3). Optical Society of America. https://doi.org/10.1364/OFC.2009.OThO3, http://www.osapublishing.org/abstract.cfm?URI=OFC-2009-OThO3.
– reference: lvaroR-LVega-RodrguezMAApplying MOEAs to solve the static routing and wavelength assignment problem in optical WDM networksEngineering Applications of Artificial Intelligence2013265616021619
– reference: ChenLKLiMLiewSCBreakthroughs in photonics 2014: Optical physical-layer network coding, recent developments, and challengesIEEE Photonics Journal20157316
– reference: HaiDTLeveraging the survivable all-optical WDM network design with network coding assignmentIEEE Communications Letters201721102190219310.1109/LCOMM.2017.2720661
– reference: Belzner, M., & Haunstein, H. (2009). Performance of network coding in transport networks with traffic protection. In 2009 ITG symposium on photonic networks (pp. 1–7).
– reference: Thanh, H. D., Morvan, M., & Gravey, P. (2014). On the usage of flexible transponder in survivable transparent flex-grid optical network. In 2014 9th International symposium on communication systems, networks digital sign (CSNDSP) (pp. 1123–1127). https://doi.org/10.1109/CSNDSP.2014.6923998.
– reference: BabarcziPRealization strategies of dedicated path protection: A bandwidth cost perspectiveComputer Networks20135791974199010.1016/j.comnet.2013.03.015
– reference: Hai, D. T., & Hoang, K. M. (2017). On the efficient use of multi-line rate transponder for shared protection in wdm network. In 2017 International conference on recent advances in signal processing, telecommunications computing (SigTelCom) (pp. 181–186). https://doi.org/10.1109/SIGTELCOM.2017.7849819.
– reference: SalehASimmonsJMAll-optical networking: Evolution, benefits, challenges, and future visionProceedings of the IEEE201210051105111710.1109/JPROC.2011.2182589
– reference: MuktadirAHAOkiEA mathematical model for routing in 1 + 1 protection with network coding for instantaneous recoveryIEICE Communications Express20121622823310.1587/comex.1.228
– reference: DaoTHOn optimal designs of transparent WDM networks with 1 + 1 protection leveraged by all-optical XOR network coding schemesOptical Fiber Technology2018409310010.1016/j.yofte.2017.11.009
– reference: Skorin-KapovNFurdekMZsigmondSWosinskaLPhysical-layer security in evolving optical networksIEEE Communications Magazine201654811011710.1109/MCOM.2016.7537185
– reference: Hai, D. T. (2017). A novel adaptive operation of multi-line rate transponder for dedicated protection in WDM network. In 2017 Seventh international conference on information science and technology (ICIST) (pp. 69–74). https://doi.org/10.1109/ICIST.2017.7926494
– reference: Gravey, P., Hai, D., & Morvan, M. (2014). On the advantages of co-OFDM transponder in network-side protection. In Advanced photonics for communications (p. PW1B.3). Optical Society of America. https://doi.org/10.1364/PS.2014.PW1B.3, http://www.osapublishing.org/abstract.cfm?URI=PS-2014-PW1B.3.
– reference: HaiDTAn optimal design framework for 1 + 1 routing and network coding assignment problem in wdm optical networksIEEE Access20175222912229810.1109/ACCESS.2017.2761809
– reference: Aly, S. A., & Kamal, A. E. (2008). Network protection codes against link failures using network coding. In IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–6). https://doi.org/10.1109/GLOCOM.2008.ECP.516.
– reference: Barla, I. B., Rambach, F., Schupke, D. A. & Thakur, M. (2010) Network coding for protection against multiple link failures in multi-domain networks. In 2010 IEEE International conference on communications (pp. 1–6). https://doi.org/10.1109/ICC.2010.5502271.
– reference: ManleyEDDeogunJXuLAlexanderDRAll-optical network codingIEEE/OSA Journal of Optical Communications and Networking20102417519110.1364/JOCN.2.000175
– reference: Agarwal, A., & Charikar, M. (2004). On the advantage of network coding for improving network throughput. In Information theory workshop, 2004 (pp. 247–249). IEEE. https://doi.org/10.1109/ITW.2004.1405308.
– reference: HaiDTMorvanMGraveyPCombining heuristic and exact approaches for solving the routing and spectrum assignment problemIET Optoelectronics2018122657210.1049/iet-opt.2017.0013
– reference: CPLEX, I. I. (2016). High-performance mathematical programming engine. http://www.ibm.com.
– reference: MarlerRAroraJThe weighted sum method for multi-objective optimization: New insightsStructural and Multidisciplinary Optimization201041685386210.1007/s00158-009-0460-7
– reference: Yang, L., Gong, L., & Zhu, Z. (2016). Incorporating network coding to formulate multicast sessions in elastic optical networks. In 2016 International conference on computing, networking and communications (ICNC) (pp. 1–5). https://doi.org/10.1109/ICCNC.2016.7440672.
– reference: Muktadir, A. H. A., & Oki, E. (2014). A heuristic routing algorithm for network coding aware 1 + 1 protection route design for instantaneous recovery. In 2014 IEEE 15th international conference on high performance switching and routing (HPSR) (pp. 84–89). https://doi.org/10.1109/HPSR.2014.6900886.
– reference: ZhouDSubramaniamSSurvivability in optical networksIEEE Network2000146162310.1109/65.885666
– reference: Hai, D. T. & Hoang, K. M. (2017). An efficient genetic algorithm approach for solving routing and spectrum assignment problem. 2017 International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), Da Nang (pp. 187–192). https://doi.org/10.1109/SIGTELCOM.2017.7849820.
– reference: Cisco. (2016). The Zettabyte Era: Trends and analysis. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf. Accessed 5 November 2016.
– reference: KamalAEAl-KofahiOEfficient and agile 1 + n protectionIEEE Transactions on Communications201159116918010.1109/TCOMM.2011.102910.090178
– reference: PhongPVMuktadirAHAOkiEA hybrid instantaneous recovery route design scheme with two different coding aware scenariosIEICE Communications Express20154181310.1587/comex.4.8
– reference: Ramirez, W., Masip-Bruin, X., Yannuzzi, M., Montero, D., Martinez, A., & Lopez, V. (2014). Network coding-based protection scheme for elastic optical networks. In 2014 10th international conference on the design of reliable communication networks (DRCN) (pp. 1–8). https://doi.org/10.1109/DRCN.2014.6816136.
– reference: Thanh, H. D., Morvan, M., Gravey, P., Cugini, F., & Cerutti, I. (2014). On the spectrum-efficiency of transparent optical transport network design with variable-rate forward error correction codes. In 16th International conference on advanced communication technology (pp. 1173–1177). https://doi.org/10.1109/ICACT.2014.6779143.
– reference: LiuZLiMLuLChanCKLiewSCChenLKOptical physical-layer network codingIEEE hotonics Technology Letters201224161424142710.1109/LPT.2012.2204972
– volume: 18
  start-page: 98
  issue: 1
  year: 2014
  ident: 474_CR12
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2013.111113.132000
– ident: 474_CR35
  doi: 10.1109/HPSR.2014.6900886
– volume: 59
  start-page: 169
  issue: 1
  year: 2011
  ident: 474_CR27
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2011.102910.090178
– volume: 2
  start-page: 175
  issue: 4
  year: 2010
  ident: 474_CR41
  publication-title: IEEE/OSA Journal of Optical Communications and Networking
  doi: 10.1364/JOCN.2.000175
– ident: 474_CR29
  doi: 10.1109/ICC.2010.5502271
– volume: 46
  start-page: 1204
  issue: 4
  year: 2000
  ident: 474_CR14
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.850663
– ident: 474_CR25
  doi: 10.1109/GLOCOM.2008.ECP.516
– ident: 474_CR28
  doi: 10.1109/ICC.2009.5199219
– volume: 57
  start-page: 1974
  issue: 9
  year: 2013
  ident: 474_CR32
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2013.03.015
– volume: 18
  start-page: 67
  issue: 1
  year: 2010
  ident: 474_CR26
  publication-title: IEEE/ACM Transactions on Networking
  doi: 10.1109/TNET.2009.2020503
– volume: 11
  start-page: 189
  issue: Part B
  year: 2014
  ident: 474_CR24
  publication-title: Optical Switching and Networking
  doi: 10.1016/j.osn.2013.06.006
– year: 2018
  ident: 474_CR9
  publication-title: International Journal of Communication Systems
  doi: 10.1002/dac.3410
– volume: 12
  start-page: 65
  issue: 2
  year: 2018
  ident: 474_CR22
  publication-title: IET Optoelectronics
  doi: 10.1049/iet-opt.2017.0013
– volume: 49
  start-page: 126
  issue: 1
  year: 2011
  ident: 474_CR4
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2011.5681026
– ident: 474_CR15
  doi: 10.1109/ITW.2004.1405308
– ident: 474_CR1
– volume: 7
  start-page: 1
  issue: 3
  year: 2015
  ident: 474_CR49
  publication-title: IEEE Photonics Journal
  doi: 10.1109/JPHOT.2015.2418264
– ident: 474_CR45
  doi: 10.1007/978-3-642-13161-5-7
– volume: 54
  start-page: 110
  issue: 8
  year: 2016
  ident: 474_CR7
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2016.7537185
– ident: 474_CR10
  doi: 10.1364/PS.2014.PW1B.3
– ident: 474_CR42
– ident: 474_CR43
  doi: 10.1109/ICIST.2017.7926753
– volume: 3
  start-page: 40
  issue: 1
  year: 2011
  ident: 474_CR44
  publication-title: IEEE/OSA Journal of Optical Communications and Networking
  doi: 10.1364/JOCN.3.000040
– ident: 474_CR33
  doi: 10.1109/ICC.2012.6363928
– ident: 474_CR8
  doi: 10.1109/SIGTELCOM.2017.7849819
– volume: 21
  start-page: 2190
  issue: 10
  year: 2017
  ident: 474_CR19
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2017.2720661
– volume: 30
  start-page: e3075
  issue: 5
  year: 2017
  ident: 474_CR37
  publication-title: International Journal of Communication Systems
  doi: 10.1002/dac.3075
– ident: 474_CR53
– volume: 40
  start-page: 93
  year: 2018
  ident: 474_CR20
  publication-title: Optical Fiber Technology
  doi: 10.1016/j.yofte.2017.11.009
– ident: 474_CR51
  doi: 10.1109/LEOS.2009.5343425
– ident: 474_CR16
  doi: 10.1364/OFC.2009.OThO3
– ident: 474_CR21
  doi: 10.1109/GLOCOM.2004.1378328
– volume: 4
  start-page: 8
  issue: 1
  year: 2015
  ident: 474_CR38
  publication-title: IEICE Communications Express
  doi: 10.1587/comex.4.8
– ident: 474_CR23
  doi: 10.1109/SIGTELCOM.2017.7849820
– volume: 41
  start-page: 853
  issue: 6
  year: 2010
  ident: 474_CR46
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-009-0460-7
– ident: 474_CR3
  doi: 10.1109/ICACT.2014.6779143
– ident: 474_CR52
  doi: 10.1109/CSNDSP.2014.6923998
– volume: 62
  start-page: 495
  issue: 3
  year: 2016
  ident: 474_CR34
  publication-title: Telecommunication Systems
  doi: 10.1007/s11235-015-0089-3
– ident: 474_CR39
  doi: 10.1109/DRCN.2014.6816136
– ident: 474_CR5
– ident: 474_CR30
– volume: 11
  start-page: 782
  issue: 5
  year: 2003
  ident: 474_CR17
  publication-title: IEEE/ACM Transactions on Networking
  doi: 10.1109/TNET.2003.818197
– volume: 100
  start-page: 1105
  issue: 5
  year: 2012
  ident: 474_CR2
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2011.2182589
– volume: 24
  start-page: 1424
  issue: 16
  year: 2012
  ident: 474_CR18
  publication-title: IEEE hotonics Technology Letters
  doi: 10.1109/LPT.2012.2204972
– volume: 16
  start-page: 95
  issue: 1
  year: 2012
  ident: 474_CR11
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2011.110711.111382
– volume: 1
  start-page: 228
  issue: 6
  year: 2012
  ident: 474_CR31
  publication-title: IEICE Communications Express
  doi: 10.1587/comex.1.228
– volume: 49
  start-page: 486
  issue: 7
  year: 2013
  ident: 474_CR50
  publication-title: Electronics Letters
  doi: 10.1049/el.2013.0010
– volume: 14
  start-page: 16
  issue: 6
  year: 2000
  ident: 474_CR6
  publication-title: IEEE Network
  doi: 10.1109/65.885666
– ident: 474_CR13
  doi: 10.1109/ICIST.2017.7926494
– volume: 26
  start-page: 1602
  issue: 56
  year: 2013
  ident: 474_CR47
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2013.03.005
– volume: 5
  start-page: 22291
  year: 2017
  ident: 474_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2761809
– ident: 474_CR40
  doi: 10.1109/ICCNC.2016.7440672
– start-page: 1167
  volume-title: Multicriteria analysis in telecommunication network planning and design: A survey
  year: 2016
  ident: 474_CR48
SSID ssj0010079
Score 2.29341
Snippet Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms Artificial Intelligence
Business and Management
Coding
Computer Communication Networks
Computer networks
Computer simulation
Efficiency
Integer programming
IT in Business
Linear programming
Mathematical models
Optical communication
Probability Theory and Stochastic Processes
Telecommunications systems
Wavelength division multiplexing
SummonAdditionalLinks – databaseName: ABI/INFORM Collection
  dbid: 7WY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYocCiHFkorlpfmwAmw5Dy8Xp8qhIo4AQeqwimyHYcugoRmF_gB_HFmHIdtK8GFQ05OrMgz9nzz8HyM7QjhrUIgjFtcSJ5XVnFbyopLJ43NRoKaoQayCXVyMrq40Gcx4DaJZZX9mRgO6rJxFCNHJx0t5TDLpf5-94cTaxRlVyOFxge2gIZaEoOB-nX5kkVA-6dDtjOhoNkw77Oa4eocXRLlNCJylXP9r12agc3_8qPB7Bx9fu8PL7NPEXDCQachK2zO11_Y0l9tCFfZ02kNqIIUWgDEg5DAHj5tc08l0fvwaIicor6a_gZTl1B3hePgGjJ7gOB7fBVKCiCS0wDFdsGAHfPGXncHKoS2FL4FQrWmhVgWdkszBDKer-zn0Y_zw2MeyRm4y5LhFP1O7W2ZCasQhJnUJ14a9EitdLjoItVVJXxlrNGJwWVIU6dMMkLP3elSDxPjs29svm5qv8ZAZZl2qUVoYsvcUqfkCv3yVKNElfRKDZjoRVO42LmcCDRuilnPZZJmgdIsSJqFHrDdl0_uurYdb7282UuwiDt4UszEN2B7vQ7Mhl-dbP3tyTbYR4Rcuis222Tz0_beb7FF9zAdT9rtoL7Pw5T1MQ
  priority: 102
  providerName: ProQuest
Title On solving the 1 + 1 routing, wavelength and network coding assignment problem with a bi-objective integer linear programming model
URI https://link.springer.com/article/10.1007/s11235-018-0474-9
https://www.proquest.com/docview/2084663459
Volume 71
WOSCitedRecordID wos000466174200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9451
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010079
  issn: 1018-4864
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK7I4gEOooIBxU0dPImT9Dx6evuoBMLFdYMv8DLp7umBNTBrZnflF_A_-C38MqvmwaoRE7hMMumezqT69X1d1V8BvBLCW0VAmKa4kEFSWBXYXBaBdNLYeCBYDLVONqGGw8HRkR6197inXbR755KsV-rFZTe-1knUdxCIRCWBXoJlyWIzTNE_frlxHVBdXbs4Qz4pS5POlfmvJv7cjBYI8y-naL3X7K_d6y8fw6MWWuLbZiw8gQe-fAqrvwkOrsPlhxJpsPEhAhLyw_D6auf6KsRqMufw5zd4YTgRRXkyO0VT5lg2QeLoJrzFIQHt8UkdPoBtIhrkc1w0aMfBxH5vFk-sJSh8hYxgTYVtCNg5t1An3tmAz_t7n3YPgjYRQ-DiMJ0Rx9Te5rGwigCXiXzopSH2aaUjW4tIF4XwhbFGhyZJ0yhyyoQDYulO5zoNjY-fQa-clH4TUMWxdpElGGLzxLIqckEcPNLEbJT0Sm2B6Hokc61KOSfLOMsW-sps4YwsnLGFM70Fr28--dFIdPyv8nbXzVk7W6dZJAiFpXEiqXin69ZF8a2NPb9T7RewQmhLN3Fm29CbVXP_Eh66n7PxtOrDkvp63Ifld3vD0SG9vRe7_IxG9BzJb_16kP8Cxx3yXg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9VAEJ8gmKgH8TM-BZ2DXsRNtl9v3x4MMQiBAE8PmHCru9stPqMt9j0knPl__BuZ2bY8NZEbBw89bTtN2t_szG9mdgbgpZTeKnKEScVlJtLSKmGLrBSZy4xNRpKboYZhE2o8Hh0e6o8L8Ks_C8Nllf2eGDbqonYcIyeSTpZymKSZXj_-IXhqFGdX-xEaLSx2_dkpUbbp25339H9fxfHW5sHGtuimCgiXRMMZESbtbZFIq8h7MLGPfGaIStnMSaVlrMtS-tJYoyNDL4xjp0w0IsrpdKGHkfEJyb0BSykRL9arfblxmbUge6tDdjXiIN0w7bOo4ageH0oVvCJTlQr9px2cO7d_5WODmdta_t8-0D242znU-K7VgPuw4KsHcOe3NosP4fxDhaRiHDpB8ncxwjW6mvqES77f4Knh4RvV0ewLmqrAqi2MR1ezWUciF5OjUDKB3fAd5Ng1GrQTUduvrcHA0HbDN8heu2mwK3v7zhLCsKFH8OlavsJjWKzqyj8BVEmiXWzJ9bJFarkTdDkiYqOJzanMKzUA2UMhd11ndh4Q8i2f95Rm9OSEnpzRk-sBvL585LhtS3LVzSs9YvJuh5rmc7gMYK3H3Hz5n8KeXi3sBdzaPtjfy_d2xrvP4Da5l7otrFuBxVlz4lfhpvs5m0yb50F1ED5fNxQvAMpcUos
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLbKFiF6KG-xbQEf4EIZMXnt7BwQAtoVVdGyQiD1ls5MJmURTdrslopz_1V_HXYeXUCitx445DSJIyWfx_5sjw3wVEpvFTnCpOIyEXFulbBZkovEJcZGQ8nNUOthE2o8Hu7t6ckSnHdnYbisstsT6406Kx3HyImkk6UcRHGiX-ZtWcRka_T66FjwBCnOtHbjNBqI7Pqfp0TfZq92tuhfPwvD0fbnd-9FO2FAuCgYzIk8aW-zSFpFnoQJfeATQ7TKJk4qLUOd59LnxhodGHp5GDplgiHRT6czPQiMj0juNVhWEZGeHiy_3R5PPl3kMMj66jrXGnDIbhB3OdX64B4fURW8ImMVC_2nVVy4un9lZ2ujN7r1P3-u27Dautr4ptGNO7Dki7uw8lsDxntw9rFAUj4OqiB5whjgJl1VecLF4C_w1PBYjuJg_hVNkWHRlMyjK9ngI9GO6UFdTIHtWB7kqDYatFNR2m-NKcG6IYevkP15U2FbEHfIEuoxRPfhy5V8hQfQK8rCPwRUUaRdaMkps1lsuUd0PiTKo4nnqcQr1QfZwSJ1bc92Hh3yPV10m2YkpYSklJGU6j48v3jkqGlYctnNGx160nbvmqUL6PRhs8PfYvmfwtYuF_YEbhAC0w874911uEl-p24q7jagN69O_CO47n7Mp7PqcatHCPtXjcVfPmhcyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+solving+the+1%C2%A0%2B%C2%A01+routing%2C+wavelength+and+network+coding+assignment+problem+with+a+bi-objective+integer+linear+programming+model&rft.jtitle=Telecommunication+systems&rft.au=Hai%2C+Dao+Thanh&rft.date=2019-06-01&rft.pub=Springer+US&rft.issn=1018-4864&rft.eissn=1572-9451&rft.volume=71&rft.issue=2&rft.spage=155&rft.epage=165&rft_id=info:doi/10.1007%2Fs11235-018-0474-9&rft.externalDocID=10_1007_s11235_018_0474_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1018-4864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1018-4864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1018-4864&client=summon