On solving the 1 + 1 routing, wavelength and network coding assignment problem with a bi-objective integer linear programming model
Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of failure recovery in optical networks. The combination of near-instantaneous recovery achieved by dedicated protections and capacity efficiency ena...
Uloženo v:
| Vydáno v: | Telecommunication systems Ročník 71; číslo 2; s. 155 - 165 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.06.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 1018-4864, 1572-9451 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of failure recovery in optical networks. The combination of near-instantaneous recovery achieved by dedicated protections and capacity efficiency enabled by network coding brings about new opportunities to challenge the well-established trade-off of trading speed recovery for capacity efficiency and vice versa. In this context, the use of all-optical XOR network coding has reshaped the traditional 1 + 1 optical path protection in transparent WDM optical networks and established a new problem, called, 1 + 1 routing, wavelength and network coding assignment (1 + 1 RWNCA) as the extension of the conventional 1 + 1 routing and wavelength assignment (1 + 1 RWA). In this paper, we propose a bi-objective integer linear programming model of the 1 + 1 RWNCA problem aiming at minimizing the wavelength resources as the primary objective and simultaneously minimizing the wavelength link usage as the secondary objective. Our formulation uses a weighting method to combine two objectives into an integrated one and we provide insights on setting up the weight vectors to capture the priority of individual objectives. The effectiveness of our integrated objective model in comparison with reference designs based on the single-objective model, 1 + 1 RWA and 1 + 1 RWNCA, is numerically evaluated on different realistic topologies and traffic sets. Extensive simulation highlights that our proposal uses as efficient as around
60
%
of the required wavelength link resources of reference designs and simultaneously achieve the highest performance on the primary objective of minimizing the wavelength resources while its computation time is a few time longer than its single objective counterpart model. |
|---|---|
| AbstractList | Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of failure recovery in optical networks. The combination of near-instantaneous recovery achieved by dedicated protections and capacity efficiency enabled by network coding brings about new opportunities to challenge the well-established trade-off of trading speed recovery for capacity efficiency and vice versa. In this context, the use of all-optical XOR network coding has reshaped the traditional 1 + 1 optical path protection in transparent WDM optical networks and established a new problem, called, 1 + 1 routing, wavelength and network coding assignment (1 + 1 RWNCA) as the extension of the conventional 1 + 1 routing and wavelength assignment (1 + 1 RWA). In this paper, we propose a bi-objective integer linear programming model of the 1 + 1 RWNCA problem aiming at minimizing the wavelength resources as the primary objective and simultaneously minimizing the wavelength link usage as the secondary objective. Our formulation uses a weighting method to combine two objectives into an integrated one and we provide insights on setting up the weight vectors to capture the priority of individual objectives. The effectiveness of our integrated objective model in comparison with reference designs based on the single-objective model, 1 + 1 RWA and 1 + 1 RWNCA, is numerically evaluated on different realistic topologies and traffic sets. Extensive simulation highlights that our proposal uses as efficient as around
60
%
of the required wavelength link resources of reference designs and simultaneously achieve the highest performance on the primary objective of minimizing the wavelength resources while its computation time is a few time longer than its single objective counterpart model. Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of failure recovery in optical networks. The combination of near-instantaneous recovery achieved by dedicated protections and capacity efficiency enabled by network coding brings about new opportunities to challenge the well-established trade-off of trading speed recovery for capacity efficiency and vice versa. In this context, the use of all-optical XOR network coding has reshaped the traditional 1 + 1 optical path protection in transparent WDM optical networks and established a new problem, called, 1 + 1 routing, wavelength and network coding assignment (1 + 1 RWNCA) as the extension of the conventional 1 + 1 routing and wavelength assignment (1 + 1 RWA). In this paper, we propose a bi-objective integer linear programming model of the 1 + 1 RWNCA problem aiming at minimizing the wavelength resources as the primary objective and simultaneously minimizing the wavelength link usage as the secondary objective. Our formulation uses a weighting method to combine two objectives into an integrated one and we provide insights on setting up the weight vectors to capture the priority of individual objectives. The effectiveness of our integrated objective model in comparison with reference designs based on the single-objective model, 1 + 1 RWA and 1 + 1 RWNCA, is numerically evaluated on different realistic topologies and traffic sets. Extensive simulation highlights that our proposal uses as efficient as around \[60\%\] of the required wavelength link resources of reference designs and simultaneously achieve the highest performance on the primary objective of minimizing the wavelength resources while its computation time is a few time longer than its single objective counterpart model. |
| Author | Hai, Dao Thanh |
| Author_xml | – sequence: 1 givenname: Dao Thanh surname: Hai fullname: Hai, Dao Thanh email: haidt102@gmail.com organization: Institute of Technology, Hanoi University of Industry |
| BookMark | eNp9kM9O3DAQh60KpLLAA3CzxBHSehLnj49oRaES0l7K2XKSSfA2sRfbuyseoO_Bs_Bk2NpKlZDKySP7941nvgU5MtYgIRfAvgFj9XcPkBdlxqDJGK95Jr6QEyjrPBO8hKNYpxfeVPwrWXi_ZixR4oT8WRnq7bTTZqThCSm8vV69vQJ1dhvi3TXdqx1OaMbwRJXpqcGwt-437WyfEOW9Hs2MJtCNs-2EM93rFKWtzmy7xi7oHVJtAo7o6KQNKpeio1PznDrMtsfpjBwPavJ4_vc8JY8_bn8t77OH1d3P5c1D1hVQhYwzgW1fsLaGkqscAUsl6qYtu7gLy8UwMBxUqwQoXlV53tUKGmyLTvSiAoXFKbk89I0TPG_RB7m2W2filzJnTWQKXoqYqg-pzlnvHQ6y00EFbU1wSk8SmEz25MG5jGZlci4TCR_IjdOzci-fMvmB8TFroqV_M_0fegd9QpkI |
| CitedBy_id | crossref_primary_10_1007_s11082_019_2104_5 crossref_primary_10_1016_j_yofte_2024_103730 crossref_primary_10_1007_s11082_022_03628_5 crossref_primary_10_1016_j_yofte_2023_103394 crossref_primary_10_1515_joc_2024_0163 crossref_primary_10_1016_j_yofte_2020_102364 crossref_primary_10_1016_j_ijleo_2019_163563 crossref_primary_10_1038_s41467_023_40341_7 crossref_primary_10_1007_s11082_023_05123_x crossref_primary_10_1007_s11082_021_03279_y crossref_primary_10_1109_TNSM_2023_3283880 crossref_primary_10_1016_j_comcom_2018_08_006 crossref_primary_10_1016_j_iot_2024_101445 crossref_primary_10_1016_j_iot_2025_101668 crossref_primary_10_1016_j_comcom_2019_08_005 crossref_primary_10_1109_JSYST_2019_2938590 |
| Cites_doi | 10.1109/LCOMM.2013.111113.132000 10.1109/HPSR.2014.6900886 10.1109/TCOMM.2011.102910.090178 10.1364/JOCN.2.000175 10.1109/ICC.2010.5502271 10.1109/18.850663 10.1109/GLOCOM.2008.ECP.516 10.1109/ICC.2009.5199219 10.1016/j.comnet.2013.03.015 10.1109/TNET.2009.2020503 10.1016/j.osn.2013.06.006 10.1002/dac.3410 10.1049/iet-opt.2017.0013 10.1109/MCOM.2011.5681026 10.1109/ITW.2004.1405308 10.1109/JPHOT.2015.2418264 10.1007/978-3-642-13161-5-7 10.1109/MCOM.2016.7537185 10.1364/PS.2014.PW1B.3 10.1109/ICIST.2017.7926753 10.1364/JOCN.3.000040 10.1109/ICC.2012.6363928 10.1109/SIGTELCOM.2017.7849819 10.1109/LCOMM.2017.2720661 10.1002/dac.3075 10.1016/j.yofte.2017.11.009 10.1109/LEOS.2009.5343425 10.1364/OFC.2009.OThO3 10.1109/GLOCOM.2004.1378328 10.1587/comex.4.8 10.1109/SIGTELCOM.2017.7849820 10.1007/s00158-009-0460-7 10.1109/ICACT.2014.6779143 10.1109/CSNDSP.2014.6923998 10.1007/s11235-015-0089-3 10.1109/DRCN.2014.6816136 10.1109/TNET.2003.818197 10.1109/JPROC.2011.2182589 10.1109/LPT.2012.2204972 10.1109/LCOMM.2011.110711.111382 10.1587/comex.1.228 10.1049/el.2013.0010 10.1109/65.885666 10.1109/ICIST.2017.7926494 10.1016/j.engappai.2013.03.005 10.1109/ACCESS.2017.2761809 10.1109/ICCNC.2016.7440672 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Telecommunication Systems is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Telecommunication Systems is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ L.- L7M L~C L~D M0C M2P P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11235-018-0474-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1572-9451 |
| EndPage | 165 |
| ExternalDocumentID | 10_1007_s11235_018_0474_9 |
| GroupedDBID | -4X -57 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29Q 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 7WY 88I 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I-F I09 IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M0C M2P M4Y MA- MK~ ML~ MS~ N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV ROL RPX RSV S16 S27 S3B SAP SBE SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 Z92 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 HZ~ IHE KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB R4E RNI RZC RZD RZK S1Z S26 S28 SCF SCLPG T16 TEORI UZXMN VFIZW ZYFGU 3V. 7SC 7SP 7XB 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c316t-409ebd30b7154a2e1e5a978b5c079029ff0efaba91a46622c7a18eb3c9d961ae3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466174200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1018-4864 |
| IngestDate | Tue Nov 04 22:31:09 EST 2025 Sat Nov 29 03:55:24 EST 2025 Tue Nov 18 20:00:22 EST 2025 Fri Feb 21 02:27:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Integer linear programming Transparent WDM networks Multi-objective pptimization Dedicated path protection Routing and wavelength assignment All-optical XOR network coding |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-409ebd30b7154a2e1e5a978b5c079029ff0efaba91a46622c7a18eb3c9d961ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2084663459 |
| PQPubID | 45633 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2084663459 crossref_citationtrail_10_1007_s11235_018_0474_9 crossref_primary_10_1007_s11235_018_0474_9 springer_journals_10_1007_s11235_018_0474_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | Modelling, Analysis, Design and Management |
| PublicationTitle | Telecommunication systems |
| PublicationTitleAbbrev | Telecommun Syst |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Amazons multi-million dollar server outage caused by it worker typo. https://www.rt.com/news/379398-amazon-server-outage-typo/. Accessed 30 April 2017. Thanh, H. D., Morvan, M., Gravey, P., Cugini, F., & Cerutti, I. (2014). On the spectrum-efficiency of transparent optical transport network design with variable-rate forward error correction codes. In 16th International conference on advanced communication technology (pp. 1173–1177). https://doi.org/10.1109/ICACT.2014.6779143. Gravey, P., Hai, D., & Morvan, M. (2014). On the advantages of co-OFDM transponder in network-side protection. In Advanced photonics for communications (p. PW1B.3). Optical Society of America. https://doi.org/10.1364/PS.2014.PW1B.3, http://www.osapublishing.org/abstract.cfm?URI=PS-2014-PW1B.3. Al MuktadirAHOkiEDifferential delay aware instantaneous recovery scheme with traffic splittingInternational Journal of Communication Systems2017305e307510.1002/dac.3075 LiYNiWZhangHLiYZhengXAvailability analytical model for permanent dedicated path protection in wdm networksIEEE Communications Letters2012161959710.1109/LCOMM.2011.110711.111382 Agarwal, A., & Charikar, M. (2004). On the advantage of network coding for improving network throughput. In Information theory workshop, 2004 (pp. 247–249). IEEE. https://doi.org/10.1109/ITW.2004.1405308. KoetterRMedardMAn algebraic approach to network codingIEEE/ACM Transactions on Networking200311578279510.1109/TNET.2003.818197 Porzi, C., et al. (2009). All-optical XOR gate by means of a single semiconductor optical amplifier without assist probe light. In LEOS ’09 (pp. 617–618). IEEE. https://doi.org/10.1109/LEOS.2009.5343425. ManleyEDDeogunJXuLAlexanderDRAll-optical network codingIEEE/OSA Journal of Optical Communications and Networking20102417519110.1364/JOCN.2.000175 Aly, S. A., & Kamal, A. E. (2009) Network coding-based protection strategy against node failures. In 2009 IEEE international conference on communications (pp. 1–5). https://doi.org/10.1109/ICC.2009.5199219. MonoyiosDVlachosKMultiobjective genetic algorithms for solving the impairment-aware routing and wavelength assignment problemIEEE/OSA Journal of Optical Communications and Networking201131404710.1364/JOCN.3.000040 PhongPVMuktadirAHAOkiEA hybrid instantaneous recovery route design scheme with two different coding aware scenariosIEICE Communications Express20154181310.1587/comex.4.8 Ramirez, W., Masip-Bruin, X., Yannuzzi, M., Montero, D., Martinez, A., & Lopez, V. (2014). Network coding-based protection scheme for elastic optical networks. In 2014 10th international conference on the design of reliable communication networks (DRCN) (pp. 1–8). https://doi.org/10.1109/DRCN.2014.6816136. Aly, S. A., & Kamal, A. E. (2008). Network protection codes against link failures using network coding. In IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–6). https://doi.org/10.1109/GLOCOM.2008.ECP.516. Hai, D. T. & Hoang, K. M. (2017). An efficient genetic algorithm approach for solving routing and spectrum assignment problem. 2017 International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), Da Nang (pp. 187–192). https://doi.org/10.1109/SIGTELCOM.2017.7849820. BabarcziPRealization strategies of dedicated path protection: A bandwidth cost perspectiveComputer Networks20135791974199010.1016/j.comnet.2013.03.015 Al MuktadirAHOkiEA coding-aware reliable route design scheme for instantaneous recoveryTelecommunication Systems201662349550910.1007/s11235-015-0089-3 DaoHMorvanMGraveyPAn efficient network-side path protection scheme in OFDM-based elastic optical networksInternational Journal of Communication Systems2018 Kim, M., Médard, M., & O’Reilly, U. M. (2009). Network coding and its implications on optical networking. In Optical fiber communication conference and national fiber optic engineers conference (p. OThO3). Optical Society of America. https://doi.org/10.1364/OFC.2009.OThO3, http://www.osapublishing.org/abstract.cfm?URI=OFC-2009-OThO3. Barla, I. B., Rambach, F., Schupke, D. A. & Thakur, M. (2010) Network coding for protection against multiple link failures in multi-domain networks. In 2010 IEEE International conference on communications (pp. 1–6). https://doi.org/10.1109/ICC.2010.5502271. ZhouDSubramaniamSSurvivability in optical networksIEEE Network2000146162310.1109/65.885666 ChenLKLiMLiewSCBreakthroughs in photonics 2014: Optical physical-layer network coding, recent developments, and challengesIEEE Photonics Journal20157316 KongDLiYWangHZhouSZangJZhangJWuJLinJAll-optical XOR gates for QPSK signal based optical networksElectronics Letters201349748648810.1049/el.2013.0010 KamalAEMohandespourMNetwork coding-based protectionOptical Switching and Networking201411Part B18920110.1016/j.osn.2013.06.006 lvaroR-LVega-RodrguezMAApplying MOEAs to solve the static routing and wavelength assignment problem in optical WDM networksEngineering Applications of Artificial Intelligence2013265616021619 MarlerRAroraJThe weighted sum method for multi-objective optimization: New insightsStructural and Multidisciplinary Optimization201041685386210.1007/s00158-009-0460-7 Rubio-Largo, l., Vega-Rodrguez, M., Gmez-Pulido, J., & Snchez-Prez, J. (2010). Solving the routing and wavelength assignment problem in WDM networks by using a multiobjective variable neighborhood search algorithm. In E. Corchado, P. Novais, C. Analide, J. Sedano (Eds.), Soft computing models in industrial and environmental applications, 5th international workshop (SOCO 2010). Advances in intelligent and soft computing (Vol. 73, pp. 47–54). Berlin: Springer. https://doi.org/10.1007/978-3-642-13161-5-7. MuktadirAHAOkiEA mathematical model for routing in 1 + 1 protection with network coding for instantaneous recoveryIEICE Communications Express20121622823310.1587/comex.1.228 Hai, D. T. (2017). Multi-objective genetic algorithm for solving routing and spectrum assignment problem. In 2017 Seventh international conference on information science and technology (ICIST) (pp. 177–180). https://doi.org/10.1109/ICIST.2017.7926753. KamalAEAl-KofahiOEfficient and agile 1 + n protectionIEEE Transactions on Communications201159116918010.1109/TCOMM.2011.102910.090178 SalehASimmonsJMTechnology and architecture to enable the explosive growth of the internetIEEE Communications Magazine201149112613210.1109/MCOM.2011.5681026 Hai, D. T. (2017). A novel adaptive operation of multi-line rate transponder for dedicated protection in WDM network. In 2017 Seventh international conference on information science and technology (ICIST) (pp. 69–74). https://doi.org/10.1109/ICIST.2017.7926494 DaoTHOn optimal designs of transparent WDM networks with 1 + 1 protection leveraged by all-optical XOR network coding schemesOptical Fiber Technology2018409310010.1016/j.yofte.2017.11.009 Skorin-KapovNFurdekMZsigmondSWosinskaLPhysical-layer security in evolving optical networksIEEE Communications Magazine201654811011710.1109/MCOM.2016.7537185 Hai, D. T., & Hoang, K. M. (2017). On the efficient use of multi-line rate transponder for shared protection in wdm network. In 2017 International conference on recent advances in signal processing, telecommunications computing (SigTelCom) (pp. 181–186). https://doi.org/10.1109/SIGTELCOM.2017.7849819. Belzner, M., & Haunstein, H. (2009). Performance of network coding in transport networks with traffic protection. In 2009 ITG symposium on photonic networks (pp. 1–7). XuZArchambaultETremblayCChenJWosinskaLBelangerMPLittlewoodP1+1 Dedicated optical-layer protection strategy for filterless optical networksIEEE Communications Letters20141819810110.1109/LCOMM.2013.111113.132000 AhlswedeRNetwork information flowIEEE Transactions on Information Theory20004641204121610.1109/18.850663 KamalAE1 + n Network protection for mesh networks: Network coding-based protection using p-cyclesIEEE/ACM Transactions on Networking2010181678010.1109/TNET.2009.2020503 Muktadir, A. H. A., & Oki, E. (2014). A heuristic routing algorithm for network coding aware 1 + 1 protection route design for instantaneous recovery. In 2014 IEEE 15th international conference on high performance switching and routing (HPSR) (pp. 84–89). https://doi.org/10.1109/HPSR.2014.6900886. Thanh, H. D., Morvan, M., & Gravey, P. (2014). On the usage of flexible transponder in survivable transparent flex-grid optical network. In 2014 9th International symposium on communication systems, networks digital sign (CSNDSP) (pp. 1123–1127). https://doi.org/10.1109/CSNDSP.2014.6923998. SalehASimmonsJMAll-optical networking: Evolution, benefits, challenges, and future visionProceedings of the IEEE201210051105111710.1109/JPROC.2011.2182589 HaiDTMorvanMGraveyPCombining heuristic and exact approaches for solving the routing and spectrum assignment problemIET Optoelectronics2018122657210.1049/iet-opt.2017.0013 Jaumard, B., Meyer, C., Thiongane, B., & Yu, X. (2004). Ilp formulations and optimal solutions for the RWA problem. In Global telecommunications conference, 2004. GLOBECOM ’04 (vol. 3, pp. 1918–1924). IEEE. https://doi.org/10.1109/GLOCOM.2004.1378328. Yang, L., Gong, L., & Zhu, Z. (2016). Incorporating network coding to formulate multicast sessions in elastic optical networks. In 2016 International conference on computing, networking and communications (ICNC) (pp. 1–5). https://doi.org/10.1109/ICCNC.2016.7440672. HaiDTAn optimal design framework for 1 + 1 routing and network coding assignment problem in wdm optical networksIEEE Access20175222912229810.1109/ACCESS.2017.2761809 CPLEX, I. I. (2016). High-performance mathematical programming engine. http://www.ibm.com. Hai, D., Morvan, M., & Gravey, P. (2014). On the routing and spectrum assignment with multiple objectives. In Advanced photonics for communications (p. JT3A.12). Optical Society of America. http://www.opticsinfobase.org/abstract.cfm?URI=PS-2014-JT3A.12. HaiDTLeveraging the survivable all-optical WDM network design with network coding assignmentIEEE Communications Letters201721102190219310.110 R Koetter (474_CR17) 2003; 11 474_CR16 PV Phong (474_CR38) 2015; 4 474_CR15 P Babarczi (474_CR32) 2013; 57 AE Kamal (474_CR24) 2014; 11 AH Al Muktadir (474_CR37) 2017; 30 ED Manley (474_CR41) 2010; 2 474_CR23 474_CR21 Z Liu (474_CR18) 2012; 24 Y Li (474_CR11) 2012; 16 AE Kamal (474_CR26) 2010; 18 D Monoyios (474_CR44) 2011; 3 DT Hai (474_CR36) 2017; 5 R Ahlswede (474_CR14) 2000; 46 A Saleh (474_CR2) 2012; 100 474_CR28 474_CR25 474_CR29 474_CR30 D Kong (474_CR50) 2013; 49 474_CR35 474_CR33 R-L lvaro (474_CR47) 2013; 26 TH Dao (474_CR20) 2018; 40 AE Kamal (474_CR27) 2011; 59 474_CR39 H Dao (474_CR9) 2018 474_CR3 474_CR42 N Skorin-Kapov (474_CR7) 2016; 54 474_CR1 474_CR40 474_CR45 474_CR43 AHA Muktadir (474_CR31) 2012; 1 474_CR8 474_CR5 DT Hai (474_CR19) 2017; 21 LK Chen (474_CR49) 2015; 7 DT Hai (474_CR22) 2018; 12 D Zhou (474_CR6) 2000; 14 Z Xu (474_CR12) 2014; 18 AH Al Muktadir (474_CR34) 2016; 62 474_CR52 A Saleh (474_CR4) 2011; 49 474_CR53 474_CR51 474_CR13 R Marler (474_CR46) 2010; 41 474_CR10 J Clímaco (474_CR48) 2016 |
| References_xml | – reference: KoetterRMedardMAn algebraic approach to network codingIEEE/ACM Transactions on Networking200311578279510.1109/TNET.2003.818197 – reference: Al MuktadirAHOkiEDifferential delay aware instantaneous recovery scheme with traffic splittingInternational Journal of Communication Systems2017305e307510.1002/dac.3075 – reference: Al MuktadirAHOkiEA coding-aware reliable route design scheme for instantaneous recoveryTelecommunication Systems201662349550910.1007/s11235-015-0089-3 – reference: Overby, H., et al. (2012). Cost comparison of 1 + 1 path protection schemes: A case for coding. In ICC 2012, IEEE (pp. 3067–3072). https://doi.org/10.1109/ICC.2012.6363928. – reference: Porzi, C., et al. (2009). All-optical XOR gate by means of a single semiconductor optical amplifier without assist probe light. In LEOS ’09 (pp. 617–618). IEEE. https://doi.org/10.1109/LEOS.2009.5343425. – reference: Aly, S. A., & Kamal, A. E. (2009) Network coding-based protection strategy against node failures. In 2009 IEEE international conference on communications (pp. 1–5). https://doi.org/10.1109/ICC.2009.5199219. – reference: LiYNiWZhangHLiYZhengXAvailability analytical model for permanent dedicated path protection in wdm networksIEEE Communications Letters2012161959710.1109/LCOMM.2011.110711.111382 – reference: Rubio-Largo, l., Vega-Rodrguez, M., Gmez-Pulido, J., & Snchez-Prez, J. (2010). Solving the routing and wavelength assignment problem in WDM networks by using a multiobjective variable neighborhood search algorithm. In E. Corchado, P. Novais, C. Analide, J. Sedano (Eds.), Soft computing models in industrial and environmental applications, 5th international workshop (SOCO 2010). Advances in intelligent and soft computing (Vol. 73, pp. 47–54). Berlin: Springer. https://doi.org/10.1007/978-3-642-13161-5-7. – reference: Hai, D., Morvan, M., & Gravey, P. (2014). On the routing and spectrum assignment with multiple objectives. In Advanced photonics for communications (p. JT3A.12). Optical Society of America. http://www.opticsinfobase.org/abstract.cfm?URI=PS-2014-JT3A.12. – reference: ClímacoJCraveirinhaJGirão-SilvaRMulticriteria analysis in telecommunication network planning and design: A survey2016New YorkSpringer11671233 – reference: MonoyiosDVlachosKMultiobjective genetic algorithms for solving the impairment-aware routing and wavelength assignment problemIEEE/OSA Journal of Optical Communications and Networking201131404710.1364/JOCN.3.000040 – reference: AhlswedeRNetwork information flowIEEE Transactions on Information Theory20004641204121610.1109/18.850663 – reference: Jaumard, B., Meyer, C., Thiongane, B., & Yu, X. (2004). Ilp formulations and optimal solutions for the RWA problem. In Global telecommunications conference, 2004. GLOBECOM ’04 (vol. 3, pp. 1918–1924). IEEE. https://doi.org/10.1109/GLOCOM.2004.1378328. – reference: Amazons multi-million dollar server outage caused by it worker typo. https://www.rt.com/news/379398-amazon-server-outage-typo/. Accessed 30 April 2017. – reference: Hai, D. T. (2017). Multi-objective genetic algorithm for solving routing and spectrum assignment problem. In 2017 Seventh international conference on information science and technology (ICIST) (pp. 177–180). https://doi.org/10.1109/ICIST.2017.7926753. – reference: DaoHMorvanMGraveyPAn efficient network-side path protection scheme in OFDM-based elastic optical networksInternational Journal of Communication Systems2018 – reference: SalehASimmonsJMTechnology and architecture to enable the explosive growth of the internetIEEE Communications Magazine201149112613210.1109/MCOM.2011.5681026 – reference: KamalAEMohandespourMNetwork coding-based protectionOptical Switching and Networking201411Part B18920110.1016/j.osn.2013.06.006 – reference: KongDLiYWangHZhouSZangJZhangJWuJLinJAll-optical XOR gates for QPSK signal based optical networksElectronics Letters201349748648810.1049/el.2013.0010 – reference: KamalAE1 + n Network protection for mesh networks: Network coding-based protection using p-cyclesIEEE/ACM Transactions on Networking2010181678010.1109/TNET.2009.2020503 – reference: XuZArchambaultETremblayCChenJWosinskaLBelangerMPLittlewoodP1+1 Dedicated optical-layer protection strategy for filterless optical networksIEEE Communications Letters20141819810110.1109/LCOMM.2013.111113.132000 – reference: Kim, M., Médard, M., & O’Reilly, U. M. (2009). Network coding and its implications on optical networking. In Optical fiber communication conference and national fiber optic engineers conference (p. OThO3). Optical Society of America. https://doi.org/10.1364/OFC.2009.OThO3, http://www.osapublishing.org/abstract.cfm?URI=OFC-2009-OThO3. – reference: lvaroR-LVega-RodrguezMAApplying MOEAs to solve the static routing and wavelength assignment problem in optical WDM networksEngineering Applications of Artificial Intelligence2013265616021619 – reference: ChenLKLiMLiewSCBreakthroughs in photonics 2014: Optical physical-layer network coding, recent developments, and challengesIEEE Photonics Journal20157316 – reference: HaiDTLeveraging the survivable all-optical WDM network design with network coding assignmentIEEE Communications Letters201721102190219310.1109/LCOMM.2017.2720661 – reference: Belzner, M., & Haunstein, H. (2009). Performance of network coding in transport networks with traffic protection. In 2009 ITG symposium on photonic networks (pp. 1–7). – reference: Thanh, H. D., Morvan, M., & Gravey, P. (2014). On the usage of flexible transponder in survivable transparent flex-grid optical network. In 2014 9th International symposium on communication systems, networks digital sign (CSNDSP) (pp. 1123–1127). https://doi.org/10.1109/CSNDSP.2014.6923998. – reference: BabarcziPRealization strategies of dedicated path protection: A bandwidth cost perspectiveComputer Networks20135791974199010.1016/j.comnet.2013.03.015 – reference: Hai, D. T., & Hoang, K. M. (2017). On the efficient use of multi-line rate transponder for shared protection in wdm network. In 2017 International conference on recent advances in signal processing, telecommunications computing (SigTelCom) (pp. 181–186). https://doi.org/10.1109/SIGTELCOM.2017.7849819. – reference: SalehASimmonsJMAll-optical networking: Evolution, benefits, challenges, and future visionProceedings of the IEEE201210051105111710.1109/JPROC.2011.2182589 – reference: MuktadirAHAOkiEA mathematical model for routing in 1 + 1 protection with network coding for instantaneous recoveryIEICE Communications Express20121622823310.1587/comex.1.228 – reference: DaoTHOn optimal designs of transparent WDM networks with 1 + 1 protection leveraged by all-optical XOR network coding schemesOptical Fiber Technology2018409310010.1016/j.yofte.2017.11.009 – reference: Skorin-KapovNFurdekMZsigmondSWosinskaLPhysical-layer security in evolving optical networksIEEE Communications Magazine201654811011710.1109/MCOM.2016.7537185 – reference: Hai, D. T. (2017). A novel adaptive operation of multi-line rate transponder for dedicated protection in WDM network. In 2017 Seventh international conference on information science and technology (ICIST) (pp. 69–74). https://doi.org/10.1109/ICIST.2017.7926494 – reference: Gravey, P., Hai, D., & Morvan, M. (2014). On the advantages of co-OFDM transponder in network-side protection. In Advanced photonics for communications (p. PW1B.3). Optical Society of America. https://doi.org/10.1364/PS.2014.PW1B.3, http://www.osapublishing.org/abstract.cfm?URI=PS-2014-PW1B.3. – reference: HaiDTAn optimal design framework for 1 + 1 routing and network coding assignment problem in wdm optical networksIEEE Access20175222912229810.1109/ACCESS.2017.2761809 – reference: Aly, S. A., & Kamal, A. E. (2008). Network protection codes against link failures using network coding. In IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–6). https://doi.org/10.1109/GLOCOM.2008.ECP.516. – reference: Barla, I. B., Rambach, F., Schupke, D. A. & Thakur, M. (2010) Network coding for protection against multiple link failures in multi-domain networks. In 2010 IEEE International conference on communications (pp. 1–6). https://doi.org/10.1109/ICC.2010.5502271. – reference: ManleyEDDeogunJXuLAlexanderDRAll-optical network codingIEEE/OSA Journal of Optical Communications and Networking20102417519110.1364/JOCN.2.000175 – reference: Agarwal, A., & Charikar, M. (2004). On the advantage of network coding for improving network throughput. In Information theory workshop, 2004 (pp. 247–249). IEEE. https://doi.org/10.1109/ITW.2004.1405308. – reference: HaiDTMorvanMGraveyPCombining heuristic and exact approaches for solving the routing and spectrum assignment problemIET Optoelectronics2018122657210.1049/iet-opt.2017.0013 – reference: CPLEX, I. I. (2016). High-performance mathematical programming engine. http://www.ibm.com. – reference: MarlerRAroraJThe weighted sum method for multi-objective optimization: New insightsStructural and Multidisciplinary Optimization201041685386210.1007/s00158-009-0460-7 – reference: Yang, L., Gong, L., & Zhu, Z. (2016). Incorporating network coding to formulate multicast sessions in elastic optical networks. In 2016 International conference on computing, networking and communications (ICNC) (pp. 1–5). https://doi.org/10.1109/ICCNC.2016.7440672. – reference: Muktadir, A. H. A., & Oki, E. (2014). A heuristic routing algorithm for network coding aware 1 + 1 protection route design for instantaneous recovery. In 2014 IEEE 15th international conference on high performance switching and routing (HPSR) (pp. 84–89). https://doi.org/10.1109/HPSR.2014.6900886. – reference: ZhouDSubramaniamSSurvivability in optical networksIEEE Network2000146162310.1109/65.885666 – reference: Hai, D. T. & Hoang, K. M. (2017). An efficient genetic algorithm approach for solving routing and spectrum assignment problem. 2017 International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), Da Nang (pp. 187–192). https://doi.org/10.1109/SIGTELCOM.2017.7849820. – reference: Cisco. (2016). The Zettabyte Era: Trends and analysis. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf. Accessed 5 November 2016. – reference: KamalAEAl-KofahiOEfficient and agile 1 + n protectionIEEE Transactions on Communications201159116918010.1109/TCOMM.2011.102910.090178 – reference: PhongPVMuktadirAHAOkiEA hybrid instantaneous recovery route design scheme with two different coding aware scenariosIEICE Communications Express20154181310.1587/comex.4.8 – reference: Ramirez, W., Masip-Bruin, X., Yannuzzi, M., Montero, D., Martinez, A., & Lopez, V. (2014). Network coding-based protection scheme for elastic optical networks. In 2014 10th international conference on the design of reliable communication networks (DRCN) (pp. 1–8). https://doi.org/10.1109/DRCN.2014.6816136. – reference: Thanh, H. D., Morvan, M., Gravey, P., Cugini, F., & Cerutti, I. (2014). On the spectrum-efficiency of transparent optical transport network design with variable-rate forward error correction codes. In 16th International conference on advanced communication technology (pp. 1173–1177). https://doi.org/10.1109/ICACT.2014.6779143. – reference: LiuZLiMLuLChanCKLiewSCChenLKOptical physical-layer network codingIEEE hotonics Technology Letters201224161424142710.1109/LPT.2012.2204972 – volume: 18 start-page: 98 issue: 1 year: 2014 ident: 474_CR12 publication-title: IEEE Communications Letters doi: 10.1109/LCOMM.2013.111113.132000 – ident: 474_CR35 doi: 10.1109/HPSR.2014.6900886 – volume: 59 start-page: 169 issue: 1 year: 2011 ident: 474_CR27 publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2011.102910.090178 – volume: 2 start-page: 175 issue: 4 year: 2010 ident: 474_CR41 publication-title: IEEE/OSA Journal of Optical Communications and Networking doi: 10.1364/JOCN.2.000175 – ident: 474_CR29 doi: 10.1109/ICC.2010.5502271 – volume: 46 start-page: 1204 issue: 4 year: 2000 ident: 474_CR14 publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.850663 – ident: 474_CR25 doi: 10.1109/GLOCOM.2008.ECP.516 – ident: 474_CR28 doi: 10.1109/ICC.2009.5199219 – volume: 57 start-page: 1974 issue: 9 year: 2013 ident: 474_CR32 publication-title: Computer Networks doi: 10.1016/j.comnet.2013.03.015 – volume: 18 start-page: 67 issue: 1 year: 2010 ident: 474_CR26 publication-title: IEEE/ACM Transactions on Networking doi: 10.1109/TNET.2009.2020503 – volume: 11 start-page: 189 issue: Part B year: 2014 ident: 474_CR24 publication-title: Optical Switching and Networking doi: 10.1016/j.osn.2013.06.006 – year: 2018 ident: 474_CR9 publication-title: International Journal of Communication Systems doi: 10.1002/dac.3410 – volume: 12 start-page: 65 issue: 2 year: 2018 ident: 474_CR22 publication-title: IET Optoelectronics doi: 10.1049/iet-opt.2017.0013 – volume: 49 start-page: 126 issue: 1 year: 2011 ident: 474_CR4 publication-title: IEEE Communications Magazine doi: 10.1109/MCOM.2011.5681026 – ident: 474_CR15 doi: 10.1109/ITW.2004.1405308 – ident: 474_CR1 – volume: 7 start-page: 1 issue: 3 year: 2015 ident: 474_CR49 publication-title: IEEE Photonics Journal doi: 10.1109/JPHOT.2015.2418264 – ident: 474_CR45 doi: 10.1007/978-3-642-13161-5-7 – volume: 54 start-page: 110 issue: 8 year: 2016 ident: 474_CR7 publication-title: IEEE Communications Magazine doi: 10.1109/MCOM.2016.7537185 – ident: 474_CR10 doi: 10.1364/PS.2014.PW1B.3 – ident: 474_CR42 – ident: 474_CR43 doi: 10.1109/ICIST.2017.7926753 – volume: 3 start-page: 40 issue: 1 year: 2011 ident: 474_CR44 publication-title: IEEE/OSA Journal of Optical Communications and Networking doi: 10.1364/JOCN.3.000040 – ident: 474_CR33 doi: 10.1109/ICC.2012.6363928 – ident: 474_CR8 doi: 10.1109/SIGTELCOM.2017.7849819 – volume: 21 start-page: 2190 issue: 10 year: 2017 ident: 474_CR19 publication-title: IEEE Communications Letters doi: 10.1109/LCOMM.2017.2720661 – volume: 30 start-page: e3075 issue: 5 year: 2017 ident: 474_CR37 publication-title: International Journal of Communication Systems doi: 10.1002/dac.3075 – ident: 474_CR53 – volume: 40 start-page: 93 year: 2018 ident: 474_CR20 publication-title: Optical Fiber Technology doi: 10.1016/j.yofte.2017.11.009 – ident: 474_CR51 doi: 10.1109/LEOS.2009.5343425 – ident: 474_CR16 doi: 10.1364/OFC.2009.OThO3 – ident: 474_CR21 doi: 10.1109/GLOCOM.2004.1378328 – volume: 4 start-page: 8 issue: 1 year: 2015 ident: 474_CR38 publication-title: IEICE Communications Express doi: 10.1587/comex.4.8 – ident: 474_CR23 doi: 10.1109/SIGTELCOM.2017.7849820 – volume: 41 start-page: 853 issue: 6 year: 2010 ident: 474_CR46 publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-009-0460-7 – ident: 474_CR3 doi: 10.1109/ICACT.2014.6779143 – ident: 474_CR52 doi: 10.1109/CSNDSP.2014.6923998 – volume: 62 start-page: 495 issue: 3 year: 2016 ident: 474_CR34 publication-title: Telecommunication Systems doi: 10.1007/s11235-015-0089-3 – ident: 474_CR39 doi: 10.1109/DRCN.2014.6816136 – ident: 474_CR5 – ident: 474_CR30 – volume: 11 start-page: 782 issue: 5 year: 2003 ident: 474_CR17 publication-title: IEEE/ACM Transactions on Networking doi: 10.1109/TNET.2003.818197 – volume: 100 start-page: 1105 issue: 5 year: 2012 ident: 474_CR2 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2011.2182589 – volume: 24 start-page: 1424 issue: 16 year: 2012 ident: 474_CR18 publication-title: IEEE hotonics Technology Letters doi: 10.1109/LPT.2012.2204972 – volume: 16 start-page: 95 issue: 1 year: 2012 ident: 474_CR11 publication-title: IEEE Communications Letters doi: 10.1109/LCOMM.2011.110711.111382 – volume: 1 start-page: 228 issue: 6 year: 2012 ident: 474_CR31 publication-title: IEICE Communications Express doi: 10.1587/comex.1.228 – volume: 49 start-page: 486 issue: 7 year: 2013 ident: 474_CR50 publication-title: Electronics Letters doi: 10.1049/el.2013.0010 – volume: 14 start-page: 16 issue: 6 year: 2000 ident: 474_CR6 publication-title: IEEE Network doi: 10.1109/65.885666 – ident: 474_CR13 doi: 10.1109/ICIST.2017.7926494 – volume: 26 start-page: 1602 issue: 56 year: 2013 ident: 474_CR47 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2013.03.005 – volume: 5 start-page: 22291 year: 2017 ident: 474_CR36 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2761809 – ident: 474_CR40 doi: 10.1109/ICCNC.2016.7440672 – start-page: 1167 volume-title: Multicriteria analysis in telecommunication network planning and design: A survey year: 2016 ident: 474_CR48 |
| SSID | ssj0010079 |
| Score | 2.29341 |
| Snippet | Network coding techniques have been viewed as the promising venue to improve the network efficiency and indeed, have been widely explored in the realm of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 155 |
| SubjectTerms | Artificial Intelligence Business and Management Coding Computer Communication Networks Computer networks Computer simulation Efficiency Integer programming IT in Business Linear programming Mathematical models Optical communication Probability Theory and Stochastic Processes Telecommunications systems Wavelength division multiplexing |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Collection dbid: 7WY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYocCiHFkorlpfmwAmw5Dy8Xp8qhIo4AQeqwimyHYcugoRmF_gB_HFmHIdtK8GFQ05OrMgz9nzz8HyM7QjhrUIgjFtcSJ5XVnFbyopLJ43NRoKaoQayCXVyMrq40Gcx4DaJZZX9mRgO6rJxFCNHJx0t5TDLpf5-94cTaxRlVyOFxge2gIZaEoOB-nX5kkVA-6dDtjOhoNkw77Oa4eocXRLlNCJylXP9r12agc3_8qPB7Bx9fu8PL7NPEXDCQachK2zO11_Y0l9tCFfZ02kNqIIUWgDEg5DAHj5tc08l0fvwaIicor6a_gZTl1B3hePgGjJ7gOB7fBVKCiCS0wDFdsGAHfPGXncHKoS2FL4FQrWmhVgWdkszBDKer-zn0Y_zw2MeyRm4y5LhFP1O7W2ZCasQhJnUJ14a9EitdLjoItVVJXxlrNGJwWVIU6dMMkLP3elSDxPjs29svm5qv8ZAZZl2qUVoYsvcUqfkCv3yVKNElfRKDZjoRVO42LmcCDRuilnPZZJmgdIsSJqFHrDdl0_uurYdb7282UuwiDt4UszEN2B7vQ7Mhl-dbP3tyTbYR4Rcuis222Tz0_beb7FF9zAdT9rtoL7Pw5T1MQ priority: 102 providerName: ProQuest |
| Title | On solving the 1 + 1 routing, wavelength and network coding assignment problem with a bi-objective integer linear programming model |
| URI | https://link.springer.com/article/10.1007/s11235-018-0474-9 https://www.proquest.com/docview/2084663459 |
| Volume | 71 |
| WOSCitedRecordID | wos000466174200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9451 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010079 issn: 1018-4864 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK7I4gEOooIBxU0dPImT9Dx6evuoBMLFdYMv8DLp7umBNTBrZnflF_A_-C38MqvmwaoRE7hMMumezqT69X1d1V8BvBLCW0VAmKa4kEFSWBXYXBaBdNLYeCBYDLVONqGGw8HRkR6197inXbR755KsV-rFZTe-1knUdxCIRCWBXoJlyWIzTNE_frlxHVBdXbs4Qz4pS5POlfmvJv7cjBYI8y-naL3X7K_d6y8fw6MWWuLbZiw8gQe-fAqrvwkOrsPlhxJpsPEhAhLyw_D6auf6KsRqMufw5zd4YTgRRXkyO0VT5lg2QeLoJrzFIQHt8UkdPoBtIhrkc1w0aMfBxH5vFk-sJSh8hYxgTYVtCNg5t1An3tmAz_t7n3YPgjYRQ-DiMJ0Rx9Te5rGwigCXiXzopSH2aaUjW4tIF4XwhbFGhyZJ0yhyyoQDYulO5zoNjY-fQa-clH4TUMWxdpElGGLzxLIqckEcPNLEbJT0Sm2B6Hokc61KOSfLOMsW-sps4YwsnLGFM70Fr28--dFIdPyv8nbXzVk7W6dZJAiFpXEiqXin69ZF8a2NPb9T7RewQmhLN3Fm29CbVXP_Eh66n7PxtOrDkvp63Ifld3vD0SG9vRe7_IxG9BzJb_16kP8Cxx3yXg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9VAEJ8gmKgH8TM-BZ2DXsRNtl9v3x4MMQiBAE8PmHCru9stPqMt9j0knPl__BuZ2bY8NZEbBw89bTtN2t_szG9mdgbgpZTeKnKEScVlJtLSKmGLrBSZy4xNRpKboYZhE2o8Hh0e6o8L8Ks_C8Nllf2eGDbqonYcIyeSTpZymKSZXj_-IXhqFGdX-xEaLSx2_dkpUbbp25339H9fxfHW5sHGtuimCgiXRMMZESbtbZFIq8h7MLGPfGaIStnMSaVlrMtS-tJYoyNDL4xjp0w0IsrpdKGHkfEJyb0BSykRL9arfblxmbUge6tDdjXiIN0w7bOo4ageH0oVvCJTlQr9px2cO7d_5WODmdta_t8-0D242znU-K7VgPuw4KsHcOe3NosP4fxDhaRiHDpB8ncxwjW6mvqES77f4Knh4RvV0ewLmqrAqi2MR1ezWUciF5OjUDKB3fAd5Ng1GrQTUduvrcHA0HbDN8heu2mwK3v7zhLCsKFH8OlavsJjWKzqyj8BVEmiXWzJ9bJFarkTdDkiYqOJzanMKzUA2UMhd11ndh4Q8i2f95Rm9OSEnpzRk-sBvL585LhtS3LVzSs9YvJuh5rmc7gMYK3H3Hz5n8KeXi3sBdzaPtjfy_d2xrvP4Da5l7otrFuBxVlz4lfhpvs5m0yb50F1ED5fNxQvAMpcUos |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9RADLbKFiF6KG-xbQEf4EIZMXnt7BwQAtoVVdGyQiD1ls5MJmURTdrslopz_1V_HXYeXUCitx445DSJIyWfx_5sjw3wVEpvFTnCpOIyEXFulbBZkovEJcZGQ8nNUOthE2o8Hu7t6ckSnHdnYbisstsT6406Kx3HyImkk6UcRHGiX-ZtWcRka_T66FjwBCnOtHbjNBqI7Pqfp0TfZq92tuhfPwvD0fbnd-9FO2FAuCgYzIk8aW-zSFpFnoQJfeATQ7TKJk4qLUOd59LnxhodGHp5GDplgiHRT6czPQiMj0juNVhWEZGeHiy_3R5PPl3kMMj66jrXGnDIbhB3OdX64B4fURW8ImMVC_2nVVy4un9lZ2ujN7r1P3-u27Dautr4ptGNO7Dki7uw8lsDxntw9rFAUj4OqiB5whjgJl1VecLF4C_w1PBYjuJg_hVNkWHRlMyjK9ngI9GO6UFdTIHtWB7kqDYatFNR2m-NKcG6IYevkP15U2FbEHfIEuoxRPfhy5V8hQfQK8rCPwRUUaRdaMkps1lsuUd0PiTKo4nnqcQr1QfZwSJ1bc92Hh3yPV10m2YkpYSklJGU6j48v3jkqGlYctnNGx160nbvmqUL6PRhs8PfYvmfwtYuF_YEbhAC0w874911uEl-p24q7jagN69O_CO47n7Mp7PqcatHCPtXjcVfPmhcyQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+solving+the+1%C2%A0%2B%C2%A01+routing%2C+wavelength+and+network+coding+assignment+problem+with+a+bi-objective+integer+linear+programming+model&rft.jtitle=Telecommunication+systems&rft.au=Hai%2C+Dao+Thanh&rft.date=2019-06-01&rft.pub=Springer+US&rft.issn=1018-4864&rft.eissn=1572-9451&rft.volume=71&rft.issue=2&rft.spage=155&rft.epage=165&rft_id=info:doi/10.1007%2Fs11235-018-0474-9&rft.externalDocID=10_1007_s11235_018_0474_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1018-4864&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1018-4864&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1018-4864&client=summon |