Application of chance-constrained programming for stochastic group shop scheduling problem

In this paper, we study a group shop scheduling (GSS) problem subject to uncertain release dates and processing times. The GSS problem is a general formulation including the other shop scheduling problems such as the flow shop, the job shop, and the open shop scheduling problems. The objective is to...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 42; no. 3-4; pp. 321 - 334
Main Authors: Ahmadizar, Fardin, Ghazanfari, Mehdi, Fatemi Ghomi, Seyyed Mohammad Taghi
Format: Journal Article
Language:English
Published: London Springer-Verlag 01.05.2009
Springer Nature B.V
Subjects:
ISSN:0268-3768, 1433-3015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study a group shop scheduling (GSS) problem subject to uncertain release dates and processing times. The GSS problem is a general formulation including the other shop scheduling problems such as the flow shop, the job shop, and the open shop scheduling problems. The objective is to find a job schedule which minimizes the total weighted completion time. We solve this problem based on the chance-constrained programming. First, the problem is formulated in a form of stochastic programming and then prepared in a form of deterministic mixed binary integer linear programming such that it can be solved by a linear programming solver. To solve the problem efficiently, we develop an efficient hybrid method. Exploiting a heuristic algorithm in order to satisfy the constraints, an ant colony optimization algorithm is applied to construct high-quality solutions to the problem. The proposed approach is tested on instances where the random variables are normally, uniformly, or exponentially distributed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-008-1594-2