Principal eigenvalues and eigenfunctions to Lane-Emden systems on general bounded domains

We prove the existence of at least a curve of principal eigenvalues for two-parameter Lane-Emden systems under Dirichlet boundary conditions for general bounded domains. The nonhomogeneous counterpart is also addressed. Part of the main results (Theorems 1.1–1.3) are based on some deep ideas introdu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Israel journal of mathematics Ročník 259; číslo 1; s. 277 - 310
Hlavní autoři: Leite, Edir Junior Ferreira, Montenegro, Marcos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Jerusalem The Hebrew University Magnes Press 01.03.2024
Springer Nature B.V
Témata:
ISSN:0021-2172, 1565-8511
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove the existence of at least a curve of principal eigenvalues for two-parameter Lane-Emden systems under Dirichlet boundary conditions for general bounded domains. The nonhomogeneous counterpart is also addressed. Part of the main results (Theorems 1.1–1.3) are based on some deep ideas introduced in the seminal paper [4] and on two fundamental tools, both new and of independent interest: Aleksandrov–Bakelman–Pucci estimates (Theorem 2.1) and Harnack–Krylov–Safonov inequalities (Theorem 5.1) associated to Lane–Emden systems in smooth domains.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-023-2487-7