A note on a two-agent scheduling problem related to the total weighted late work

We revisit a two-agent scheduling problem in which a set of jobs belonging to two agents A and B (without common jobs) will be processed on a single machine for minimizing the total weighted late work of agent A subject to the maximum cost of agent B being bounded. Zhang and Wang (J Comb Optim 33:94...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 37; číslo 3; s. 989 - 999
Hlavní autoři: Zhang, Yuan, Yuan, Jinjiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2019
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We revisit a two-agent scheduling problem in which a set of jobs belonging to two agents A and B (without common jobs) will be processed on a single machine for minimizing the total weighted late work of agent A subject to the maximum cost of agent B being bounded. Zhang and Wang (J Comb Optim 33:945–955, 2017 ) studied three versions of the problem: (i) the A -jobs having a common due date, (ii) the A -jobs having a common processing time, (iii) the general version. The authors presented polynomial-time algorithms for the first two versions and a pseudo-polynomial-time algorithm for the last one. However, their algorithm for the first version is invalid. Then we show the NP-hardness and provide a pseudo-polynomial-time algorithm for the first version with the cost of agent B being makespan, present a polynomial-time algorithm for an extension of the second version, and show that the third version is solvable in pseudo-polynomial-time by a new technique.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-018-0337-z