Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization

This paper presents a novel binary monarch butterfly optimization (BMBO) method, intended for addressing the 0–1 knapsack problem (0–1 KP). Two tuples, consisting of real-valued vectors and binary vectors, are used to represent the monarch butterfly individuals in BMBO. Real-valued vectors constitut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 28; H. 7; S. 1619 - 1634
Hauptverfasser: Feng, Yanhong, Wang, Gai-Ge, Deb, Suash, Lu, Mei, Zhao, Xiang-Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.07.2017
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a novel binary monarch butterfly optimization (BMBO) method, intended for addressing the 0–1 knapsack problem (0–1 KP). Two tuples, consisting of real-valued vectors and binary vectors, are used to represent the monarch butterfly individuals in BMBO. Real-valued vectors constitute the search space, whereas binary vectors form the solution space. In other words, monarch butterfly optimization works directly on real-valued vectors, while solutions are represented by binary vectors. Three kinds of individual allocation schemes are tested in order to achieve better performance. Toward revising the infeasible solutions and optimizing the feasible ones, a novel repair operator, based on greedy strategy, is employed. Comprehensive numerical experimentations on three types of 0–1 KP instances are carried out. The comparative study of the BMBO with four state-of-the-art classical algorithms clearly points toward the superiority of the former in terms of search accuracy, convergent capability and stability in solving the 0–1 KP, especially for the high-dimensional instances.
AbstractList This paper presents a novel binary monarch butterfly optimization (BMBO) method, intended for addressing the 0–1 knapsack problem (0–1 KP). Two tuples, consisting of real-valued vectors and binary vectors, are used to represent the monarch butterfly individuals in BMBO. Real-valued vectors constitute the search space, whereas binary vectors form the solution space. In other words, monarch butterfly optimization works directly on real-valued vectors, while solutions are represented by binary vectors. Three kinds of individual allocation schemes are tested in order to achieve better performance. Toward revising the infeasible solutions and optimizing the feasible ones, a novel repair operator, based on greedy strategy, is employed. Comprehensive numerical experimentations on three types of 0–1 KP instances are carried out. The comparative study of the BMBO with four state-of-the-art classical algorithms clearly points toward the superiority of the former in terms of search accuracy, convergent capability and stability in solving the 0–1 KP, especially for the high-dimensional instances.
Author Lu, Mei
Feng, Yanhong
Wang, Gai-Ge
Deb, Suash
Zhao, Xiang-Jun
Author_xml – sequence: 1
  givenname: Yanhong
  surname: Feng
  fullname: Feng, Yanhong
  organization: School of Information Engineering, Shijiazhuang University of Economics
– sequence: 2
  givenname: Gai-Ge
  surname: Wang
  fullname: Wang, Gai-Ge
  email: gaigewang@163.com, gaigewang@gmail.com
  organization: School of Computer Science and Technology, Jiangsu Normal University, Institute of Algorithm and Big Data Analysis, Northeast Normal University, School of Computer Science and Information Technology, Northeast Normal University
– sequence: 3
  givenname: Suash
  surname: Deb
  fullname: Deb, Suash
  organization: IT & Educational Consultant
– sequence: 4
  givenname: Mei
  surname: Lu
  fullname: Lu, Mei
  organization: School of Computer Science and Technology, Jiangsu Normal University
– sequence: 5
  givenname: Xiang-Jun
  surname: Zhao
  fullname: Zhao, Xiang-Jun
  organization: School of Computer Science and Technology, Jiangsu Normal University
BookMark eNp9kE1OwzAQhS0EEm3hAOwssQ7MxHESL1HFn1SpC2BtOalT0iZ2sNNKZcUduCEnwSUsEBKs3mLeN_PmjcmhsUYTcoZwgQDZpQfgMUaAPIqR8QgPyAgTxiIGPD8kIxBJmKYJOyZj71cAkKQ5H5H5g222tVlS-Hh7R7o2qvOqXNPO2aLRLS12VFFjt7qhRW2U29HWBimfabHpe-2qZkdt19dt_ar62poTclSpxuvTb52Qp5vrx-ldNJvf3k-vZlHJMO0jVha6QlXGSkBepKAZ5prHRSKETliZicWCF6ATTDTEOlZxjqkAgWqRZkxkik3I-bA3BH3ZaN_Lld04E05KFMgFIs9ZcGWDq3TWe6crWdb9V87eqbqRCHLfnhzak6E9uW9PYiDxF9m5ug3__8vEA-OD1yy1-5HpT-gTHPCD1Q
CitedBy_id crossref_primary_10_1016_j_eswa_2020_114418
crossref_primary_10_1007_s00521_016_2795_5
crossref_primary_10_3390_app15189955
crossref_primary_10_1093_bib_bbz107
crossref_primary_10_1007_s00521_020_04917_4
crossref_primary_10_1007_s11042_024_19603_z
crossref_primary_10_1109_TSMC_2022_3205695
crossref_primary_10_3390_a15110405
crossref_primary_10_1109_TETC_2025_3583224
crossref_primary_10_1007_s11042_018_6601_5
crossref_primary_10_1007_s00521_020_05559_2
crossref_primary_10_1109_ACCESS_2020_2988290
crossref_primary_10_1109_ACCESS_2018_2809445
crossref_primary_10_1109_ACCESS_2019_2951370
crossref_primary_10_1109_ACCESS_2019_2958288
crossref_primary_10_1016_j_future_2018_06_008
crossref_primary_10_1007_s00500_021_05591_x
crossref_primary_10_3390_a18050295
crossref_primary_10_3390_math7111056
crossref_primary_10_1080_23302674_2022_2037026
crossref_primary_10_3390_app6100299
crossref_primary_10_1007_s00500_022_07285_4
crossref_primary_10_1007_s13042_019_01047_9
crossref_primary_10_4018_IJGHPC_2018100105
crossref_primary_10_1007_s00521_018_3375_7
crossref_primary_10_1007_s12293_019_00288_z
crossref_primary_10_1007_s13369_024_09269_y
crossref_primary_10_1007_s12652_017_0661_7
crossref_primary_10_1007_s42235_024_00481_y
crossref_primary_10_3390_a17110478
crossref_primary_10_3390_math7050395
crossref_primary_10_1109_ACCESS_2020_3044005
crossref_primary_10_1007_s00366_020_01240_3
crossref_primary_10_1016_j_neucom_2019_06_112
crossref_primary_10_3390_math8091415
crossref_primary_10_3390_math6040061
crossref_primary_10_1007_s00500_022_07780_8
crossref_primary_10_1016_j_ijepes_2022_108729
crossref_primary_10_1016_j_neucom_2023_126630
crossref_primary_10_1016_j_ins_2020_07_013
crossref_primary_10_1515_geo_2019_0031
crossref_primary_10_1007_s12351_018_0427_9
crossref_primary_10_3390_a11050071
crossref_primary_10_1007_s10462_018_09676_2
crossref_primary_10_1007_s11047_019_09731_z
crossref_primary_10_3390_math6120287
crossref_primary_10_1007_s12652_020_01702_y
crossref_primary_10_1016_j_knosys_2018_11_016
crossref_primary_10_1016_j_engappai_2022_105592
crossref_primary_10_1002_mma_6904
crossref_primary_10_1007_s00521_016_2338_0
crossref_primary_10_1007_s00521_019_04128_6
crossref_primary_10_1016_j_asoc_2020_106159
crossref_primary_10_1155_2022_8440165
crossref_primary_10_1016_j_eswa_2018_08_051
crossref_primary_10_1016_j_jcde_2018_10_006
crossref_primary_10_1016_j_swevo_2017_10_008
crossref_primary_10_1007_s00366_020_00951_x
crossref_primary_10_1007_s12351_016_0251_z
crossref_primary_10_1088_1742_6596_1879_2_022097
crossref_primary_10_1108_EC_05_2017_0174
crossref_primary_10_1109_ACCESS_2020_3042216
crossref_primary_10_1007_s00500_018_3627_6
crossref_primary_10_1007_s00500_019_03988_3
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1007_s40747_017_0050_z
crossref_primary_10_1016_j_sasc_2022_200041
crossref_primary_10_1007_s12517_020_05355_1
crossref_primary_10_1016_j_future_2018_07_062
crossref_primary_10_1155_2019_4182148
crossref_primary_10_1108_EC_09_2018_0424
crossref_primary_10_1007_s00521_022_06944_9
crossref_primary_10_1016_j_swevo_2020_100686
crossref_primary_10_1109_ACCESS_2019_2908489
crossref_primary_10_3390_sym13020238
crossref_primary_10_1007_s10489_022_03554_9
crossref_primary_10_1007_s00521_023_08358_7
crossref_primary_10_1007_s11042_020_10147_6
crossref_primary_10_1109_ACCESS_2019_2901988
crossref_primary_10_1007_s11042_020_10395_6
crossref_primary_10_1007_s00521_021_06236_8
crossref_primary_10_1016_j_compeleceng_2017_12_014
crossref_primary_10_1109_ACCESS_2018_2872533
crossref_primary_10_1007_s13042_019_00931_8
crossref_primary_10_3390_math9111233
crossref_primary_10_1007_s00521_021_06654_8
crossref_primary_10_1080_15376494_2018_1430874
crossref_primary_10_1007_s12293_016_0211_4
crossref_primary_10_1109_ACCESS_2020_3047930
crossref_primary_10_1016_j_eswa_2021_116238
crossref_primary_10_1007_s00521_017_2903_1
crossref_primary_10_1007_s12553_018_00289_x
crossref_primary_10_1007_s00366_017_0562_6
crossref_primary_10_1007_s10462_017_9559_1
Cites_doi 10.1007/s00521-015-1914-z
10.1016/j.asoc.2010.07.019
10.1287/opre.5.2.266
10.1016/j.asoc.2015.06.004
10.1007/s00500-014-1502-7
10.1007/s10898-007-9149-x
10.1109/ICEC.1994.350000
10.1016/j.future.2008.07.006
10.1007/s00521-015-1836-9
10.1007/BF02243880
10.1023/A:1008202821328
10.1108/EC-10-2012-0232
10.1016/j.eswa.2015.02.015
10.1155/2014/857254
10.1007/s11063-015-9465-y
10.1504/IJBIC.2013.053507
10.1016/j.cie.2011.06.011
10.1016/j.ins.2014.02.123
10.1007/s00521-013-1433-8
10.1016/j.advengsoft.2015.01.010
10.1016/j.asoc.2011.08.038
10.1109/CSE.2013.135
10.1109/TEVC.2008.919004
10.1007/s00521-015-1925-9
10.1016/j.neucom.2013.08.031
10.1016/j.amc.2011.05.110
10.1007/s00521-012-1304-8
10.1007/s00521-015-1923-y
10.1155/2014/970456
10.1109/ISCMI.2015.24
10.1007/s00707-009-0270-4
10.1016/j.ejor.2007.03.010
10.1109/IITA.2008.538
10.1109/NABIC.2009.5393690
10.1016/j.cor.2009.12.006
10.1007/s10878-014-9717-1
10.1504/IJBIC.2015.10004283
10.1109/ICEC.1994.349995
10.2307/3009639
10.1016/j.asoc.2014.02.010
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2015
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Natural Computing Applications Forum 2015
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s00521-015-2135-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1634
ExternalDocumentID 10_1007_s00521_015_2135_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c316t-3cbef1ac2a908b60e318e52b499e43c79dd5b0e414e02e2a28169091ad67397a3
IEDL.DBID RSV
ISICitedReferencesCount 123
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404928900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 16:32:42 EST 2025
Sat Nov 29 02:59:01 EST 2025
Tue Nov 18 22:07:01 EST 2025
Fri Feb 21 02:34:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Monarch butterfly optimization
Knapsack problems
Evolutionary computation
Greedy optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-3cbef1ac2a908b60e318e52b499e43c79dd5b0e414e02e2a28169091ad67397a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1915911583
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_1915911583
crossref_citationtrail_10_1007_s00521_015_2135_1
crossref_primary_10_1007_s00521_015_2135_1
springer_journals_10_1007_s00521_015_2135_1
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References SrivastavaPRChisMDebSAn efficient optimization algorithm for structural software testingInt J Artif Intell™20128S126877
Mirjalili SA, Hashim SZM (2011). BMOA: binary magnetic optimization algorithm. In: 2011 3rd international conference on machine learning and computing (ICMLC 2011), Singapore, pp 201–206
WangG-GDebSCuiZMonarch butterfly optimizationNeural Comput Appl2015
FongSDebSYangXSA heuristic optimization method inspired by wolf preying behaviorNeural Comput Appl2015
Wang G-G, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspired Comput in press
KongXGaoLOuyangHLiSA simplified binary harmony search algorithm for large scale 0–1 knapsack problemsExpert Syst Appl201542125337535510.1016/j.eswa.2015.02.015
HeYZhangXLiWAlgorithms for randomized time-varying knapsack problemsJ Comb Optim20141341.90110
MirjaliliSThe ant lion optimizerAdv Eng Softw201583809810.1016/j.advengsoft.2015.01.010
WangG-GHossein GandomiAYangXSA novel improved accelerated particle swarm optimization algorithm for global numerical optimizationEng Comput20143171198122010.1108/EC-10-2012-0232
KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim2007393459471234617810.1007/s10898-007-9149-x1149.90186
BhattacharjeeKKSarmahSPShuffled frog leaping algorithm and its application to 0/1 knapsack problemAppl Soft Comput20141925226310.1016/j.asoc.2014.02.010
MichalewiczZGenetic algorithms + data structures = evolution programs1996BerlinSpringer10.1007/978-3-662-03315-90841.68047
WangG-GGandomiAHZhaoXJHybridizing harmony search algorithm with cuckoo search for global numerical optimizationSoft Comput2014
LiXZhangJYinMAnimal migration optimization: an optimization algorithm inspired by animal migration behaviorNeural Comput Appl2014247–81867187710.1007/s00521-013-1433-8
KashanMHNahavandiNKashanAHDisABC: a new artificial bee colony algorithm for binary optimizationAppl Soft Comput201212134235210.1016/j.asoc.2011.08.038
ZhouYLiLMaMA complex-valued encoding bat algorithm for solving 0–1 knapsack problemNeural Process Lett2015
Feng YH, Wang G-G (2015) An Improved hybrid encoding firefly algorithm for randomized time-varying knapsack problems. In: The 2015 2nd international conference on soft computing & machine intelligence (ISCMI 2015), Hong Kong. IEEE
MavrotasGDiakoulakiDKourentzisASelection among ranked projects under segmentation, policy and logical constraintsEur J Oper Res2008187117719210.1016/j.ejor.2007.03.0101133.90353
ShihWA branch and bound method for the multi-constraint zero-one knapsack problemJ Oper Res Soc19790411.90050
WangG-GGandomiAHAlaviAHStud krill herd algorithmNeurocomputing201412836337010.1016/j.neucom.2013.08.031
Joines JA, Houck CR (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. In: Evolutionary computation, 1994. IEEE World Congress on computational intelligence. Proceedings of the first IEEE conference on. IEEE, pp 579–584. doi:10.1109/ICEC.1994.349995
Olsen AL (1994) Penalty functions and the knapsack problem. In: Evolutionary computation, 1994. IEEE World congress on computational intelligence. Proceedings of the first IEEE conference on. IEEE, pp 554–558. doi:10.1109/ICEC.1994.350000
GoldbergDEGenetic algorithms in search, optimization, and machine learning1989BostonAddison-Wesley0721.68056
PeetaSSalman FSGunnecDPre-disaster investment decisions for strengthening a highway networkComput Oper Res201037101708171910.1016/j.cor.2009.12.0061188.90052
WangG-GGuoLHWangHQIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-012-1304-8
YatesJLakshmananKA constrained binary knapsack approximation for shortest path network interdictionComput Ind Eng201161498199210.1016/j.cie.2011.06.011
WangLYangRNiHA human learning optimization algorithm and its application to multi-dimensional knapsack problemsAppl Soft Comput20153473674310.1016/j.asoc.2015.06.004
LiXWangJZhouJYinMA perturb biogeography based optimization with mutation for global numerical optimizationAppl Math Comput2011218259860928205221226.65055
StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim1997114341359147955310.1023/A:10082028213280888.90135
WangG-GGandomiAHAlaviAHA hybrid method based on krill herd and quantum-behaved particle swarm optimizationNeural Comput Appl2015
Fong S, Yang XS, Deb S (2013) Swarm search for feature selection in classification. In: Computational science and engineering (CSE), 2013 IEEE 16th international conference on. IEEE, pp 902–909
Wang G-G, Zhao XC, Deb S (2015). A novel monarch butterfly optimization with greedy strategy and self-adaptive crossover operator. In: the 2015 2nd international conference on soft computing & machine intelligence (ISCMI 2015), Hong Kong. IEEE
FengYHWangGGFengQJZhaoXJAn effective hybrid cuckoo search algorithm with improved shuffled frog leaping algorithm for 0–1 knapsack problemsComput Intell Neurosci2014
SimonDBiogeography-based optimizationIEEE Trans Evol Comput200812670271310.1109/TEVC.2008.919004
WangG-GGuoLHGandomiAHChaotic krill herd algorithmInf Sci20142741734319802610.1016/j.ins.2014.02.123
Feng YH, Jia K, and He YC (2014) An improved hybrid encoding cuckoo search algorithm for 0–1 knapsack problems. Comput Intell Neurosci 2014:970456. doi:10.1155/2014/970456
DuDZKoKIHuXDesign and analysis of approximation algorithms2011BerlinSpringer
PlateauGElkihelMA hybrid method for the 0–1 knapsack problemMethods Oper Res1985492772938169680564.90037
TothPDynamic programing algorithms for the zero-one knapsack problemComputing1980251294561977910.1007/BF022438800431.90076
DantzigGBDiscrete-variable extremum problemsOper Res1957522662888909810.1287/opre.5.2.266
YangXSDebSFongSBat algorithm is better than intermittent search strategyJ Multi-Valued Log Soft Comput2014223223237
ZouDGaoLLiSWuJSolving 0–1 knapsack problem by a novel global harmony search algorithmAppl Soft Comput20111121556156410.1016/j.asoc.2010.07.019
WangG-GGuoLHDuanHA hybrid meta-heuristic DE/CS algorithm for UCAV path planningJ Inform Comput Sci201291648114818
VandersterDCDimopoulosNJParra-HernandezRResource allocation on computational grids using a utility model and the knapsack problemFuture Gener Comput Syst2009251355010.1016/j.future.2008.07.006
SimonDEvolutionary optimization algorithms2013New YorkWiley
Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Nature & biologically inspired computing, 2009. NaBIC 2009. World Congress on. IEEE, pp 210–214. doi:10.1109/NABIC.2009.5393690
CuiZFanSZengJArtificial plant optimization algorithm with three-period photosynthesisInt J Bio-Inspired Comput20135213313910.1504/IJBIC.2013.053507
YangXSDebSHanneTHeXSAttraction and diffusion in nature-inspired optimization algorithmsNeural Comput Appl2015
ThielJVossSSome experiences on solving multi constraint zero-one knapsack problems with genetic algorithmsINFOR19943242262420823.90092
Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Frome
Wang GG, Gandomi AH, Yang XS, et al (2012) A new hybrid method based on krill herd and cuckoo search for global optimization tasks. Int J Bio-Inspired Comput
KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–426728910.1007/s00707-009-0270-405795170
MontgomeryDCDesign and analysis of experiments2005ArizonaWiley1195.62128
Chen P, Li J, Liu ZM (2008) Solving 0–1 knapsack problems by a discrete binary version of differential evolution. In: Second international symposium on intelligent information technology application, vol 2, pp 513–516. doi:10.1109/IITA.2008.538
G-G Wang (2135_CR39) 2015
J Thiel (2135_CR10) 1994; 32
XS Yang (2135_CR51) 2015
R Storn (2135_CR49) 1997; 11
Salman FS PeetaS (2135_CR4) 2010; 37
YH Feng (2135_CR14) 2014
D Zou (2135_CR16) 2011; 11
X Kong (2135_CR17) 2015; 42
G Plateau (2135_CR9) 1985; 49
2135_CR36
G-G Wang (2135_CR32) 2014; 128
2135_CR37
2135_CR38
S Mirjalili (2135_CR19) 2015; 83
Z Michalewicz (2135_CR50) 1996
GB Dantzig (2135_CR6) 1957; 5
MH Kashan (2135_CR15) 2012; 12
G-G Wang (2135_CR25) 2012; 9
W Shih (2135_CR7) 1979
Y Zhou (2135_CR18) 2015
A Kaveh (2135_CR23) 2010; 213
J Yates (2135_CR5) 2011; 61
DC Vanderster (2135_CR3) 2009; 25
G-G Wang (2135_CR28) 2014; 24
G-G Wang (2135_CR26) 2014
2135_CR29
DZ Du (2135_CR1) 2011
D Karaboga (2135_CR47) 2007; 39
P Toth (2135_CR8) 1980; 25
Z Cui (2135_CR34) 2013; 5
DE Goldberg (2135_CR45) 1989
D Simon (2135_CR46) 2013
G-G Wang (2135_CR31) 2014; 274
2135_CR53
Y He (2135_CR41) 2014
2135_CR11
2135_CR13
X Li (2135_CR27) 2014; 24
G-G Wang (2135_CR30) 2015
G-G Wang (2135_CR54) 2014; 31
KK Bhattacharjee (2135_CR12) 2014; 19
XS Yang (2135_CR20) 2014; 22
S Fong (2135_CR33) 2015
G Mavrotas (2135_CR2) 2008; 187
D Simon (2135_CR21) 2008; 12
L Wang (2135_CR35) 2015; 34
2135_CR40
2135_CR42
2135_CR43
2135_CR44
2135_CR48
PR Srivastava (2135_CR24) 2012; 8
DC Montgomery (2135_CR52) 2005
X Li (2135_CR22) 2011; 218
References_xml – reference: ThielJVossSSome experiences on solving multi constraint zero-one knapsack problems with genetic algorithmsINFOR19943242262420823.90092
– reference: Olsen AL (1994) Penalty functions and the knapsack problem. In: Evolutionary computation, 1994. IEEE World congress on computational intelligence. Proceedings of the first IEEE conference on. IEEE, pp 554–558. doi:10.1109/ICEC.1994.350000
– reference: WangG-GGandomiAHZhaoXJHybridizing harmony search algorithm with cuckoo search for global numerical optimizationSoft Comput2014
– reference: BhattacharjeeKKSarmahSPShuffled frog leaping algorithm and its application to 0/1 knapsack problemAppl Soft Comput20141925226310.1016/j.asoc.2014.02.010
– reference: WangG-GGuoLHWangHQIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-012-1304-8
– reference: MirjaliliSThe ant lion optimizerAdv Eng Softw201583809810.1016/j.advengsoft.2015.01.010
– reference: Fong S, Yang XS, Deb S (2013) Swarm search for feature selection in classification. In: Computational science and engineering (CSE), 2013 IEEE 16th international conference on. IEEE, pp 902–909
– reference: MichalewiczZGenetic algorithms + data structures = evolution programs1996BerlinSpringer10.1007/978-3-662-03315-90841.68047
– reference: ZouDGaoLLiSWuJSolving 0–1 knapsack problem by a novel global harmony search algorithmAppl Soft Comput20111121556156410.1016/j.asoc.2010.07.019
– reference: WangG-GGuoLHDuanHA hybrid meta-heuristic DE/CS algorithm for UCAV path planningJ Inform Comput Sci201291648114818
– reference: MavrotasGDiakoulakiDKourentzisASelection among ranked projects under segmentation, policy and logical constraintsEur J Oper Res2008187117719210.1016/j.ejor.2007.03.0101133.90353
– reference: YatesJLakshmananKA constrained binary knapsack approximation for shortest path network interdictionComput Ind Eng201161498199210.1016/j.cie.2011.06.011
– reference: YangXSDebSFongSBat algorithm is better than intermittent search strategyJ Multi-Valued Log Soft Comput2014223223237
– reference: VandersterDCDimopoulosNJParra-HernandezRResource allocation on computational grids using a utility model and the knapsack problemFuture Gener Comput Syst2009251355010.1016/j.future.2008.07.006
– reference: Wang G-G, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspired Comput in press
– reference: WangG-GDebSCuiZMonarch butterfly optimizationNeural Comput Appl2015
– reference: WangLYangRNiHA human learning optimization algorithm and its application to multi-dimensional knapsack problemsAppl Soft Comput20153473674310.1016/j.asoc.2015.06.004
– reference: Joines JA, Houck CR (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. In: Evolutionary computation, 1994. IEEE World Congress on computational intelligence. Proceedings of the first IEEE conference on. IEEE, pp 579–584. doi:10.1109/ICEC.1994.349995
– reference: Feng YH, Jia K, and He YC (2014) An improved hybrid encoding cuckoo search algorithm for 0–1 knapsack problems. Comput Intell Neurosci 2014:970456. doi:10.1155/2014/970456
– reference: PeetaSSalman FSGunnecDPre-disaster investment decisions for strengthening a highway networkComput Oper Res201037101708171910.1016/j.cor.2009.12.0061188.90052
– reference: Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Frome
– reference: KashanMHNahavandiNKashanAHDisABC: a new artificial bee colony algorithm for binary optimizationAppl Soft Comput201212134235210.1016/j.asoc.2011.08.038
– reference: WangG-GHossein GandomiAYangXSA novel improved accelerated particle swarm optimization algorithm for global numerical optimizationEng Comput20143171198122010.1108/EC-10-2012-0232
– reference: Chen P, Li J, Liu ZM (2008) Solving 0–1 knapsack problems by a discrete binary version of differential evolution. In: Second international symposium on intelligent information technology application, vol 2, pp 513–516. doi:10.1109/IITA.2008.538
– reference: TothPDynamic programing algorithms for the zero-one knapsack problemComputing1980251294561977910.1007/BF022438800431.90076
– reference: LiXWangJZhouJYinMA perturb biogeography based optimization with mutation for global numerical optimizationAppl Math Comput2011218259860928205221226.65055
– reference: KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–426728910.1007/s00707-009-0270-405795170
– reference: WangG-GGuoLHGandomiAHChaotic krill herd algorithmInf Sci20142741734319802610.1016/j.ins.2014.02.123
– reference: StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim1997114341359147955310.1023/A:10082028213280888.90135
– reference: Wang GG, Gandomi AH, Yang XS, et al (2012) A new hybrid method based on krill herd and cuckoo search for global optimization tasks. Int J Bio-Inspired Comput
– reference: SimonDEvolutionary optimization algorithms2013New YorkWiley
– reference: ZhouYLiLMaMA complex-valued encoding bat algorithm for solving 0–1 knapsack problemNeural Process Lett2015
– reference: Feng YH, Wang G-G (2015) An Improved hybrid encoding firefly algorithm for randomized time-varying knapsack problems. In: The 2015 2nd international conference on soft computing & machine intelligence (ISCMI 2015), Hong Kong. IEEE
– reference: WangG-GGandomiAHAlaviAHA hybrid method based on krill herd and quantum-behaved particle swarm optimizationNeural Comput Appl2015
– reference: YangXSDebSHanneTHeXSAttraction and diffusion in nature-inspired optimization algorithmsNeural Comput Appl2015
– reference: LiXZhangJYinMAnimal migration optimization: an optimization algorithm inspired by animal migration behaviorNeural Comput Appl2014247–81867187710.1007/s00521-013-1433-8
– reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim2007393459471234617810.1007/s10898-007-9149-x1149.90186
– reference: PlateauGElkihelMA hybrid method for the 0–1 knapsack problemMethods Oper Res1985492772938169680564.90037
– reference: DuDZKoKIHuXDesign and analysis of approximation algorithms2011BerlinSpringer
– reference: KongXGaoLOuyangHLiSA simplified binary harmony search algorithm for large scale 0–1 knapsack problemsExpert Syst Appl201542125337535510.1016/j.eswa.2015.02.015
– reference: CuiZFanSZengJArtificial plant optimization algorithm with three-period photosynthesisInt J Bio-Inspired Comput20135213313910.1504/IJBIC.2013.053507
– reference: FongSDebSYangXSA heuristic optimization method inspired by wolf preying behaviorNeural Comput Appl2015
– reference: Wang G-G, Zhao XC, Deb S (2015). A novel monarch butterfly optimization with greedy strategy and self-adaptive crossover operator. In: the 2015 2nd international conference on soft computing & machine intelligence (ISCMI 2015), Hong Kong. IEEE
– reference: ShihWA branch and bound method for the multi-constraint zero-one knapsack problemJ Oper Res Soc19790411.90050
– reference: DantzigGBDiscrete-variable extremum problemsOper Res1957522662888909810.1287/opre.5.2.266
– reference: Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Nature & biologically inspired computing, 2009. NaBIC 2009. World Congress on. IEEE, pp 210–214. doi:10.1109/NABIC.2009.5393690
– reference: HeYZhangXLiWAlgorithms for randomized time-varying knapsack problemsJ Comb Optim20141341.90110
– reference: SrivastavaPRChisMDebSAn efficient optimization algorithm for structural software testingInt J Artif Intell™20128S126877
– reference: FengYHWangGGFengQJZhaoXJAn effective hybrid cuckoo search algorithm with improved shuffled frog leaping algorithm for 0–1 knapsack problemsComput Intell Neurosci2014
– reference: GoldbergDEGenetic algorithms in search, optimization, and machine learning1989BostonAddison-Wesley0721.68056
– reference: SimonDBiogeography-based optimizationIEEE Trans Evol Comput200812670271310.1109/TEVC.2008.919004
– reference: Mirjalili SA, Hashim SZM (2011). BMOA: binary magnetic optimization algorithm. In: 2011 3rd international conference on machine learning and computing (ICMLC 2011), Singapore, pp 201–206
– reference: MontgomeryDCDesign and analysis of experiments2005ArizonaWiley1195.62128
– reference: WangG-GGandomiAHAlaviAHStud krill herd algorithmNeurocomputing201412836337010.1016/j.neucom.2013.08.031
– ident: 2135_CR29
– year: 2015
  ident: 2135_CR30
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1914-z
– volume: 11
  start-page: 1556
  issue: 2
  year: 2011
  ident: 2135_CR16
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.07.019
– volume: 5
  start-page: 266
  issue: 2
  year: 1957
  ident: 2135_CR6
  publication-title: Oper Res
  doi: 10.1287/opre.5.2.266
– volume: 34
  start-page: 736
  year: 2015
  ident: 2135_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.06.004
– volume: 49
  start-page: 277
  year: 1985
  ident: 2135_CR9
  publication-title: Methods Oper Res
– year: 2014
  ident: 2135_CR26
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1502-7
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 2135_CR47
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– ident: 2135_CR44
  doi: 10.1109/ICEC.1994.350000
– volume: 25
  start-page: 35
  issue: 1
  year: 2009
  ident: 2135_CR3
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2008.07.006
– volume-title: Design and analysis of approximation algorithms
  year: 2011
  ident: 2135_CR1
– year: 2015
  ident: 2135_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1836-9
– volume: 25
  start-page: 29
  issue: 1
  year: 1980
  ident: 2135_CR8
  publication-title: Computing
  doi: 10.1007/BF02243880
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 2135_CR49
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume-title: Genetic algorithms + data structures = evolution programs
  year: 1996
  ident: 2135_CR50
– volume: 31
  start-page: 1198
  issue: 7
  year: 2014
  ident: 2135_CR54
  publication-title: Eng Comput
  doi: 10.1108/EC-10-2012-0232
– volume: 42
  start-page: 5337
  issue: 12
  year: 2015
  ident: 2135_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.02.015
– ident: 2135_CR42
– year: 2014
  ident: 2135_CR14
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2014/857254
– year: 2015
  ident: 2135_CR18
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-015-9465-y
– volume: 5
  start-page: 133
  issue: 2
  year: 2013
  ident: 2135_CR34
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2013.053507
– volume: 61
  start-page: 981
  issue: 4
  year: 2011
  ident: 2135_CR5
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2011.06.011
– volume: 274
  start-page: 17
  year: 2014
  ident: 2135_CR31
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.123
– volume: 22
  start-page: 223
  issue: 3
  year: 2014
  ident: 2135_CR20
  publication-title: J Multi-Valued Log Soft Comput
– volume: 24
  start-page: 1867
  issue: 7–8
  year: 2014
  ident: 2135_CR27
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1433-8
– volume: 83
  start-page: 80
  year: 2015
  ident: 2135_CR19
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 12
  start-page: 342
  issue: 1
  year: 2012
  ident: 2135_CR15
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.08.038
– ident: 2135_CR36
  doi: 10.1109/CSE.2013.135
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 2135_CR21
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.919004
– volume: 32
  start-page: 226
  issue: 4
  year: 1994
  ident: 2135_CR10
  publication-title: INFOR
– year: 2015
  ident: 2135_CR51
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1925-9
– volume-title: Design and analysis of experiments
  year: 2005
  ident: 2135_CR52
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: 2135_CR45
– volume: 128
  start-page: 363
  year: 2014
  ident: 2135_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.031
– volume: 218
  start-page: 598
  issue: 2
  year: 2011
  ident: 2135_CR22
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2011.05.110
– volume: 24
  start-page: 853
  issue: 3–4
  year: 2014
  ident: 2135_CR28
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1304-8
– year: 2015
  ident: 2135_CR39
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1923-y
– ident: 2135_CR13
  doi: 10.1155/2014/970456
– volume-title: Evolutionary optimization algorithms
  year: 2013
  ident: 2135_CR46
– ident: 2135_CR53
  doi: 10.1109/ISCMI.2015.24
– volume: 213
  start-page: 267
  issue: 3–4
  year: 2010
  ident: 2135_CR23
  publication-title: Acta Mech
  doi: 10.1007/s00707-009-0270-4
– volume: 9
  start-page: 4811
  issue: 16
  year: 2012
  ident: 2135_CR25
  publication-title: J Inform Comput Sci
– volume: 187
  start-page: 177
  issue: 1
  year: 2008
  ident: 2135_CR2
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2007.03.010
– ident: 2135_CR11
  doi: 10.1109/IITA.2008.538
– ident: 2135_CR48
  doi: 10.1109/NABIC.2009.5393690
– volume: 37
  start-page: 1708
  issue: 10
  year: 2010
  ident: 2135_CR4
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2009.12.006
– volume: 8
  start-page: 68
  issue: S12
  year: 2012
  ident: 2135_CR24
  publication-title: Int J Artif Intell™
– year: 2014
  ident: 2135_CR41
  publication-title: J Comb Optim
  doi: 10.1007/s10878-014-9717-1
– ident: 2135_CR38
– ident: 2135_CR37
  doi: 10.1504/IJBIC.2015.10004283
– ident: 2135_CR43
  doi: 10.1109/ICEC.1994.349995
– ident: 2135_CR40
– year: 1979
  ident: 2135_CR7
  publication-title: J Oper Res Soc
  doi: 10.2307/3009639
– volume: 19
  start-page: 252
  year: 2014
  ident: 2135_CR12
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.02.010
SSID ssj0004685
Score 2.4759438
Snippet This paper presents a novel binary monarch butterfly optimization (BMBO) method, intended for addressing the 0–1 knapsack problem (0–1 KP). Two tuples,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1619
SubjectTerms Accuracy
Artificial Intelligence
Branch & bound algorithms
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Dimensional stability
Image Processing and Computer Vision
Knapsack problem
Optimization
Original Article
Probability and Statistics in Computer Science
Solution space
Vectors (mathematics)
Title Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization
URI https://link.springer.com/article/10.1007/s00521-015-2135-1
https://www.proquest.com/docview/1915911583
Volume 28
WOSCitedRecordID wos000404928900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5By8BCeYpCqTwwgSLFsZ3HCKiIqVQUUMUS2Y4joYakakqlbvwH_iG_BDtNSkGABHP8iM4-3_s-gGPMTXCOxJYgPrMop5qltBVhxUEcYyJdSaRdgE143a4_GAS9so47r7Ldq5Bk8VIvit2MB9OYvsxyMGGWNnnqzDSbMSZ6_36pGLLA4dQbmpQeSqpQ5ndLfBZGHxrml6BoIWsuG__6y03YKFVLdDa_C1uwotJtaFSwDajk4h247meJcSMg--3lFaNhykc5l0NUYssgMUMcpdlUJUgU1bpIX1XDD0jMUa2TGcr0S_NUlnDuwt1l5_biyipxFSxJsDuxiBQqxlw6PLB94drGDaqYI7TxoyiRXhBFTNiKYqpsRznc8U0sLcA8cj2tvnCyB7U0S9U-IN-lUjgxjbRYozKIRcCInukKz7Rt94Mm2BWBQ1k2HTfYF0m4aJdcECzUBAsNwULchJPFlNG848Zvg1vVqYUl8-WhNkGZfsOZT5pwWp3S0uefFjv40-hDWHeMiC9Sd1tQm4yf1RGsyenkMR-3oX7e6fZu2rDaYw_t4oa-AzzT3D8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yBX1xXnE6NQ8-KYWmSXp5FHFMnFPYlL2FJEtBVtuxzsHe_A_-Q3-JSdbOKSroc3MpJzk59_MBcIK4Cc7h2BE4pA7hRLOUtiKcOIpjhKUvsXQt2ETQboe9XnRX1HHnZbZ7GZK0L_W82M14MI3pSx0PYepok2eZGJQdY6J3HhaKIS0Op97QpPQQXIYyv1viszD60DC_BEWtrGlU__WXG2C9UC3h-ewubIIllW6BagnbAAsu3ga3nSwxbgTovr28IjhI-TDncgALbBkoppDDNJuoBApbrQv1VTX8AMUM1TqZwky_NE9FCecOuG9cdi-aToGr4EiM_LGDpVAx4tLjkRsK3zVuUEU9oY0fRbAMon6fClcRRJTrKY97oYmlRYj3_UCrLxzvgkqapWoPwNAnUngx6WuxRmQUi4hiPdMXgWnbHkY14JYEZrJoOm6wLxI2b5dsCcY0wZghGEM1cDqfMpx13PhtcL08NVYwX860CUr1G05DXANn5SktfP5psf0_jT4Gq83uTYu1rtrXB2DNM-LepvHWQWU8elaHYEVOxo_56Mjez3eAJNyJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIl6sT6xWzcGTErrZJPs4iloUpRar0tuSZLMgrbuluxZ68z_4D_0lJvuoVVQQz5vHMpnJzGQeHwCHmJvgHImQIB5DlFMtUtqLQJEfRZhIRxJp5WATbrvt9Xp-p8Q5Tats9yokWdQ0mC5NcdYchlFzWvhmXjONG8yQjQlD2v1ZoNqRMTldt92HmcLIHJNTb27SeyipwprfLfFZMX1Ym18CpLneadX-_cerYKU0OeFJwSNrYE7F66BWwTnAUro3wE03GZjnBWi9vbxi2I_5MOWyD0vMGSgmkMM4GasBFHkVL9QsbOQEigLtejCBib6BnsrSzk1w3zq_O71AJd4CkgQ7GSJSqAhzaXPf8oRjmedRxWyhnSJFiXT9MGTCUhRTZdnK5rZnYmw-5qHjarOGky0wHyex2gbQc6gUdkRDre6o9CPhM6JnOsI17dw9vw6sitiBLJuRG0yMQTBto5wTLNAECwzBAlwHR9Mpw6ITx2-DG9UJBqVQpoF2TZm-25lH6uC4OrGZzz8ttvOn0QdgqXPWCq4v21e7YNk2VkCe3dsA89noWe2BRTnOHtPRfs6q75245W0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+0%E2%80%931+knapsack+problem+by+a+novel+binary+monarch+butterfly+optimization&rft.jtitle=Neural+computing+%26+applications&rft.au=Feng%2C+Yanhong&rft.au=Wang%2C+Gai-Ge&rft.au=Deb%2C+Suash&rft.au=Lu%2C+Mei&rft.date=2017-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=7&rft.spage=1619&rft.epage=1634&rft_id=info:doi/10.1007%2Fs00521-015-2135-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_015_2135_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon