Group rings with annihilator conditions

A ring R is called left (Kasch) dual if every (maximal) left ideal of R is a left annihilator. R is left CF if every left ideal of R is the left annihilator of a finite number of elements of R . Let RG be the group ring of a group G over a ring R . It is proved that RG is a left Kasch ring if and on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta mathematica Hungarica Ročník 156; číslo 1; s. 38 - 46
Hlavní autor: Shen, L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.10.2018
Springer Nature B.V
Témata:
ISSN:0236-5294, 1588-2632
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A ring R is called left (Kasch) dual if every (maximal) left ideal of R is a left annihilator. R is left CF if every left ideal of R is the left annihilator of a finite number of elements of R . Let RG be the group ring of a group G over a ring R . It is proved that RG is a left Kasch ring if and only if R is left Kasch and G is finite. Characterizations of left dual (left CF ) group rings are also discussed in this article.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-018-0860-5