Small-data image classification via drop-in variational autoencoder

It is unclear whether generative approaches can achieve state-of-the-art performance with supervised classification in high-dimensional feature spaces and extremely small datasets. In this paper, we propose a drop-in variational autoencoder (VAE) for the task of supervised learning using an extremel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing Jg. 19; H. 9; S. 766
Hauptverfasser: Mahdian, Babak, Nedbal, Radim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.09.2025
Springer Nature B.V
Schlagworte:
ISSN:1863-1703, 1863-1711
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is unclear whether generative approaches can achieve state-of-the-art performance with supervised classification in high-dimensional feature spaces and extremely small datasets. In this paper, we propose a drop-in variational autoencoder (VAE) for the task of supervised learning using an extremely small train set (i.e., n = 1 , . . , 5 images per class). Drop-in classifiers form a usual alternative when traditional approaches to Few-Shot Learning cannot be used. The classification will be defined as a posterior probability density function and approximated by the variational principle. We perform experiments on a large variety of deep feature representations extracted from different layers of popular convolutional neural network (CNN) architectures. We also benchmark with modern classifiers, including Neural Tangent Kernel (NTK), Support Vector Machine (SVM) with NTK kernel and Neural Network Gaussian Process (NNGP). Results obtained indicate that the drop-in VAE classifier outperforms all the compared classifiers in the extremely small data regime.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1863-1703
1863-1711
DOI:10.1007/s11760-025-04376-1