Full Stability of General Parametric Variational Systems

The paper introduces and studies the notions of Lipschitzian and Hölderian full stability of solutions to three-parametric variational systems described in the generalized equation formalism involving nonsmooth base mappings and partial subgradients of prox-regular functions acting in Hilbert spaces...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Set-valued and variational analysis Ročník 26; číslo 4; s. 911 - 946
Hlavní autori: Mordukhovich, B. S., Nghia, T. T. A., Pham, D. T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.12.2018
Springer Nature B.V
Predmet:
ISSN:1877-0533, 1877-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The paper introduces and studies the notions of Lipschitzian and Hölderian full stability of solutions to three-parametric variational systems described in the generalized equation formalism involving nonsmooth base mappings and partial subgradients of prox-regular functions acting in Hilbert spaces. Employing advanced tools and techniques of second-order variational analysis allows us to establish complete characterizations of, as well as directly verifiable sufficient conditions for, such full stability properties under mild assumptions. Furthermore, we derive exact formulas and effective quantitative estimates for the corresponding moduli. The obtained results are specified for important classes of variational inequalities and variational conditions in both finite and infinite dimensions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-018-0474-7