An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring

Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing Jg. 23; H. 2; S. 227 - 237
1. Verfasser: Tian, Zhigang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.04.2012
Springer Nature B.V
Schlagworte:
ISSN:0956-5515, 1572-8145
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple condition monitoring measurement values at the present and previous inspection points as the inputs, and the life percentage as the output. A function generalized from the Weibull failure rate function is used to fit each condition monitoring measurement series for a failure history, and the fitted measurement values are used to form the ANN training set so as to reduce the effects of the noise factors that are irrelevant to the equipment degradation. A validation mechanism is introduced in the ANN training process to improve the prediction performance of the ANN model. The proposed ANN method is validated using real-world vibration monitoring data collected from pump bearings in the field. A comparative study is performed between the proposed ANN method and an adapted version of a reported method, and the results demonstrate the advantage of the proposed method in achieving more accurate remaining useful life prediction.
AbstractList Issue Title: Special Issues: "Machinery Health Monitoring, Diagnosis and Prognosis" and "Condition-Based Maintenance: Theory and Applications" Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple condition monitoring measurement values at the present and previous inspection points as the inputs, and the life percentage as the output. A function generalized from the Weibull failure rate function is used to fit each condition monitoring measurement series for a failure history, and the fitted measurement values are used to form the ANN training set so as to reduce the effects of the noise factors that are irrelevant to the equipment degradation. A validation mechanism is introduced in the ANN training process to improve the prediction performance of the ANN model. The proposed ANN method is validated using real-world vibration monitoring data collected from pump bearings in the field. A comparative study is performed between the proposed ANN method and an adapted version of a reported method, and the results demonstrate the advantage of the proposed method in achieving more accurate remaining useful life prediction.[PUBLICATION ABSTRACT]
Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple condition monitoring measurement values at the present and previous inspection points as the inputs, and the life percentage as the output. A function generalized from the Weibull failure rate function is used to fit each condition monitoring measurement series for a failure history, and the fitted measurement values are used to form the ANN training set so as to reduce the effects of the noise factors that are irrelevant to the equipment degradation. A validation mechanism is introduced in the ANN training process to improve the prediction performance of the ANN model. The proposed ANN method is validated using real-world vibration monitoring data collected from pump bearings in the field. A comparative study is performed between the proposed ANN method and an adapted version of a reported method, and the results demonstrate the advantage of the proposed method in achieving more accurate remaining useful life prediction.
Author Tian, Zhigang
Author_xml – sequence: 1
  givenname: Zhigang
  surname: Tian
  fullname: Tian, Zhigang
  email: tian@ciise.concordia.ca
  organization: Concordia Institute for Information Systems Engineering, Concordia University
BookMark eNp9kMFq3DAQhkXZQHe3eYDeBD271UiWbR1DSNrCQi7pWcjyKNHWlhxJpvTt4832EArJaWD4v3-Gb0c2IQYk5DOwr8BY-y0D62pZMaYqJmRTqQ9kC7LlVQe13JAtU-tSSpAfyS7nI1uDXQNbslwFalLxzltvRhpwSS-j_InpN52wPMaBuphowsn44MMDXTK6ZaSjd0jnhIO3xcdAo6P4tPh5wlBoXvoj2kJLpDaGwb8kphh8iWnt-EQunBkzXv6be_Lr9ub--kd1uPv-8_rqUFkBTam4FdJ0gzFC9dyYWjo2CIe2Vr2oleg753BAq-paDi24oTfOtLZ1vLUguGrEnnw5984pPi2Yiz7GJYX1pAYADg0HyddUe07ZFHNO6LT1xZxeLsn4UQPTJ8f67Fiv6vTJsVYrCf-Rc_KTSX_fZfiZyfNJBaZXP70JPQNYLpQD
CitedBy_id crossref_primary_10_1007_s00419_025_02888_3
crossref_primary_10_1016_j_ifacol_2022_07_353
crossref_primary_10_1109_TASE_2021_3124144
crossref_primary_10_1007_s10845_012_0657_2
crossref_primary_10_1016_j_cirp_2015_05_011
crossref_primary_10_1108_JQME_09_2012_0031
crossref_primary_10_1155_2019_1915708
crossref_primary_10_1177_09544054241256273
crossref_primary_10_1016_j_ijpe_2023_108798
crossref_primary_10_1016_j_ymssp_2018_03_003
crossref_primary_10_1002_nav_21947
crossref_primary_10_1007_s12541_019_00177_y
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1016_j_renene_2010_10_028
crossref_primary_10_1002_cjce_25358
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1007_s00202_024_02834_6
crossref_primary_10_1016_j_asoc_2022_108507
crossref_primary_10_1007_s12008_024_02154_w
crossref_primary_10_1109_ACCESS_2019_2925634
crossref_primary_10_1109_JAS_2022_105746
crossref_primary_10_1002_qre_2651
crossref_primary_10_1016_j_ress_2017_11_021
crossref_primary_10_1016_j_ress_2024_110012
crossref_primary_10_1016_j_isatra_2019_08_058
crossref_primary_10_1088_1742_6596_2762_1_012053
crossref_primary_10_3103_S0146411621010089
crossref_primary_10_1016_j_pnucene_2022_104143
crossref_primary_10_1109_TIM_2024_3472855
crossref_primary_10_1007_s10845_021_01750_x
crossref_primary_10_1093_jcde_qwad032
crossref_primary_10_1016_j_renene_2017_08_073
crossref_primary_10_1007_s10845_018_1456_1
crossref_primary_10_1007_s10845_015_1077_x
crossref_primary_10_1080_24725854_2018_1440673
crossref_primary_10_1088_1361_6501_ac346d
crossref_primary_10_1108_JMTM_02_2022_0092
crossref_primary_10_1088_1742_6596_1907_1_012054
crossref_primary_10_1016_j_jmsy_2020_12_020
crossref_primary_10_1007_s42417_020_00253_y
crossref_primary_10_1109_TII_2020_2998102
crossref_primary_10_1109_TIM_2024_3375984
crossref_primary_10_1155_2017_6754968
crossref_primary_10_3390_app10238541
crossref_primary_10_1016_j_neucom_2020_12_132
crossref_primary_10_1108_JQME_05_2018_0036
crossref_primary_10_1109_TIM_2023_3264027
crossref_primary_10_1109_ACCESS_2022_3140755
crossref_primary_10_1093_jigpal_jzae023
crossref_primary_10_1007_s13198_019_00813_w
crossref_primary_10_3103_S014641162204006X
crossref_primary_10_1016_j_cherd_2019_10_029
crossref_primary_10_2478_fas_2023_0012
crossref_primary_10_1016_j_ress_2019_106682
crossref_primary_10_1007_s10845_016_1244_8
crossref_primary_10_1002_qre_2049
crossref_primary_10_1109_JSEN_2024_3492019
crossref_primary_10_1088_1757_899X_435_1_012057
crossref_primary_10_1109_TIE_2015_2455055
crossref_primary_10_1177_1748006X20976817
crossref_primary_10_1109_TIM_2022_3204089
crossref_primary_10_1109_ACCESS_2020_2989410
crossref_primary_10_3390_machines10050369
crossref_primary_10_3390_mi12121568
crossref_primary_10_3390_s23135970
crossref_primary_10_1007_s10845_013_0787_1
crossref_primary_10_1007_s10845_015_1127_4
crossref_primary_10_3390_math10132209
crossref_primary_10_1109_TIE_2021_3057030
crossref_primary_10_1016_j_engappai_2025_110700
crossref_primary_10_1177_1475921719890616
crossref_primary_10_3390_jmse9010047
crossref_primary_10_1007_s10845_021_01861_5
crossref_primary_10_1080_24725854_2018_1555384
crossref_primary_10_1109_TR_2022_3190639
crossref_primary_10_1080_00224065_2021_1960934
crossref_primary_10_3390_su131910736
crossref_primary_10_1080_00207543_2018_1467574
crossref_primary_10_1007_s00500_022_07625_4
crossref_primary_10_1109_TPEL_2024_3410958
crossref_primary_10_1007_s11042_024_18251_7
crossref_primary_10_1016_j_ress_2021_107556
crossref_primary_10_1109_JSEN_2021_3109623
crossref_primary_10_1007_s10845_012_0676_z
crossref_primary_10_4028_www_scientific_net_AMM_615_335
crossref_primary_10_1016_j_measurement_2020_108948
crossref_primary_10_1080_0740817X_2012_705451
crossref_primary_10_1016_j_cie_2022_107964
crossref_primary_10_1007_s11668_015_9976_x
crossref_primary_10_3390_app11062761
crossref_primary_10_1016_j_aei_2021_101247
crossref_primary_10_1007_s10845_013_0738_x
crossref_primary_10_1007_s11663_022_02689_x
crossref_primary_10_1108_JQME_12_2015_0062
crossref_primary_10_1007_s00170_018_2874_0
crossref_primary_10_1109_TMECH_2020_2971503
crossref_primary_10_1177_00368504221079184
crossref_primary_10_1007_s00170_020_05303_z
crossref_primary_10_1109_ACCESS_2023_3322733
crossref_primary_10_1186_s10033_023_00978_3
crossref_primary_10_1186_s41044_020_00044_2
crossref_primary_10_1007_s10596_013_9381_z
crossref_primary_10_1109_TIE_2020_2972443
crossref_primary_10_1155_2024_6465566
crossref_primary_10_1016_j_asoc_2020_106351
crossref_primary_10_1016_j_rser_2025_115809
crossref_primary_10_1177_02670836241249456
crossref_primary_10_4028_www_scientific_net_AMM_556_562_2970
crossref_primary_10_1007_s00773_015_0358_6
crossref_primary_10_1016_j_anucene_2020_107307
crossref_primary_10_1016_j_ymssp_2021_108526
crossref_primary_10_1016_j_asoc_2017_04_034
crossref_primary_10_1016_j_renene_2024_122267
crossref_primary_10_1016_j_compind_2021_103548
crossref_primary_10_1177_0954405415598944
crossref_primary_10_1007_s40430_021_03138_7
crossref_primary_10_1016_j_ast_2013_01_013
crossref_primary_10_1016_j_engappai_2024_109520
crossref_primary_10_1109_TR_2015_2499960
crossref_primary_10_1007_s13042_023_01807_8
crossref_primary_10_3390_s23156999
crossref_primary_10_1016_j_ceramint_2022_11_201
crossref_primary_10_1016_j_energy_2025_137253
crossref_primary_10_1109_ACCESS_2022_3188681
crossref_primary_10_1007_s10098_020_02003_w
crossref_primary_10_1007_s10845_020_01630_w
crossref_primary_10_1007_s12633_023_02559_4
crossref_primary_10_1088_1361_6501_ab6671
crossref_primary_10_3390_en10010032
crossref_primary_10_1016_j_cie_2018_09_015
crossref_primary_10_1109_TMECH_2021_3079729
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_3390_su15129272
crossref_primary_10_1038_s41598_024_66377_3
crossref_primary_10_1007_s10845_020_01649_z
crossref_primary_10_1016_j_ijinfomgt_2018_10_006
crossref_primary_10_1016_j_ymssp_2014_10_014
crossref_primary_10_1109_TASE_2021_3072363
crossref_primary_10_1007_s10845_013_0780_8
crossref_primary_10_1007_s11227_022_04739_2
crossref_primary_10_1155_2022_5761815
crossref_primary_10_1177_02670836251314970
crossref_primary_10_1007_s00170_017_0916_7
crossref_primary_10_1088_1361_6501_ad8946
crossref_primary_10_1109_TASE_2020_3017755
crossref_primary_10_1016_j_ymssp_2017_11_016
crossref_primary_10_1109_TIM_2024_3470018
crossref_primary_10_1177_1748006X19866546
crossref_primary_10_3390_s25144481
crossref_primary_10_1177_1748006X221119301
crossref_primary_10_1177_0954410020940882
crossref_primary_10_1007_s00500_019_04311_w
crossref_primary_10_1007_s10845_013_0849_4
crossref_primary_10_1007_s10921_016_0378_0
crossref_primary_10_1109_TIM_2020_3026497
crossref_primary_10_1007_s11663_024_03170_7
crossref_primary_10_1155_2017_8927937
crossref_primary_10_1016_j_measurement_2017_07_030
crossref_primary_10_1007_s12633_024_02941_w
crossref_primary_10_1002_cpe_5762
crossref_primary_10_1007_s10845_013_0866_3
crossref_primary_10_1177_09544062241281092
crossref_primary_10_3390_s23125659
crossref_primary_10_1016_j_ress_2025_111250
crossref_primary_10_1080_2374068X_2016_1160601
crossref_primary_10_1109_TII_2020_3017194
crossref_primary_10_1016_j_apenergy_2022_119284
crossref_primary_10_1177_0954406217734885
crossref_primary_10_1016_j_ress_2022_108353
crossref_primary_10_1007_s10845_012_0703_0
crossref_primary_10_1007_s00170_023_10811_9
crossref_primary_10_1007_s11668_022_01532_4
crossref_primary_10_1109_ACCESS_2020_2966827
crossref_primary_10_3390_math12081229
crossref_primary_10_1016_j_compind_2023_103879
crossref_primary_10_1016_j_ymssp_2019_106302
crossref_primary_10_3390_s23125669
crossref_primary_10_1109_TASE_2018_2890608
crossref_primary_10_3390_app9224813
crossref_primary_10_1109_TIM_2022_3195280
crossref_primary_10_1016_j_ress_2019_106727
crossref_primary_10_1002_we_2290
crossref_primary_10_1007_s10845_017_1342_2
crossref_primary_10_1007_s10766_019_00650_1
crossref_primary_10_1177_1475921717704620
crossref_primary_10_1177_0957456520947989
crossref_primary_10_1088_1361_6501_ad6c73
crossref_primary_10_1109_TIE_2019_2891463
crossref_primary_10_1088_1361_6501_ad22cc
crossref_primary_10_3390_s19143092
crossref_primary_10_1016_j_rser_2023_113535
crossref_primary_10_1016_j_epsr_2023_109194
crossref_primary_10_1109_TIM_2020_3031113
crossref_primary_10_3390_s150306996
crossref_primary_10_1016_j_ijpvp_2020_104127
crossref_primary_10_1080_14484846_2019_1630949
crossref_primary_10_3390_s22062407
crossref_primary_10_1016_j_measurement_2020_108878
crossref_primary_10_1080_0951192X_2021_1885062
crossref_primary_10_1088_1757_899X_806_1_012041
crossref_primary_10_1109_ACCESS_2024_3498895
crossref_primary_10_1016_j_cie_2015_04_008
crossref_primary_10_1016_j_measurement_2021_109127
crossref_primary_10_1016_j_measurement_2021_110354
crossref_primary_10_1016_j_isatra_2020_07_003
crossref_primary_10_1007_s11668_015_0003_z
crossref_primary_10_1016_j_jmsy_2021_10_011
crossref_primary_10_1109_TII_2018_2868687
crossref_primary_10_1002_qre_1466
crossref_primary_10_1007_s10845_014_0933_4
crossref_primary_10_1007_s12206_021_1028_8
crossref_primary_10_1016_j_ceramint_2023_02_141
crossref_primary_10_3390_met13101681
crossref_primary_10_1177_0954406217700180
crossref_primary_10_3390_machines8020031
crossref_primary_10_1177_1475921720972926
crossref_primary_10_1080_20464177_2023_2243748
crossref_primary_10_1155_2016_4086324
crossref_primary_10_1177_09544062211009556
crossref_primary_10_1007_s11837_024_06595_2
crossref_primary_10_1016_j_measurement_2019_06_004
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1177_00202940211065674
crossref_primary_10_1177_1687814018781170
crossref_primary_10_1016_j_microrel_2023_115003
crossref_primary_10_1016_j_rineng_2025_107076
crossref_primary_10_1109_TR_2013_2285318
Cites_doi 10.1109/TIE.2004.824875
10.1115/1.2893988
10.1016/j.compind.2006.02.014
10.1016/j.ymssp.2004.06.007
10.1016/j.ymssp.2005.09.012
10.1002/0470869097
10.1016/j.ymssp.2006.10.001
10.1007/s00170-005-0111-0
10.1016/j.ymssp.2005.11.008
10.1109/TASE.2007.910302
10.1109/TSMCA.2006.886368
10.1109/24.722283
10.1057/palgrave.jors.2602058
10.1016/j.ejor.2006.01.041
10.1002/9780470117842
10.1016/j.ejor.2005.05.017
10.1109/RAMS.2009.4914720
10.1109/AERO.2002.1036131
10.1007/978-3-642-61068-4
10.1109/AERO.2006.1656121
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2009
Springer Science+Business Media, LLC 2012
Copyright_xml – notice: Springer Science+Business Media, LLC 2009
– notice: Springer Science+Business Media, LLC 2012
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88E
8AL
8AO
8FD
8FE
8FG
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M0S
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10845-009-0356-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
ProQuest Health & Medical Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
Proquest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Physics
EISSN 1572-8145
EndPage 237
ExternalDocumentID 2789279331
10_1007_s10845_009_0356_9
Genre Feature
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-2c35a8daa39b2aa45f0d3fec49b3493b8ffedec9445d71fdbafa7c7f27c132963
IEDL.DBID 7WY
ISICitedReferencesCount 267
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301605000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-5515
IngestDate Tue Nov 04 21:24:00 EST 2025
Tue Nov 18 22:01:39 EST 2025
Sat Nov 29 04:20:02 EST 2025
Fri Feb 21 02:35:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Artificial neural network
Remaining useful life
Prediction
Accurate
Bearing
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-2c35a8daa39b2aa45f0d3fec49b3493b8ffedec9445d71fdbafa7c7f27c132963
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1112162152
PQPubID 32407
PageCount 11
ParticipantIDs proquest_journals_1112162152
crossref_citationtrail_10_1007_s10845_009_0356_9
crossref_primary_10_1007_s10845_009_0356_9
springer_journals_10_1007_s10845_009_0356_9
PublicationCentury 2000
PublicationDate 20120400
2012-4-00
20120401
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 4
  year: 2012
  text: 20120400
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2012
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wu, Gebraeel, Lawley, Yih (CR25) 2007; 37
Rojas (CR20) 1996
CR19
Vachtsevanos, Lewis, Roemer, Hess, Wu (CR24) 2006
Lee, Ni, Djurdjanovic, Qiu, Liao (CR12) 2006; 57
Levitin, Lisnianski, Ben Haim, Elmakis (CR14) 1998; 47
Inman, Farrar, Lopes (CR8) 2005
Dong, He (CR3) 2007; 178
CR10
Levitin (CR13) 2005
Lin, Banjevic, Jardine (CR17) 2006; 57
Li, Lee (CR15) 2005; 19
Liao, Elsayed, Chan (CR16) 2006; 175
Banjevic, Jardine, Makis (CR1) 2001; 39
Makis, Jardine (CR18) 1992; 30
Gebraeel, Lawley (CR5) 2008; 5
Dong, He, Banerjee, Keller (CR4) 2006; 30
Dong, He (CR2) 2007; 21
Gebraeel, Lawley, Liu (CR6) 2004; 51
Jardine, Lin, Banjevic (CR9) 2006; 20
CR22
CR21
Kuo, Zuo (CR11) 2003
Tse, Atherton (CR23) 1999; 121
Huang, Xi, Li, Liu, Qiu, Lee (CR7) 2007; 21
V. Makis (356_CR18) 1992; 30
W. Kuo (356_CR11) 2003
R. Rojas (356_CR20) 1996
D. J. Inman (356_CR8) 2005
G. Levitin (356_CR13) 2005
R. Q. Huang (356_CR7) 2007; 21
N. Gebraeel (356_CR6) 2004; 51
A. K. S. Jardine (356_CR9) 2006; 20
M. Dong (356_CR2) 2007; 21
356_CR10
M. Dong (356_CR4) 2006; 30
D. Lin (356_CR17) 2006; 57
356_CR19
J. Lee (356_CR12) 2006; 57
C. J. Li (356_CR15) 2005; 19
H. T. Liao (356_CR16) 2006; 175
G. Vachtsevanos (356_CR24) 2006
M. Dong (356_CR3) 2007; 178
P. W. Tse (356_CR23) 1999; 121
D. Banjevic (356_CR1) 2001; 39
N. Gebraeel (356_CR5) 2008; 5
G. Levitin (356_CR14) 1998; 47
356_CR22
S. J. Wu (356_CR25) 2007; 37
356_CR21
References_xml – ident: CR22
– ident: CR10
– volume: 39
  start-page: 32
  year: 2001
  end-page: 50
  ident: CR1
  article-title: A control-limit policy and software for condition-based maintenance optimization
  publication-title: INFOR
– volume: 51
  start-page: 694
  issue: 3
  year: 2004
  end-page: 700
  ident: CR6
  article-title: Residual life predictions from vibration-based degradation signals: A neural network approach
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2004.824875
– volume: 121
  start-page: 355
  year: 1999
  end-page: 362
  ident: CR23
  article-title: Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
  publication-title: Journal of Vibration and Acoustics, Transactions of ASME
  doi: 10.1115/1.2893988
– volume: 57
  start-page: 476
  year: 2006
  end-page: 489
  ident: CR12
  article-title: Intelligent prognostics tools and e-maintenance
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2006.02.014
– volume: 19
  start-page: 836
  year: 2005
  end-page: 846
  ident: CR15
  article-title: Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.06.007
– ident: CR21
– ident: CR19
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  end-page: 1510
  ident: CR9
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.09.012
– year: 2005
  ident: CR8
  publication-title: Damage prognosis: For aerospace, civil and mechanical systems
  doi: 10.1002/0470869097
– year: 2005
  ident: CR13
  publication-title: Universal generating function in reliability analysis and optimization
– volume: 21
  start-page: 2248
  issue: 5
  year: 2007
  end-page: 2266
  ident: CR2
  article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.10.001
– year: 1996
  ident: CR20
  publication-title: Neural networks: A system introduction
– volume: 30
  start-page: 738
  issue: 7–8
  year: 2006
  end-page: 749
  ident: CR4
  article-title: Equipment health diagnosis and prognosis using hidden semi-Markov models
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-005-0111-0
– volume: 30
  start-page: 172
  year: 1992
  end-page: 183
  ident: CR18
  article-title: Optimal replacement in the proportional hazards model
  publication-title: INFOR
– volume: 21
  start-page: 193
  issue: 1
  year: 2007
  end-page: 207
  ident: CR7
  article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.11.008
– volume: 5
  start-page: 154
  issue: 1
  year: 2008
  end-page: 163
  ident: CR5
  article-title: A neural network degradation model for computing and updating residual life distributions
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2007.910302
– volume: 37
  start-page: 226
  issue: 2
  year: 2007
  end-page: 236
  ident: CR25
  article-title: A neural network integrated decision support system for condition-based optimal predictive maintenance policy
  publication-title: IEEE Transactions on Systems Man and Cybernetics Part A: Systems and Humans
  doi: 10.1109/TSMCA.2006.886368
– volume: 47
  start-page: 165
  issue: 2
  year: 1998
  end-page: 172
  ident: CR14
  article-title: Redundancy optimization for series-parallel multistate systems
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/24.722283
– year: 2003
  ident: CR11
  publication-title: Optimal reliability modeling: Principles and applications
– volume: 57
  start-page: 910
  year: 2006
  end-page: 919
  ident: CR17
  article-title: Using principal components in a proportional hazards model with applications in condition-based maintenance
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2602058
– volume: 178
  start-page: 858
  issue: 3
  year: 2007
  end-page: 878
  ident: CR3
  article-title: Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.01.041
– year: 2006
  ident: CR24
  publication-title: Intelligent fault diagnosis and prognosis for engineering systems
  doi: 10.1002/9780470117842
– volume: 175
  start-page: 821
  issue: 2
  year: 2006
  end-page: 835
  ident: CR16
  article-title: Maintenance of continuously monitored degrading systems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.05.017
– ident: 356_CR22
  doi: 10.1109/RAMS.2009.4914720
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 356_CR9
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.09.012
– ident: 356_CR10
  doi: 10.1109/AERO.2002.1036131
– ident: 356_CR21
– volume-title: Neural networks: A system introduction
  year: 1996
  ident: 356_CR20
  doi: 10.1007/978-3-642-61068-4
– volume: 51
  start-page: 694
  issue: 3
  year: 2004
  ident: 356_CR6
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2004.824875
– volume: 5
  start-page: 154
  issue: 1
  year: 2008
  ident: 356_CR5
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2007.910302
– ident: 356_CR19
  doi: 10.1109/AERO.2006.1656121
– volume: 21
  start-page: 193
  issue: 1
  year: 2007
  ident: 356_CR7
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.11.008
– volume: 30
  start-page: 738
  issue: 7–8
  year: 2006
  ident: 356_CR4
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-005-0111-0
– volume: 57
  start-page: 910
  year: 2006
  ident: 356_CR17
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2602058
– volume: 57
  start-page: 476
  year: 2006
  ident: 356_CR12
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2006.02.014
– volume: 47
  start-page: 165
  issue: 2
  year: 1998
  ident: 356_CR14
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/24.722283
– volume: 175
  start-page: 821
  issue: 2
  year: 2006
  ident: 356_CR16
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.05.017
– volume-title: Universal generating function in reliability analysis and optimization
  year: 2005
  ident: 356_CR13
– volume: 178
  start-page: 858
  issue: 3
  year: 2007
  ident: 356_CR3
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.01.041
– volume-title: Intelligent fault diagnosis and prognosis for engineering systems
  year: 2006
  ident: 356_CR24
  doi: 10.1002/9780470117842
– volume: 37
  start-page: 226
  issue: 2
  year: 2007
  ident: 356_CR25
  publication-title: IEEE Transactions on Systems Man and Cybernetics Part A: Systems and Humans
  doi: 10.1109/TSMCA.2006.886368
– volume: 21
  start-page: 2248
  issue: 5
  year: 2007
  ident: 356_CR2
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.10.001
– volume-title: Damage prognosis: For aerospace, civil and mechanical systems
  year: 2005
  ident: 356_CR8
  doi: 10.1002/0470869097
– volume: 30
  start-page: 172
  year: 1992
  ident: 356_CR18
  publication-title: INFOR
– volume: 121
  start-page: 355
  year: 1999
  ident: 356_CR23
  publication-title: Journal of Vibration and Acoustics, Transactions of ASME
  doi: 10.1115/1.2893988
– volume: 19
  start-page: 836
  year: 2005
  ident: 356_CR15
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2004.06.007
– volume-title: Optimal reliability modeling: Principles and applications
  year: 2003
  ident: 356_CR11
– volume: 39
  start-page: 32
  year: 2001
  ident: 356_CR1
  publication-title: INFOR
SSID ssj0009861
Score 2.4508102
Snippet Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall...
Issue Title: Special Issues: "Machinery Health Monitoring, Diagnosis and Prognosis" and "Condition-Based Maintenance: Theory and Applications" Accurate...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 227
SubjectTerms Accuracy
Age
Analysis
Bearings
Business and Management
Case studies
Comparative studies
Control
Crack initiation
Failure
Intelligent systems
Machines
Maintenance costs
Maintenance management
Manufacturing
Mechatronics
Methods
Monitoring
Neural networks
Physics
Processes
Production
Robotics
Studies
Useful life
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xGmCgUEAUCrqBCWSpje0kHhGiYkAIiYfYIj-lSqWFpuH3EzsJLQiQYMoQ24nuzvad7_x9ACdalUZhuCGJEoywyFAi41gRTmMmtWO2F9D5H6-Tm5v06Unc1ve486bavUlJhpV64bJbyjgJh_mUx0Qswyr3YDM-RL97nCPtpgEkNQDsle4Ab1KZ3w3xeTOae5hfkqJhrxm0_vWXW7BZu5Z4XtnCNizZcRtaDW0D1rO4DRsLGIQ7UJyP0ZtPhSSBHt8yPEJ1OFYE01h6tji1zxWbBBa5dcUIR0Nn8WXqMz1euzhxaF-LYShAwrxQ_oQHZxMsI24TCsPwOSwg_ru78DC4vL-4IjUXA9G0H89IpCmXqZGSChVJybjrGeqsZkJRJqhKnbPGasEYN0nfGSWdTHTiokR7KvuY7sHKeDK2-4BOp1xYWbpCZWhp_ILApeRaaOqoipK0A71GKZmugco9X8Yom0MseyFnpZAzL-RMdOD0o8tLhdLxW-Nuo-msnrC5D4SifuxJfjtw1mh24fVPgx38qfUhrJcOV1RV_nRhZTYt7BGs6bfZMJ8eBzt-B66-70o
  priority: 102
  providerName: Springer Nature
Title An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring
URI https://link.springer.com/article/10.1007/s10845-009-0356-9
https://www.proquest.com/docview/1112162152
Volume 23
WOSCitedRecordID wos000301605000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection (ProQuest)
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BBtJ42KCAVjame-AJZNHGdhw_oTFtQgKqaoMxeIn8U6rUtV3T8PdjO8m6IW0ve7kocmJZuvP57Dt_H8A7o4NRWG6J0JIRlllKVJ5rwmnOlPHMDRI6__k3MRoVFxdy3B64VW1ZZecTk6O2cxPPyD-GOZkN88jC-mlxRSJrVMyuthQaj2EzLNQ8MhiIX7_XoLtFwktNWHshMuBdVrO5OlcwTlJqgIZmeXtdWgeb_-VH07JzsvPQAT-H7TbgxMPGQl7AIzfrwU5H5oDt3O7BsxvIhD14mipDTfUS6sMZRvNqkCYw4l-mR6oex4aAGkPki0t32bBNYF05X09xOvEOF8uYCYrax7lHd1VPUoESVrWOJ0C4mmPYkdtUOIaXycHEEbyCnyfHP46-kJargRg6zFckM5SrwipFpc6UYtwPLPXOMKkpk1QX3jvrjGSMWzH0ViuvhBE-EyZS3ef0NWzM5jO3C-hNwaVTIVQKW08bHQZXihtpqKc6E0UfBp2mStMCmUc-jWm5hmCOyi2Dcsuo3FL24f31L4sGxeO-j_c7hZbthK7KtTb78KEziRvNd3X25v7O9mArRGBZUwq0DxurZe3ewhPzdzWplgfJmg9g8_PxaHwa3r4KEuT3wVGU4izIMf8T5OnZ-T8vsAMn
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAzR2YFA2rWOAD3ABWbSxncQHhCZg2tRScRhot-CfUqWu6ZoGxD_F34ifk9CBxG47cMrBjhU533t-9nv-PoDnRgdQWGFppiWnPLGMqjTVVLCUK-O5G0R2_i_jbDLJz8_lpw342d2FwbLKzidGR21Lg2fkr4NNJsMUVVjfLi4pqkZhdrWT0GhgMXI_voctW_Xm9H34vy-S5PjD2bsT2qoKUMOG6YomhgmVW6WY1IlSXPiBZd4ZLjXjkunce2edkZwLmw291cqrzGQ-yQyKsqcsjHsLbnOWp2hRo4yuSX7zyM8auf1CJCK6LGpzVS_ngsZUBAvN8s91cB3c_pWPjcvc8c7_NkEP4H4bUJOjxgIewoab92CnE6sgre_qwfYV5sUe3I2Vr6Z6BPXRnKD5NEwaBPk94yNWx5NGYJuEyJ4s3UWjpkHqyvl6RmZT78hiiZkuRDcpPXGX9TQWYJGq1njCRVYlMSWWBWCPi-hA8Qt24fONTMoebM7LudsH4k0upFMhFAxba4sOUSgljDTMM51keR8GHTIK0xK1o17IrFhTTCOYigCmAsFUyD68_P3KomEpua7zYQegonVYVbFGTx9edRC80vyvwQ6uH-wZbJ2cfRwX49PJ6DHcC9Fm0pQ9HcLmalm7J3DHfFtNq-XTaEkEvt40Mn8BRQtc8w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLSA4UFioulDAB7iAou76I4kPCBXaFVWr1QoB6i34U1qp3Ww3GxB_jV-Hx0nYgkRvPXDKwY4VOW_GY8_4PYAXRgdQWGGTTEuecGpZotJUJ4KlXBnP3TCy8385ySaT_PRUTjfgZ3cXBssqO58YHbUtDZ6R7wWbpKMUVVj3fFsWMT0Yv11cJKgghZnWTk6jgcix-_E9bN-qN0cH4V-_pHR8-On9h6RVGEgMG6WrhBomVG6VYlJTpbjwQ8u8M1xqxiXTuffOOiM5FzYbeauVV5nJPM0MCrSnLIx7AzYzFjY9Pdh8dziZflxT_uaRrTUy_YW4RHQ51ebiXs5FEhMTLDTLP1fFdaj7V3Y2Lnrjrf95uu7DvTbUJvuNbTyADTfvw1YnY0Far9aHu5c4GftwK9bEmuoh1PtzgobVcGwQZP6Mj1g3TxrpbRJifrJ0543OBqkrF-aBnM28I4sl5sAQ96T0xF3Us1iaRapa49kXWZXElFgwgD3Oo2vFL3gEn69lUrahNy_nbgeIN7mQToUgMWy6LbpKoZQw0jDPNM3yAQw7lBSmpXBHJZGzYk0-jcAqArAKBFYhB_Dq9yuLhr_kqs67HZiK1pVVxRpJA3jdwfFS878Ge3z1YM_hdgBkcXI0OX4Cd0IYSpt6qF3orZa1ewo3zbfVrFo-a82KwNfrhuYvfJJnRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+neural+network+method+for+remaining+useful+life+prediction+of+equipment+subject+to+condition+monitoring&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Tian%2C+Zhigang&rft.date=2012-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=23&rft.issue=2&rft.spage=227&rft_id=info:doi/10.1007%2Fs10845-009-0356-9&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2789279331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon