An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring
Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life pred...
Gespeichert in:
| Veröffentlicht in: | Journal of intelligent manufacturing Jg. 23; H. 2; S. 227 - 237 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.04.2012
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0956-5515, 1572-8145 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple condition monitoring measurement values at the present and previous inspection points as the inputs, and the life percentage as the output. A function generalized from the Weibull failure rate function is used to fit each condition monitoring measurement series for a failure history, and the fitted measurement values are used to form the ANN training set so as to reduce the effects of the noise factors that are irrelevant to the equipment degradation. A validation mechanism is introduced in the ANN training process to improve the prediction performance of the ANN model. The proposed ANN method is validated using real-world vibration monitoring data collected from pump bearings in the field. A comparative study is performed between the proposed ANN method and an adapted version of a reported method, and the results demonstrate the advantage of the proposed method in achieving more accurate remaining useful life prediction. |
|---|---|
| AbstractList | Issue Title: Special Issues: "Machinery Health Monitoring, Diagnosis and Prognosis" and "Condition-Based Maintenance: Theory and Applications" Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple condition monitoring measurement values at the present and previous inspection points as the inputs, and the life percentage as the output. A function generalized from the Weibull failure rate function is used to fit each condition monitoring measurement series for a failure history, and the fitted measurement values are used to form the ANN training set so as to reduce the effects of the noise factors that are irrelevant to the equipment degradation. A validation mechanism is introduced in the ANN training process to improve the prediction performance of the ANN model. The proposed ANN method is validated using real-world vibration monitoring data collected from pump bearings in the field. A comparative study is performed between the proposed ANN method and an adapted version of a reported method, and the results demonstrate the advantage of the proposed method in achieving more accurate remaining useful life prediction.[PUBLICATION ABSTRACT] Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple condition monitoring measurement values at the present and previous inspection points as the inputs, and the life percentage as the output. A function generalized from the Weibull failure rate function is used to fit each condition monitoring measurement series for a failure history, and the fitted measurement values are used to form the ANN training set so as to reduce the effects of the noise factors that are irrelevant to the equipment degradation. A validation mechanism is introduced in the ANN training process to improve the prediction performance of the ANN model. The proposed ANN method is validated using real-world vibration monitoring data collected from pump bearings in the field. A comparative study is performed between the proposed ANN method and an adapted version of a reported method, and the results demonstrate the advantage of the proposed method in achieving more accurate remaining useful life prediction. |
| Author | Tian, Zhigang |
| Author_xml | – sequence: 1 givenname: Zhigang surname: Tian fullname: Tian, Zhigang email: tian@ciise.concordia.ca organization: Concordia Institute for Information Systems Engineering, Concordia University |
| BookMark | eNp9kMFq3DAQhkXZQHe3eYDeBD271UiWbR1DSNrCQi7pWcjyKNHWlhxJpvTt4832EArJaWD4v3-Gb0c2IQYk5DOwr8BY-y0D62pZMaYqJmRTqQ9kC7LlVQe13JAtU-tSSpAfyS7nI1uDXQNbslwFalLxzltvRhpwSS-j_InpN52wPMaBuphowsn44MMDXTK6ZaSjd0jnhIO3xcdAo6P4tPh5wlBoXvoj2kJLpDaGwb8kphh8iWnt-EQunBkzXv6be_Lr9ub--kd1uPv-8_rqUFkBTam4FdJ0gzFC9dyYWjo2CIe2Vr2oleg753BAq-paDi24oTfOtLZ1vLUguGrEnnw5984pPi2Yiz7GJYX1pAYADg0HyddUe07ZFHNO6LT1xZxeLsn4UQPTJ8f67Fiv6vTJsVYrCf-Rc_KTSX_fZfiZyfNJBaZXP70JPQNYLpQD |
| CitedBy_id | crossref_primary_10_1007_s00419_025_02888_3 crossref_primary_10_1016_j_ifacol_2022_07_353 crossref_primary_10_1109_TASE_2021_3124144 crossref_primary_10_1007_s10845_012_0657_2 crossref_primary_10_1016_j_cirp_2015_05_011 crossref_primary_10_1108_JQME_09_2012_0031 crossref_primary_10_1155_2019_1915708 crossref_primary_10_1177_09544054241256273 crossref_primary_10_1016_j_ijpe_2023_108798 crossref_primary_10_1016_j_ymssp_2018_03_003 crossref_primary_10_1002_nav_21947 crossref_primary_10_1007_s12541_019_00177_y crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1016_j_renene_2010_10_028 crossref_primary_10_1002_cjce_25358 crossref_primary_10_1109_TR_2019_2957965 crossref_primary_10_1007_s00202_024_02834_6 crossref_primary_10_1016_j_asoc_2022_108507 crossref_primary_10_1007_s12008_024_02154_w crossref_primary_10_1109_ACCESS_2019_2925634 crossref_primary_10_1109_JAS_2022_105746 crossref_primary_10_1002_qre_2651 crossref_primary_10_1016_j_ress_2017_11_021 crossref_primary_10_1016_j_ress_2024_110012 crossref_primary_10_1016_j_isatra_2019_08_058 crossref_primary_10_1088_1742_6596_2762_1_012053 crossref_primary_10_3103_S0146411621010089 crossref_primary_10_1016_j_pnucene_2022_104143 crossref_primary_10_1109_TIM_2024_3472855 crossref_primary_10_1007_s10845_021_01750_x crossref_primary_10_1093_jcde_qwad032 crossref_primary_10_1016_j_renene_2017_08_073 crossref_primary_10_1007_s10845_018_1456_1 crossref_primary_10_1007_s10845_015_1077_x crossref_primary_10_1080_24725854_2018_1440673 crossref_primary_10_1088_1361_6501_ac346d crossref_primary_10_1108_JMTM_02_2022_0092 crossref_primary_10_1088_1742_6596_1907_1_012054 crossref_primary_10_1016_j_jmsy_2020_12_020 crossref_primary_10_1007_s42417_020_00253_y crossref_primary_10_1109_TII_2020_2998102 crossref_primary_10_1109_TIM_2024_3375984 crossref_primary_10_1155_2017_6754968 crossref_primary_10_3390_app10238541 crossref_primary_10_1016_j_neucom_2020_12_132 crossref_primary_10_1108_JQME_05_2018_0036 crossref_primary_10_1109_TIM_2023_3264027 crossref_primary_10_1109_ACCESS_2022_3140755 crossref_primary_10_1093_jigpal_jzae023 crossref_primary_10_1007_s13198_019_00813_w crossref_primary_10_3103_S014641162204006X crossref_primary_10_1016_j_cherd_2019_10_029 crossref_primary_10_2478_fas_2023_0012 crossref_primary_10_1016_j_ress_2019_106682 crossref_primary_10_1007_s10845_016_1244_8 crossref_primary_10_1002_qre_2049 crossref_primary_10_1109_JSEN_2024_3492019 crossref_primary_10_1088_1757_899X_435_1_012057 crossref_primary_10_1109_TIE_2015_2455055 crossref_primary_10_1177_1748006X20976817 crossref_primary_10_1109_TIM_2022_3204089 crossref_primary_10_1109_ACCESS_2020_2989410 crossref_primary_10_3390_machines10050369 crossref_primary_10_3390_mi12121568 crossref_primary_10_3390_s23135970 crossref_primary_10_1007_s10845_013_0787_1 crossref_primary_10_1007_s10845_015_1127_4 crossref_primary_10_3390_math10132209 crossref_primary_10_1109_TIE_2021_3057030 crossref_primary_10_1016_j_engappai_2025_110700 crossref_primary_10_1177_1475921719890616 crossref_primary_10_3390_jmse9010047 crossref_primary_10_1007_s10845_021_01861_5 crossref_primary_10_1080_24725854_2018_1555384 crossref_primary_10_1109_TR_2022_3190639 crossref_primary_10_1080_00224065_2021_1960934 crossref_primary_10_3390_su131910736 crossref_primary_10_1080_00207543_2018_1467574 crossref_primary_10_1007_s00500_022_07625_4 crossref_primary_10_1109_TPEL_2024_3410958 crossref_primary_10_1007_s11042_024_18251_7 crossref_primary_10_1016_j_ress_2021_107556 crossref_primary_10_1109_JSEN_2021_3109623 crossref_primary_10_1007_s10845_012_0676_z crossref_primary_10_4028_www_scientific_net_AMM_615_335 crossref_primary_10_1016_j_measurement_2020_108948 crossref_primary_10_1080_0740817X_2012_705451 crossref_primary_10_1016_j_cie_2022_107964 crossref_primary_10_1007_s11668_015_9976_x crossref_primary_10_3390_app11062761 crossref_primary_10_1016_j_aei_2021_101247 crossref_primary_10_1007_s10845_013_0738_x crossref_primary_10_1007_s11663_022_02689_x crossref_primary_10_1108_JQME_12_2015_0062 crossref_primary_10_1007_s00170_018_2874_0 crossref_primary_10_1109_TMECH_2020_2971503 crossref_primary_10_1177_00368504221079184 crossref_primary_10_1007_s00170_020_05303_z crossref_primary_10_1109_ACCESS_2023_3322733 crossref_primary_10_1186_s10033_023_00978_3 crossref_primary_10_1186_s41044_020_00044_2 crossref_primary_10_1007_s10596_013_9381_z crossref_primary_10_1109_TIE_2020_2972443 crossref_primary_10_1155_2024_6465566 crossref_primary_10_1016_j_asoc_2020_106351 crossref_primary_10_1016_j_rser_2025_115809 crossref_primary_10_1177_02670836241249456 crossref_primary_10_4028_www_scientific_net_AMM_556_562_2970 crossref_primary_10_1007_s00773_015_0358_6 crossref_primary_10_1016_j_anucene_2020_107307 crossref_primary_10_1016_j_ymssp_2021_108526 crossref_primary_10_1016_j_asoc_2017_04_034 crossref_primary_10_1016_j_renene_2024_122267 crossref_primary_10_1016_j_compind_2021_103548 crossref_primary_10_1177_0954405415598944 crossref_primary_10_1007_s40430_021_03138_7 crossref_primary_10_1016_j_ast_2013_01_013 crossref_primary_10_1016_j_engappai_2024_109520 crossref_primary_10_1109_TR_2015_2499960 crossref_primary_10_1007_s13042_023_01807_8 crossref_primary_10_3390_s23156999 crossref_primary_10_1016_j_ceramint_2022_11_201 crossref_primary_10_1016_j_energy_2025_137253 crossref_primary_10_1109_ACCESS_2022_3188681 crossref_primary_10_1007_s10098_020_02003_w crossref_primary_10_1007_s10845_020_01630_w crossref_primary_10_1007_s12633_023_02559_4 crossref_primary_10_1088_1361_6501_ab6671 crossref_primary_10_3390_en10010032 crossref_primary_10_1016_j_cie_2018_09_015 crossref_primary_10_1109_TMECH_2021_3079729 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_3390_su15129272 crossref_primary_10_1038_s41598_024_66377_3 crossref_primary_10_1007_s10845_020_01649_z crossref_primary_10_1016_j_ijinfomgt_2018_10_006 crossref_primary_10_1016_j_ymssp_2014_10_014 crossref_primary_10_1109_TASE_2021_3072363 crossref_primary_10_1007_s10845_013_0780_8 crossref_primary_10_1007_s11227_022_04739_2 crossref_primary_10_1155_2022_5761815 crossref_primary_10_1177_02670836251314970 crossref_primary_10_1007_s00170_017_0916_7 crossref_primary_10_1088_1361_6501_ad8946 crossref_primary_10_1109_TASE_2020_3017755 crossref_primary_10_1016_j_ymssp_2017_11_016 crossref_primary_10_1109_TIM_2024_3470018 crossref_primary_10_1177_1748006X19866546 crossref_primary_10_3390_s25144481 crossref_primary_10_1177_1748006X221119301 crossref_primary_10_1177_0954410020940882 crossref_primary_10_1007_s00500_019_04311_w crossref_primary_10_1007_s10845_013_0849_4 crossref_primary_10_1007_s10921_016_0378_0 crossref_primary_10_1109_TIM_2020_3026497 crossref_primary_10_1007_s11663_024_03170_7 crossref_primary_10_1155_2017_8927937 crossref_primary_10_1016_j_measurement_2017_07_030 crossref_primary_10_1007_s12633_024_02941_w crossref_primary_10_1002_cpe_5762 crossref_primary_10_1007_s10845_013_0866_3 crossref_primary_10_1177_09544062241281092 crossref_primary_10_3390_s23125659 crossref_primary_10_1016_j_ress_2025_111250 crossref_primary_10_1080_2374068X_2016_1160601 crossref_primary_10_1109_TII_2020_3017194 crossref_primary_10_1016_j_apenergy_2022_119284 crossref_primary_10_1177_0954406217734885 crossref_primary_10_1016_j_ress_2022_108353 crossref_primary_10_1007_s10845_012_0703_0 crossref_primary_10_1007_s00170_023_10811_9 crossref_primary_10_1007_s11668_022_01532_4 crossref_primary_10_1109_ACCESS_2020_2966827 crossref_primary_10_3390_math12081229 crossref_primary_10_1016_j_compind_2023_103879 crossref_primary_10_1016_j_ymssp_2019_106302 crossref_primary_10_3390_s23125669 crossref_primary_10_1109_TASE_2018_2890608 crossref_primary_10_3390_app9224813 crossref_primary_10_1109_TIM_2022_3195280 crossref_primary_10_1016_j_ress_2019_106727 crossref_primary_10_1002_we_2290 crossref_primary_10_1007_s10845_017_1342_2 crossref_primary_10_1007_s10766_019_00650_1 crossref_primary_10_1177_1475921717704620 crossref_primary_10_1177_0957456520947989 crossref_primary_10_1088_1361_6501_ad6c73 crossref_primary_10_1109_TIE_2019_2891463 crossref_primary_10_1088_1361_6501_ad22cc crossref_primary_10_3390_s19143092 crossref_primary_10_1016_j_rser_2023_113535 crossref_primary_10_1016_j_epsr_2023_109194 crossref_primary_10_1109_TIM_2020_3031113 crossref_primary_10_3390_s150306996 crossref_primary_10_1016_j_ijpvp_2020_104127 crossref_primary_10_1080_14484846_2019_1630949 crossref_primary_10_3390_s22062407 crossref_primary_10_1016_j_measurement_2020_108878 crossref_primary_10_1080_0951192X_2021_1885062 crossref_primary_10_1088_1757_899X_806_1_012041 crossref_primary_10_1109_ACCESS_2024_3498895 crossref_primary_10_1016_j_cie_2015_04_008 crossref_primary_10_1016_j_measurement_2021_109127 crossref_primary_10_1016_j_measurement_2021_110354 crossref_primary_10_1016_j_isatra_2020_07_003 crossref_primary_10_1007_s11668_015_0003_z crossref_primary_10_1016_j_jmsy_2021_10_011 crossref_primary_10_1109_TII_2018_2868687 crossref_primary_10_1002_qre_1466 crossref_primary_10_1007_s10845_014_0933_4 crossref_primary_10_1007_s12206_021_1028_8 crossref_primary_10_1016_j_ceramint_2023_02_141 crossref_primary_10_3390_met13101681 crossref_primary_10_1177_0954406217700180 crossref_primary_10_3390_machines8020031 crossref_primary_10_1177_1475921720972926 crossref_primary_10_1080_20464177_2023_2243748 crossref_primary_10_1155_2016_4086324 crossref_primary_10_1177_09544062211009556 crossref_primary_10_1007_s11837_024_06595_2 crossref_primary_10_1016_j_measurement_2019_06_004 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1177_00202940211065674 crossref_primary_10_1177_1687814018781170 crossref_primary_10_1016_j_microrel_2023_115003 crossref_primary_10_1016_j_rineng_2025_107076 crossref_primary_10_1109_TR_2013_2285318 |
| Cites_doi | 10.1109/TIE.2004.824875 10.1115/1.2893988 10.1016/j.compind.2006.02.014 10.1016/j.ymssp.2004.06.007 10.1016/j.ymssp.2005.09.012 10.1002/0470869097 10.1016/j.ymssp.2006.10.001 10.1007/s00170-005-0111-0 10.1016/j.ymssp.2005.11.008 10.1109/TASE.2007.910302 10.1109/TSMCA.2006.886368 10.1109/24.722283 10.1057/palgrave.jors.2602058 10.1016/j.ejor.2006.01.041 10.1002/9780470117842 10.1016/j.ejor.2005.05.017 10.1109/RAMS.2009.4914720 10.1109/AERO.2002.1036131 10.1007/978-3-642-61068-4 10.1109/AERO.2006.1656121 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC 2009 Springer Science+Business Media, LLC 2012 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC 2009 – notice: Springer Science+Business Media, LLC 2012 |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88E 8AL 8AO 8FD 8FE 8FG 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. L.- L6V L7M L~C L~D M0C M0N M0S M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10845-009-0356-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database ProQuest Health & Medical Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) Proquest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Physics |
| EISSN | 1572-8145 |
| EndPage | 237 |
| ExternalDocumentID | 2789279331 10_1007_s10845_009_0356_9 |
| Genre | Feature |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FE 8FG 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z88 Z8N Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c316t-2c35a8daa39b2aa45f0d3fec49b3493b8ffedec9445d71fdbafa7c7f27c132963 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 267 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301605000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0956-5515 |
| IngestDate | Tue Nov 04 21:24:00 EST 2025 Tue Nov 18 22:01:39 EST 2025 Sat Nov 29 04:20:02 EST 2025 Fri Feb 21 02:35:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Artificial neural network Remaining useful life Prediction Accurate Bearing |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-2c35a8daa39b2aa45f0d3fec49b3493b8ffedec9445d71fdbafa7c7f27c132963 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 1112162152 |
| PQPubID | 32407 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_1112162152 crossref_citationtrail_10_1007_s10845_009_0356_9 crossref_primary_10_1007_s10845_009_0356_9 springer_journals_10_1007_s10845_009_0356_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20120400 2012-4-00 20120401 |
| PublicationDateYYYYMMDD | 2012-04-01 |
| PublicationDate_xml | – month: 4 year: 2012 text: 20120400 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: London |
| PublicationTitle | Journal of intelligent manufacturing |
| PublicationTitleAbbrev | J Intell Manuf |
| PublicationYear | 2012 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Wu, Gebraeel, Lawley, Yih (CR25) 2007; 37 Rojas (CR20) 1996 CR19 Vachtsevanos, Lewis, Roemer, Hess, Wu (CR24) 2006 Lee, Ni, Djurdjanovic, Qiu, Liao (CR12) 2006; 57 Levitin, Lisnianski, Ben Haim, Elmakis (CR14) 1998; 47 Inman, Farrar, Lopes (CR8) 2005 Dong, He (CR3) 2007; 178 CR10 Levitin (CR13) 2005 Lin, Banjevic, Jardine (CR17) 2006; 57 Li, Lee (CR15) 2005; 19 Liao, Elsayed, Chan (CR16) 2006; 175 Banjevic, Jardine, Makis (CR1) 2001; 39 Makis, Jardine (CR18) 1992; 30 Gebraeel, Lawley (CR5) 2008; 5 Dong, He, Banerjee, Keller (CR4) 2006; 30 Dong, He (CR2) 2007; 21 Gebraeel, Lawley, Liu (CR6) 2004; 51 Jardine, Lin, Banjevic (CR9) 2006; 20 CR22 CR21 Kuo, Zuo (CR11) 2003 Tse, Atherton (CR23) 1999; 121 Huang, Xi, Li, Liu, Qiu, Lee (CR7) 2007; 21 V. Makis (356_CR18) 1992; 30 W. Kuo (356_CR11) 2003 R. Rojas (356_CR20) 1996 D. J. Inman (356_CR8) 2005 G. Levitin (356_CR13) 2005 R. Q. Huang (356_CR7) 2007; 21 N. Gebraeel (356_CR6) 2004; 51 A. K. S. Jardine (356_CR9) 2006; 20 M. Dong (356_CR2) 2007; 21 356_CR10 M. Dong (356_CR4) 2006; 30 D. Lin (356_CR17) 2006; 57 356_CR19 J. Lee (356_CR12) 2006; 57 C. J. Li (356_CR15) 2005; 19 H. T. Liao (356_CR16) 2006; 175 G. Vachtsevanos (356_CR24) 2006 M. Dong (356_CR3) 2007; 178 P. W. Tse (356_CR23) 1999; 121 D. Banjevic (356_CR1) 2001; 39 N. Gebraeel (356_CR5) 2008; 5 G. Levitin (356_CR14) 1998; 47 356_CR22 S. J. Wu (356_CR25) 2007; 37 356_CR21 |
| References_xml | – ident: CR22 – ident: CR10 – volume: 39 start-page: 32 year: 2001 end-page: 50 ident: CR1 article-title: A control-limit policy and software for condition-based maintenance optimization publication-title: INFOR – volume: 51 start-page: 694 issue: 3 year: 2004 end-page: 700 ident: CR6 article-title: Residual life predictions from vibration-based degradation signals: A neural network approach publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2004.824875 – volume: 121 start-page: 355 year: 1999 end-page: 362 ident: CR23 article-title: Prediction of machine deterioration using vibration based fault trends and recurrent neural networks publication-title: Journal of Vibration and Acoustics, Transactions of ASME doi: 10.1115/1.2893988 – volume: 57 start-page: 476 year: 2006 end-page: 489 ident: CR12 article-title: Intelligent prognostics tools and e-maintenance publication-title: Computers in Industry doi: 10.1016/j.compind.2006.02.014 – volume: 19 start-page: 836 year: 2005 end-page: 846 ident: CR15 article-title: Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.06.007 – ident: CR21 – ident: CR19 – volume: 20 start-page: 1483 issue: 7 year: 2006 end-page: 1510 ident: CR9 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.09.012 – year: 2005 ident: CR8 publication-title: Damage prognosis: For aerospace, civil and mechanical systems doi: 10.1002/0470869097 – year: 2005 ident: CR13 publication-title: Universal generating function in reliability analysis and optimization – volume: 21 start-page: 2248 issue: 5 year: 2007 end-page: 2266 ident: CR2 article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2006.10.001 – year: 1996 ident: CR20 publication-title: Neural networks: A system introduction – volume: 30 start-page: 738 issue: 7–8 year: 2006 end-page: 749 ident: CR4 article-title: Equipment health diagnosis and prognosis using hidden semi-Markov models publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-005-0111-0 – volume: 30 start-page: 172 year: 1992 end-page: 183 ident: CR18 article-title: Optimal replacement in the proportional hazards model publication-title: INFOR – volume: 21 start-page: 193 issue: 1 year: 2007 end-page: 207 ident: CR7 article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.11.008 – volume: 5 start-page: 154 issue: 1 year: 2008 end-page: 163 ident: CR5 article-title: A neural network degradation model for computing and updating residual life distributions publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2007.910302 – volume: 37 start-page: 226 issue: 2 year: 2007 end-page: 236 ident: CR25 article-title: A neural network integrated decision support system for condition-based optimal predictive maintenance policy publication-title: IEEE Transactions on Systems Man and Cybernetics Part A: Systems and Humans doi: 10.1109/TSMCA.2006.886368 – volume: 47 start-page: 165 issue: 2 year: 1998 end-page: 172 ident: CR14 article-title: Redundancy optimization for series-parallel multistate systems publication-title: IEEE Transactions on Reliability doi: 10.1109/24.722283 – year: 2003 ident: CR11 publication-title: Optimal reliability modeling: Principles and applications – volume: 57 start-page: 910 year: 2006 end-page: 919 ident: CR17 article-title: Using principal components in a proportional hazards model with applications in condition-based maintenance publication-title: Journal of the Operational Research Society doi: 10.1057/palgrave.jors.2602058 – volume: 178 start-page: 858 issue: 3 year: 2007 end-page: 878 ident: CR3 article-title: Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.01.041 – year: 2006 ident: CR24 publication-title: Intelligent fault diagnosis and prognosis for engineering systems doi: 10.1002/9780470117842 – volume: 175 start-page: 821 issue: 2 year: 2006 end-page: 835 ident: CR16 article-title: Maintenance of continuously monitored degrading systems publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.05.017 – ident: 356_CR22 doi: 10.1109/RAMS.2009.4914720 – volume: 20 start-page: 1483 issue: 7 year: 2006 ident: 356_CR9 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.09.012 – ident: 356_CR10 doi: 10.1109/AERO.2002.1036131 – ident: 356_CR21 – volume-title: Neural networks: A system introduction year: 1996 ident: 356_CR20 doi: 10.1007/978-3-642-61068-4 – volume: 51 start-page: 694 issue: 3 year: 2004 ident: 356_CR6 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2004.824875 – volume: 5 start-page: 154 issue: 1 year: 2008 ident: 356_CR5 publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2007.910302 – ident: 356_CR19 doi: 10.1109/AERO.2006.1656121 – volume: 21 start-page: 193 issue: 1 year: 2007 ident: 356_CR7 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.11.008 – volume: 30 start-page: 738 issue: 7–8 year: 2006 ident: 356_CR4 publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-005-0111-0 – volume: 57 start-page: 910 year: 2006 ident: 356_CR17 publication-title: Journal of the Operational Research Society doi: 10.1057/palgrave.jors.2602058 – volume: 57 start-page: 476 year: 2006 ident: 356_CR12 publication-title: Computers in Industry doi: 10.1016/j.compind.2006.02.014 – volume: 47 start-page: 165 issue: 2 year: 1998 ident: 356_CR14 publication-title: IEEE Transactions on Reliability doi: 10.1109/24.722283 – volume: 175 start-page: 821 issue: 2 year: 2006 ident: 356_CR16 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.05.017 – volume-title: Universal generating function in reliability analysis and optimization year: 2005 ident: 356_CR13 – volume: 178 start-page: 858 issue: 3 year: 2007 ident: 356_CR3 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.01.041 – volume-title: Intelligent fault diagnosis and prognosis for engineering systems year: 2006 ident: 356_CR24 doi: 10.1002/9780470117842 – volume: 37 start-page: 226 issue: 2 year: 2007 ident: 356_CR25 publication-title: IEEE Transactions on Systems Man and Cybernetics Part A: Systems and Humans doi: 10.1109/TSMCA.2006.886368 – volume: 21 start-page: 2248 issue: 5 year: 2007 ident: 356_CR2 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2006.10.001 – volume-title: Damage prognosis: For aerospace, civil and mechanical systems year: 2005 ident: 356_CR8 doi: 10.1002/0470869097 – volume: 30 start-page: 172 year: 1992 ident: 356_CR18 publication-title: INFOR – volume: 121 start-page: 355 year: 1999 ident: 356_CR23 publication-title: Journal of Vibration and Acoustics, Transactions of ASME doi: 10.1115/1.2893988 – volume: 19 start-page: 836 year: 2005 ident: 356_CR15 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2004.06.007 – volume-title: Optimal reliability modeling: Principles and applications year: 2003 ident: 356_CR11 – volume: 39 start-page: 32 year: 2001 ident: 356_CR1 publication-title: INFOR |
| SSID | ssj0009861 |
| Score | 2.4508102 |
| Snippet | Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall... Issue Title: Special Issues: "Machinery Health Monitoring, Diagnosis and Prognosis" and "Condition-Based Maintenance: Theory and Applications" Accurate... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 227 |
| SubjectTerms | Accuracy Age Analysis Bearings Business and Management Case studies Comparative studies Control Crack initiation Failure Intelligent systems Machines Maintenance costs Maintenance management Manufacturing Mechatronics Methods Monitoring Neural networks Physics Processes Production Robotics Studies Useful life |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xGmCgUEAUCrqBCWSpje0kHhGiYkAIiYfYIj-lSqWFpuH3EzsJLQiQYMoQ24nuzvad7_x9ACdalUZhuCGJEoywyFAi41gRTmMmtWO2F9D5H6-Tm5v06Unc1ve486bavUlJhpV64bJbyjgJh_mUx0Qswyr3YDM-RL97nCPtpgEkNQDsle4Ab1KZ3w3xeTOae5hfkqJhrxm0_vWXW7BZu5Z4XtnCNizZcRtaDW0D1rO4DRsLGIQ7UJyP0ZtPhSSBHt8yPEJ1OFYE01h6tji1zxWbBBa5dcUIR0Nn8WXqMz1euzhxaF-LYShAwrxQ_oQHZxMsI24TCsPwOSwg_ru78DC4vL-4IjUXA9G0H89IpCmXqZGSChVJybjrGeqsZkJRJqhKnbPGasEYN0nfGSWdTHTiokR7KvuY7sHKeDK2-4BOp1xYWbpCZWhp_ILApeRaaOqoipK0A71GKZmugco9X8Yom0MseyFnpZAzL-RMdOD0o8tLhdLxW-Nuo-msnrC5D4SifuxJfjtw1mh24fVPgx38qfUhrJcOV1RV_nRhZTYt7BGs6bfZMJ8eBzt-B66-70o priority: 102 providerName: Springer Nature |
| Title | An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring |
| URI | https://link.springer.com/article/10.1007/s10845-009-0356-9 https://www.proquest.com/docview/1112162152 |
| Volume | 23 |
| WOSCitedRecordID | wos000301605000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1572-8145 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Collection (ProQuest) customDbUrl: eissn: 1572-8145 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-8145 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-8145 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1572-8145 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-8145 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BBtJ42KCAVjame-AJZNHGdhw_oTFtQgKqaoMxeIn8U6rUtV3T8PdjO8m6IW0ve7kocmJZuvP57Dt_H8A7o4NRWG6J0JIRlllKVJ5rwmnOlPHMDRI6__k3MRoVFxdy3B64VW1ZZecTk6O2cxPPyD-GOZkN88jC-mlxRSJrVMyuthQaj2EzLNQ8MhiIX7_XoLtFwktNWHshMuBdVrO5OlcwTlJqgIZmeXtdWgeb_-VH07JzsvPQAT-H7TbgxMPGQl7AIzfrwU5H5oDt3O7BsxvIhD14mipDTfUS6sMZRvNqkCYw4l-mR6oex4aAGkPki0t32bBNYF05X09xOvEOF8uYCYrax7lHd1VPUoESVrWOJ0C4mmPYkdtUOIaXycHEEbyCnyfHP46-kJargRg6zFckM5SrwipFpc6UYtwPLPXOMKkpk1QX3jvrjGSMWzH0ViuvhBE-EyZS3ef0NWzM5jO3C-hNwaVTIVQKW08bHQZXihtpqKc6E0UfBp2mStMCmUc-jWm5hmCOyi2Dcsuo3FL24f31L4sGxeO-j_c7hZbthK7KtTb78KEziRvNd3X25v7O9mArRGBZUwq0DxurZe3ewhPzdzWplgfJmg9g8_PxaHwa3r4KEuT3wVGU4izIMf8T5OnZ-T8vsAMn |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAzR2YFA2rWOAD3ABWbSxncQHhCZg2tRScRhot-CfUqWu6ZoGxD_F34ifk9CBxG47cMrBjhU533t-9nv-PoDnRgdQWGFppiWnPLGMqjTVVLCUK-O5G0R2_i_jbDLJz8_lpw342d2FwbLKzidGR21Lg2fkr4NNJsMUVVjfLi4pqkZhdrWT0GhgMXI_voctW_Xm9H34vy-S5PjD2bsT2qoKUMOG6YomhgmVW6WY1IlSXPiBZd4ZLjXjkunce2edkZwLmw291cqrzGQ-yQyKsqcsjHsLbnOWp2hRo4yuSX7zyM8auf1CJCK6LGpzVS_ngsZUBAvN8s91cB3c_pWPjcvc8c7_NkEP4H4bUJOjxgIewoab92CnE6sgre_qwfYV5sUe3I2Vr6Z6BPXRnKD5NEwaBPk94yNWx5NGYJuEyJ4s3UWjpkHqyvl6RmZT78hiiZkuRDcpPXGX9TQWYJGq1njCRVYlMSWWBWCPi-hA8Qt24fONTMoebM7LudsH4k0upFMhFAxba4sOUSgljDTMM51keR8GHTIK0xK1o17IrFhTTCOYigCmAsFUyD68_P3KomEpua7zYQegonVYVbFGTx9edRC80vyvwQ6uH-wZbJ2cfRwX49PJ6DHcC9Fm0pQ9HcLmalm7J3DHfFtNq-XTaEkEvt40Mn8BRQtc8w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLSA4UFioulDAB7iAou76I4kPCBXaFVWr1QoB6i34U1qp3Ww3GxB_jV-Hx0nYgkRvPXDKwY4VOW_GY8_4PYAXRgdQWGGTTEuecGpZotJUJ4KlXBnP3TCy8385ySaT_PRUTjfgZ3cXBssqO58YHbUtDZ6R7wWbpKMUVVj3fFsWMT0Yv11cJKgghZnWTk6jgcix-_E9bN-qN0cH4V-_pHR8-On9h6RVGEgMG6WrhBomVG6VYlJTpbjwQ8u8M1xqxiXTuffOOiM5FzYbeauVV5nJPM0MCrSnLIx7AzYzFjY9Pdh8dziZflxT_uaRrTUy_YW4RHQ51ebiXs5FEhMTLDTLP1fFdaj7V3Y2Lnrjrf95uu7DvTbUJvuNbTyADTfvw1YnY0Far9aHu5c4GftwK9bEmuoh1PtzgobVcGwQZP6Mj1g3TxrpbRJifrJ0543OBqkrF-aBnM28I4sl5sAQ96T0xF3Us1iaRapa49kXWZXElFgwgD3Oo2vFL3gEn69lUrahNy_nbgeIN7mQToUgMWy6LbpKoZQw0jDPNM3yAQw7lBSmpXBHJZGzYk0-jcAqArAKBFYhB_Dq9yuLhr_kqs67HZiK1pVVxRpJA3jdwfFS878Ge3z1YM_hdgBkcXI0OX4Cd0IYSpt6qF3orZa1ewo3zbfVrFo-a82KwNfrhuYvfJJnRQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+neural+network+method+for+remaining+useful+life+prediction+of+equipment+subject+to+condition+monitoring&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Tian%2C+Zhigang&rft.date=2012-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=23&rft.issue=2&rft.spage=227&rft_id=info:doi/10.1007%2Fs10845-009-0356-9&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2789279331 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon |