Lower Bound on Average-Case Complexity of Inversion of Goldreich’s Function by Drunken Backtracking Algorithms
We prove an exponential lower bound on the average time of inverting Goldreich’s function by drunken backtracking algorithms; this resolves the open question stated in Cook et al. (Proceedings of TCC, pp. 521–538, 2009 ). The Goldreich’s function has n binary inputs and n binary outputs. Every outpu...
Uloženo v:
| Vydáno v: | Theory of computing systems Ročník 54; číslo 2; s. 261 - 276 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.02.2014
Springer Nature B.V |
| Témata: | |
| ISSN: | 1432-4350, 1433-0490 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove an exponential lower bound on the average time of inverting Goldreich’s function by
drunken
backtracking algorithms; this resolves the open question stated in Cook et al. (Proceedings of TCC, pp. 521–538,
2009
). The Goldreich’s function has
n
binary inputs and
n
binary outputs. Every output depends on
d
inputs and is computed from them by the fixed predicate of arity
d
. Our Goldreich’s function is based on an expander graph and on the nonlinear predicates that are linear in
Ω
(
d
) variables. Drunken algorithm is a backtracking algorithm that somehow chooses a variable for splitting and randomly chooses the value for the variable to be investigated at first.
After the submission to the journal we found out that the same result was independently obtained by Rachel Miller. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1432-4350 1433-0490 |
| DOI: | 10.1007/s00224-013-9514-8 |