Lower Bound on Average-Case Complexity of Inversion of Goldreich’s Function by Drunken Backtracking Algorithms

We prove an exponential lower bound on the average time of inverting Goldreich’s function by drunken backtracking algorithms; this resolves the open question stated in Cook et al. (Proceedings of TCC, pp. 521–538, 2009 ). The Goldreich’s function has n binary inputs and n binary outputs. Every outpu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theory of computing systems Ročník 54; číslo 2; s. 261 - 276
Hlavný autor: Itsykson, Dmitry
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.02.2014
Springer Nature B.V
Predmet:
ISSN:1432-4350, 1433-0490
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove an exponential lower bound on the average time of inverting Goldreich’s function by drunken backtracking algorithms; this resolves the open question stated in Cook et al. (Proceedings of TCC, pp. 521–538, 2009 ). The Goldreich’s function has n binary inputs and n binary outputs. Every output depends on d inputs and is computed from them by the fixed predicate of arity  d . Our Goldreich’s function is based on an expander graph and on the nonlinear predicates that are linear in Ω ( d ) variables. Drunken algorithm is a backtracking algorithm that somehow chooses a variable for splitting and randomly chooses the value for the variable to be investigated at first. After the submission to the journal we found out that the same result was independently obtained by Rachel Miller.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-013-9514-8