Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming

Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow discharge over the weir is discharge coefficient ( C d ). The aim of this study is accurate determination of the C d in triangular labyrinth...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 29; no. 11; pp. 983 - 989
Main Authors: Karami, Hojat, Karimi, Sohrab, Bonakdari, Hossein, Shamshirband, Shahabodin
Format: Journal Article
Language:English
Published: London Springer London 01.06.2018
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow discharge over the weir is discharge coefficient ( C d ). The aim of this study is accurate determination of the C d in triangular labyrinth side weirs by applying three intelligence models [i.e., artificial neural network (ANN), genetic programming (GP) and extreme learning machine (ELM)]. The calculated discharge coefficients were then compared with some experimental results. In order to examine the accuracy of C d predictions by ANN, GP and ELM methods, five statistical indices including coefficient of determination ( R 2 ), root-mean-square error (RMSE), mean absolute percentage error (MAPE), SI and δ have been used. Results showed that R 2 values in the ELM, ANN and GP methods were 0.993, 0.886 and 0.884, respectively, at training stage and 0.971, 0.965 and 0.963, respectively, at test stage. The ELM method, having MAPE, RMSE, SI and δ values of 0.81, 0.0059, 0.0082 and 0.81, respectively, at the training stage and 0.89, 0.0063, 0.0089 and 0.88, respectively, at the test stage, was superior to ANN and GP methods. The ANN model ranked next to the ELM model.
AbstractList Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow discharge over the weir is discharge coefficient (Cd). The aim of this study is accurate determination of the Cd in triangular labyrinth side weirs by applying three intelligence models [i.e., artificial neural network (ANN), genetic programming (GP) and extreme learning machine (ELM)]. The calculated discharge coefficients were then compared with some experimental results. In order to examine the accuracy of Cd predictions by ANN, GP and ELM methods, five statistical indices including coefficient of determination (R2), root-mean-square error (RMSE), mean absolute percentage error (MAPE), SI and δ have been used. Results showed that R2 values in the ELM, ANN and GP methods were 0.993, 0.886 and 0.884, respectively, at training stage and 0.971, 0.965 and 0.963, respectively, at test stage. The ELM method, having MAPE, RMSE, SI and δ values of 0.81, 0.0059, 0.0082 and 0.81, respectively, at the training stage and 0.89, 0.0063, 0.0089 and 0.88, respectively, at the test stage, was superior to ANN and GP methods. The ANN model ranked next to the ELM model.
Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow discharge over the weir is discharge coefficient ( C d ). The aim of this study is accurate determination of the C d in triangular labyrinth side weirs by applying three intelligence models [i.e., artificial neural network (ANN), genetic programming (GP) and extreme learning machine (ELM)]. The calculated discharge coefficients were then compared with some experimental results. In order to examine the accuracy of C d predictions by ANN, GP and ELM methods, five statistical indices including coefficient of determination ( R 2 ), root-mean-square error (RMSE), mean absolute percentage error (MAPE), SI and δ have been used. Results showed that R 2 values in the ELM, ANN and GP methods were 0.993, 0.886 and 0.884, respectively, at training stage and 0.971, 0.965 and 0.963, respectively, at test stage. The ELM method, having MAPE, RMSE, SI and δ values of 0.81, 0.0059, 0.0082 and 0.81, respectively, at the training stage and 0.89, 0.0063, 0.0089 and 0.88, respectively, at the test stage, was superior to ANN and GP methods. The ANN model ranked next to the ELM model.
Author Bonakdari, Hossein
Shamshirband, Shahabodin
Karami, Hojat
Karimi, Sohrab
Author_xml – sequence: 1
  givenname: Hojat
  surname: Karami
  fullname: Karami, Hojat
  email: hkarami@semnan.ac.ir
  organization: Department of Civil Engineering, Semnan University
– sequence: 2
  givenname: Sohrab
  surname: Karimi
  fullname: Karimi, Sohrab
  organization: Department of Civil Engineering, Semnan University
– sequence: 3
  givenname: Hossein
  surname: Bonakdari
  fullname: Bonakdari, Hossein
  organization: Department of Civil Engineering, Razi University
– sequence: 4
  givenname: Shahabodin
  surname: Shamshirband
  fullname: Shamshirband, Shahabodin
  organization: Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya
BookMark eNp9kMFO3DAQhi1EJRbKA3CzxLVp7Tj2Zo8IQVsJqT1wt2btSdaQODB2xPIUfeU6bKVKSO1pNDP_N__oP2XHcYrI2IUUn6UQ6y9JCF3LSkhT1bptq_0RW8lGqUoJ3R6zldg0ZWsadcJOU3oQQjSm1Sv26yehDy6H2HMfktsB9cjdhF0XXMCY-dTxTAFiPw9AfIDtK4WYd_wFA_E5LSDuM-GIfECguAxGcLsQ8RMHymE5BAOPONNbyS8TPXKInvdYuuD4E009wTgW9CP70MGQ8PxPPWP3tzf319-qux9fv19f3VVOSZMr6VWz9V7WTWsUrp2swSkDTnqj18op1blON5vWgzRdK7da48Y0CEZLXztUZ-zycLZYP8-Ysn2YZorF0dZCGaU2RuqiWh9UjqaUCDvrQoYcppgJwmClsEv49hC-LeHbJXy7L6R8Rz5RGIFe_8vUByYVbeyR_v70b-g3yRedlg
CitedBy_id crossref_primary_10_1061_JOEEDU_EEENG_7766
crossref_primary_10_1109_TITS_2020_3004918
crossref_primary_10_1038_s41598_023_39272_6
crossref_primary_10_1155_2018_8467413
crossref_primary_10_1007_s13349_022_00603_2
crossref_primary_10_1007_s13762_023_05322_9
crossref_primary_10_1140_epjs_s11734_021_00394_5
crossref_primary_10_1016_j_flowmeasinst_2023_102468
crossref_primary_10_1061__ASCE_IR_1943_4774_0001484
crossref_primary_10_2166_ws_2022_393
crossref_primary_10_1016_j_eswa_2019_03_002
crossref_primary_10_1016_j_flowmeasinst_2021_102108
crossref_primary_10_1007_s00500_025_10856_w
crossref_primary_10_1016_j_mtcomm_2020_101950
crossref_primary_10_1007_s00500_022_07614_7
crossref_primary_10_1016_j_flowmeasinst_2019_101681
crossref_primary_10_1007_s00521_018_3956_5
crossref_primary_10_1016_j_flowmeasinst_2019_04_005
crossref_primary_10_2166_hydro_2023_260
crossref_primary_10_1016_j_flowmeasinst_2019_03_003
crossref_primary_10_1016_j_flowmeasinst_2021_102079
crossref_primary_10_1080_19942060_2021_1934546
crossref_primary_10_1007_s00500_022_07073_0
crossref_primary_10_3390_app10124239
crossref_primary_10_1007_s00500_022_07041_8
crossref_primary_10_1007_s40808_021_01081_z
crossref_primary_10_1080_19942060_2021_2002721
crossref_primary_10_1016_j_compeleceng_2020_106624
crossref_primary_10_1016_j_flowmeasinst_2016_11_010
crossref_primary_10_1016_j_flowmeasinst_2021_102119
crossref_primary_10_1016_j_flowmeasinst_2020_101740
crossref_primary_10_1007_s11269_023_03527_8
crossref_primary_10_1007_s00477_024_02739_7
crossref_primary_10_1016_j_flowmeasinst_2025_103050
crossref_primary_10_1155_2023_8272566
crossref_primary_10_2166_hydro_2024_303
crossref_primary_10_1016_j_flowmeasinst_2024_102563
crossref_primary_10_1007_s13201_019_1026_5
crossref_primary_10_2166_hydro_2023_096
crossref_primary_10_1016_j_flowmeasinst_2019_101573
crossref_primary_10_2166_ws_2022_378
crossref_primary_10_1016_j_flowmeasinst_2025_102924
crossref_primary_10_3390_photonics6040111
crossref_primary_10_3390_a17090388
crossref_primary_10_1007_s00521_021_05996_7
crossref_primary_10_1016_j_flowmeasinst_2024_102687
crossref_primary_10_1016_j_flowmeasinst_2024_102686
crossref_primary_10_1016_j_flowmeasinst_2023_102403
crossref_primary_10_3390_w16020289
crossref_primary_10_1016_j_eswa_2022_119480
crossref_primary_10_1038_s41598_025_03812_z
crossref_primary_10_3390_app9163221
crossref_primary_10_1080_19942060_2021_1944913
crossref_primary_10_1007_s00521_019_04375_7
crossref_primary_10_1007_s11831_025_10274_z
Cites_doi 10.1016/j.flowmeasinst.2011.04.009
10.1016/j.eswa.2011.09.035
10.1016/j.advengsoft.2010.03.001
10.1016/0893-6080(91)90009-T
10.1016/S0893-6080(05)80131-5
10.1061/(ASCE)0733-9437(1994)120:4(742)
10.1109/TNN.2006.880583
10.1061/(ASCE)IR.1943-4774.0000112
10.1016/j.biosystemseng.2010.01.001
10.1080/02626669809492102
10.1061/(ASCE)0733-9372(2000)126:5(456)
10.1016/j.flowmeasinst.2011.01.006
10.1680/wama.11.00008
10.1016/j.neucom.2005.12.126
10.1061/(ASCE)0733-9429(2005)131:3(184)
10.1109/72.655045
10.1016/j.advengsoft.2009.09.006
10.1109/TNN.2003.809401
10.1109/72.557662
10.1007/978-1-4471-0123-9_54
10.1061/JYCEAJ.0003188
10.1061/JYCEAJ.0004610
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2016
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Natural Computing Applications Forum 2016
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00521-016-2588-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 989
ExternalDocumentID 10_1007_s00521_016_2588_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c316t-1d34bdd124863e7c12ac36ac1d6573c33fcf5498da16f81b55e964ea651d2ce3
IEDL.DBID RSV
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431785700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 16:24:52 EST 2025
Tue Nov 18 21:27:16 EST 2025
Sat Nov 29 02:59:04 EST 2025
Fri Feb 21 02:34:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Artificial neural network
Discharge coefficient
Extreme learning machine
Genetic programming
Weir
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-1d34bdd124863e7c12ac36ac1d6573c33fcf5498da16f81b55e964ea651d2ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2036339615
PQPubID 2043988
PageCount 7
ParticipantIDs proquest_journals_2036339615
crossref_citationtrail_10_1007_s00521_016_2588_x
crossref_primary_10_1007_s00521_016_2588_x
springer_journals_10_1007_s00521_016_2588_x
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2018
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Subramanya, Awasthy (CR8) 1972; 98
Kisi, Emiroglu, Bilhan, Guven (CR25) 2012; 39
Kumar, Ahmad, Mansoor (CR4) 2011; 22
Emiroglu, Kisi, Bilhan (CR11) 2010; 41
Swamee, Santosh, Masoud (CR9) 1994; 120
Huang, Zhu, Siew (CR15) 2004; 2
Khan, Azamathulla, Tufail, AbGhani (CR27) 2012; 165
Tamura, Tateishi (CR19) 1997; 8
Emiroglu, Kaya, Agaccioglu (CR13) 2010; 136
Hornik (CR16) 1991; 4
Leshno, Lin, Pinkus, Schocken (CR17) 1993; 6
Dianhui, Huang (CR30) 2005; 3
El-Khashab, Smith (CR1) 1976; 102
Bagheri, Heidarpour (CR10) 2010; 105
Bonakdari, Baghalian, Nazari, Fazli (CR12) 2011; 5
Smith (CR23) 1993
Liang, Huang, Rong, Saratchandran, Sundararajan (CR22) 2006; 17
Emiroglu, Kaya, Agaccioglu (CR7) 2010; 136
Wormleaton, Tsang (CR5) 2000; 126
Koza (CR26) 1992
Ferreira (CR29) 2001; 13
Borghei, Parvaneh (CR3) 2011; 22
Bilhan, Emiroglu, Kisi (CR14) 2010; 41
Dawson, Wilby (CR24) 1998; 43
CR28
Huang, Zhu, Siew (CR21) 2006; 70
Huang, Babri (CR18) 1998; 9
Emiroglu, Baylar (CR6) 2005; 131
Huang (CR20) 2003; 14
De Marchi (CR2) 1934; 11
S Kumar (2588_CR4) 2011; 22
NY Liang (2588_CR22) 2006; 17
GB Huang (2588_CR15) 2004; 2
M Leshno (2588_CR17) 1993; 6
ME Emiroglu (2588_CR6) 2005; 131
A El-Khashab (2588_CR1) 1976; 102
GB Huang (2588_CR20) 2003; 14
C Ferreira (2588_CR29) 2001; 13
M Smith (2588_CR23) 1993
ME Emiroglu (2588_CR7) 2010; 136
O Bilhan (2588_CR14) 2010; 41
O Kisi (2588_CR25) 2012; 39
K Hornik (2588_CR16) 1991; 4
ME Emiroglu (2588_CR11) 2010; 41
ME Emiroglu (2588_CR13) 2010; 136
SM Borghei (2588_CR3) 2011; 22
GB Huang (2588_CR18) 1998; 9
CW Dawson (2588_CR24) 1998; 43
PK Swamee (2588_CR9) 1994; 120
G Marchi De (2588_CR2) 1934; 11
JR Koza (2588_CR26) 1992
S Tamura (2588_CR19) 1997; 8
W Dianhui (2588_CR30) 2005; 3
K Subramanya (2588_CR8) 1972; 98
2588_CR28
GB Huang (2588_CR21) 2006; 70
PR Wormleaton (2588_CR5) 2000; 126
H Bonakdari (2588_CR12) 2011; 5
M Khan (2588_CR27) 2012; 165
S Bagheri (2588_CR10) 2010; 105
References_xml – volume: 22
  start-page: 370
  issue: 5
  year: 2011
  end-page: 376
  ident: CR3
  article-title: Discharge characteristics of a modified oblique side weir in subcritical flow
  publication-title: J Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2011.04.009
– volume: 39
  start-page: 3454
  year: 2012
  end-page: 3460
  ident: CR25
  article-title: Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.09.035
– volume: 41
  start-page: 831
  issue: 6
  year: 2010
  end-page: 837
  ident: CR14
  article-title: Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2010.03.001
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: CR16
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(91)90009-T
– volume: 6
  start-page: 861
  year: 1993
  end-page: 867
  ident: CR17
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80131-5
– volume: 3
  start-page: 1406
  year: 2005
  end-page: 1411
  ident: CR30
  article-title: Protein sequence classification using extreme learning machine
  publication-title: Proc Int Jt Conf Neural Netw
– volume: 11
  start-page: 849
  issue: 11
  year: 1934
  end-page: 860
  ident: CR2
  article-title: Essay on the performance of lateral weirs
  publication-title: L’Energia Electtrica
– volume: 120
  start-page: 742
  issue: 4
  year: 1994
  end-page: 755
  ident: CR9
  article-title: Side weir analysis using elementary discharge coefficient
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)0733-9437(1994)120:4(742)
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: CR22
  article-title: A fast and accurate on-line sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880583
– volume: 136
  start-page: 37
  issue: 1
  year: 2010
  end-page: 46
  ident: CR13
  article-title: Discharge capacity of labyrinth weir located on a straight channel
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0000112
– volume: 105
  start-page: 423
  issue: 3
  year: 2010
  end-page: 427
  ident: CR10
  article-title: Application of free vortex theory to estimate discharge coefficient for sharp-crested weirs
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2010.01.001
– volume: 102
  start-page: 1255
  year: 1976
  end-page: 1268
  ident: CR1
  article-title: Experimental investigation of flow over side weirs
  publication-title: ASCE J Hydraul Div
– volume: 43
  start-page: 47
  issue: 1
  year: 1998
  end-page: 66
  ident: CR24
  article-title: An artificial neural network approach to rainfall-runoff modelling
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669809492102
– volume: 126
  start-page: 456
  issue: 5
  year: 2000
  end-page: 465
  ident: CR5
  article-title: Aeration performance of rectangular plan form labyrinth weirs
  publication-title: ASCE J Environ Eng
  doi: 10.1061/(ASCE)0733-9372(2000)126:5(456)
– year: 1992
  ident: CR26
  publication-title: Genetic programming: on the programming of computers by means of natural selection
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  end-page: 129
  ident: CR29
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst
– year: 1993
  ident: CR23
  publication-title: Neural Netw for statistical modeling
– volume: 22
  start-page: 175
  issue: 3
  year: 2011
  end-page: 180
  ident: CR4
  article-title: A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs
  publication-title: J Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2011.01.006
– volume: 165
  start-page: 481
  issue: 9
  year: 2012
  end-page: 493
  ident: CR27
  article-title: Bridge pier scour prediction by gene expression programming
  publication-title: Proc Inst Civ Eng Water Manag
  doi: 10.1680/wama.11.00008
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: CR21
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 98
  start-page: 1
  issue: 1
  year: 1972
  end-page: 10
  ident: CR8
  article-title: Spatially varied flow over side weirs
  publication-title: ASCE J Hydraul Div
– volume: 5
  start-page: 384
  issue: 3
  year: 2011
  end-page: 396
  ident: CR12
  article-title: Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm
  publication-title: Eng Appl Comput Fluid Mech
– volume: 131
  start-page: 184
  issue: 3
  year: 2005
  end-page: 189
  ident: CR6
  article-title: Influence of included angle and sill slope on air entrainment of triangular plan form labyrinth weirs
  publication-title: ASCE J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2005)131:3(184)
– volume: 2
  start-page: 985
  year: 2004
  end-page: 990
  ident: CR15
  article-title: Extreme learning machine: a new learning scheme of feed forward neural networks
  publication-title: Int Jt Conf Neural Netw
– volume: 9
  start-page: 224
  issue: 1
  year: 1998
  end-page: 229
  ident: CR18
  article-title: Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.655045
– volume: 136
  start-page: 37
  issue: 1
  year: 2010
  end-page: 46
  ident: CR7
  article-title: Discharge capacity of labyrinth weir located on a straight channel
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0000112
– volume: 41
  start-page: 154
  issue: 2
  year: 2010
  end-page: 160
  ident: CR11
  article-title: Predicting discharge capacity of triangular labyrinth side weir located on a straight channel by using an adaptive neuro-fuzzy technique
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2009.09.006
– volume: 14
  start-page: 274
  issue: 2
  year: 2003
  end-page: 281
  ident: CR20
  article-title: Learning capability and storage capacity of two hidden-layer feedforward networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2003.809401
– ident: CR28
– volume: 8
  start-page: 251
  issue: 2
  year: 1997
  end-page: 255
  ident: CR19
  article-title: Capabilities of a four-layered feedforward neural network: four layers versus three
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.557662
– volume: 6
  start-page: 861
  year: 1993
  ident: 2588_CR17
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80131-5
– volume-title: Genetic programming: on the programming of computers by means of natural selection
  year: 1992
  ident: 2588_CR26
– volume: 22
  start-page: 175
  issue: 3
  year: 2011
  ident: 2588_CR4
  publication-title: J Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2011.01.006
– volume: 5
  start-page: 384
  issue: 3
  year: 2011
  ident: 2588_CR12
  publication-title: Eng Appl Comput Fluid Mech
– volume: 17
  start-page: 1411
  year: 2006
  ident: 2588_CR22
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880583
– volume: 165
  start-page: 481
  issue: 9
  year: 2012
  ident: 2588_CR27
  publication-title: Proc Inst Civ Eng Water Manag
  doi: 10.1680/wama.11.00008
– volume: 11
  start-page: 849
  issue: 11
  year: 1934
  ident: 2588_CR2
  publication-title: L’Energia Electtrica
– ident: 2588_CR28
  doi: 10.1007/978-1-4471-0123-9_54
– volume: 136
  start-page: 37
  issue: 1
  year: 2010
  ident: 2588_CR13
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0000112
– volume: 98
  start-page: 1
  issue: 1
  year: 1972
  ident: 2588_CR8
  publication-title: ASCE J Hydraul Div
  doi: 10.1061/JYCEAJ.0003188
– volume-title: Neural Netw for statistical modeling
  year: 1993
  ident: 2588_CR23
– volume: 102
  start-page: 1255
  year: 1976
  ident: 2588_CR1
  publication-title: ASCE J Hydraul Div
  doi: 10.1061/JYCEAJ.0004610
– volume: 22
  start-page: 370
  issue: 5
  year: 2011
  ident: 2588_CR3
  publication-title: J Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2011.04.009
– volume: 120
  start-page: 742
  issue: 4
  year: 1994
  ident: 2588_CR9
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)0733-9437(1994)120:4(742)
– volume: 2
  start-page: 985
  year: 2004
  ident: 2588_CR15
  publication-title: Int Jt Conf Neural Netw
– volume: 4
  start-page: 251
  year: 1991
  ident: 2588_CR16
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(91)90009-T
– volume: 131
  start-page: 184
  issue: 3
  year: 2005
  ident: 2588_CR6
  publication-title: ASCE J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2005)131:3(184)
– volume: 14
  start-page: 274
  issue: 2
  year: 2003
  ident: 2588_CR20
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2003.809401
– volume: 41
  start-page: 831
  issue: 6
  year: 2010
  ident: 2588_CR14
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2010.03.001
– volume: 105
  start-page: 423
  issue: 3
  year: 2010
  ident: 2588_CR10
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2010.01.001
– volume: 9
  start-page: 224
  issue: 1
  year: 1998
  ident: 2588_CR18
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.655045
– volume: 43
  start-page: 47
  issue: 1
  year: 1998
  ident: 2588_CR24
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669809492102
– volume: 126
  start-page: 456
  issue: 5
  year: 2000
  ident: 2588_CR5
  publication-title: ASCE J Environ Eng
  doi: 10.1061/(ASCE)0733-9372(2000)126:5(456)
– volume: 39
  start-page: 3454
  year: 2012
  ident: 2588_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.09.035
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  ident: 2588_CR29
  publication-title: Complex Syst
– volume: 41
  start-page: 154
  issue: 2
  year: 2010
  ident: 2588_CR11
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2009.09.006
– volume: 8
  start-page: 251
  issue: 2
  year: 1997
  ident: 2588_CR19
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.557662
– volume: 3
  start-page: 1406
  year: 2005
  ident: 2588_CR30
  publication-title: Proc Int Jt Conf Neural Netw
– volume: 136
  start-page: 37
  issue: 1
  year: 2010
  ident: 2588_CR7
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0000112
– volume: 70
  start-page: 489
  year: 2006
  ident: 2588_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
SSID ssj0004685
Score 2.3907163
SecondaryResourceType review_article
Snippet Weirs are a type of hydraulic structure used to direct and transfer water flows in the canals and overflows in the dams. The important index in computing flow...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 983
SubjectTerms Artificial Intelligence
Artificial neural networks
Canals
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Discharge coefficient
Genetic algorithms
Image Processing and Computer Vision
Learning theory
Neural networks
Predictions
Probability and Statistics in Computer Science
Review
Root-mean-square errors
Statistical methods
Test procedures
Training
Weirs
Title Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming
URI https://link.springer.com/article/10.1007/s00521-016-2588-x
https://www.proquest.com/docview/2036339615
Volume 29
WOSCitedRecordID wos000431785700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlkMvFAoVC-1qDpwokTZxHs4R0FYc0GpVqqrqJbLHTluJZlF2ef0K_jIz3mS3rQoSnHKIbVmesWfs-WY-gFfktJC4U6RTGkWpsRSxFbQRFV7XNNLOhgy504_FZKLPzsppl8c979HufUgynNSrZDd5wZSrbx4lGYuXHccttnZa-BqOP53eSIYMPJx8bRFIT6r6UOZ9Q9w2RmsP805QNNiao53_muVjeNS5lvh2qQtP4IFvdmGnp23Abhc_hV_TVqIzgndGScqVWkkeaeZDNQk2QjirUdg8GqGpb5H15CfPYXGJ3_1Vi4KUv0A-0-VlETvWiQu8DqhM_wZFF5dlKVCKZYZPgJqjaRyyvkraJHa4sGvu-gxOjsYn7z9EHS9DRCrOF1HsVGqdY89A58oXFCeGVG4odnlWKFKqppqvndqZOK_ZLc4yX-apN3kWu4S82oPNZtb454BpzY2kXk9hfJpQaaz1tvCWytImzowGMOrlU1FXs1yoMz5Xq2rLYb0rwanJelc_BvB61eXLsmDH3xrv90Kvur07ryQ0q1TJrt4ADnshr3__cbAX_9T6JWyz76WXqLN92Fy0X_0BPKRvi6t5O4Std-PJ9HgIG9PsfBgU_DeRzPk6
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6igl58rIrjsw57cm2Y7vTzKKIozg6yDuKtSSppV1h7pGd8_Qr_slWZ7vHBKuipD52EkKqkKqmvvhLiJ5qUi7ijl4bY9kKl0SMrqD1MbFpgOzXaZcidd5JuN724yE7rPO5Bg3ZvQpLupB4nu_ELJl99Yy-ISLzkOE6FZLCYMP_P2fmrZEhXh5OuLQzpCWUTyvzfEG-N0YuH-S4o6mzN4fy3Zrkg5mrXEvZGurAoJmz5Q8w3ZRug3sVL4um04ugM452Bk3KZK8kC9q1jkyAjBP0CuJpHyWXqKyA9eaQ5DP_Cvb2qgJHyl0BnOr8sQl114hKuHSrT7gLr4oiWApgs030c1BxUaYD0ldMmocaFXVPXZdE7POjtH3l1XQYPpR8PPd_IUBtDnkEaS5ugHyiUsULfxFEiUcoCC7p2pkb5cUFucRTZLA6tiiPfBGjlipgs-6VdFRAW1Ij5ehJlwwAzpbXVidWYZTowqt0S7UY-Odac5Vw6418-Zlt2650zTo3XO39oiZ1xl5sRYcdnjTcaoef13h3kHJqVMiNXryV-NUJ--f3hYGtfar0tZo56vzt557h7si5myQ9LRwi0DTE5rG7tppjGu-HVoNpy6v0Mma35hA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIl58i-tzDp7U4rbp8yjqoijLgiLeSjJJVdCudOvrV_iXzaTt-kAF8dRDkzQkk2aS-eb7GNtEFZOIOzqxj23HFxIdswtKByMdZ9iOlbQZchenUbcbX14mvVrndNCg3ZuQZJXTQCxNebl7r7LdYeIb3WbSMTh0vMBMtXEix3zC0dNx_eziQ2Kk1eQ0RxiC9_i8CWt-18Tnjend2_wSILX7Tmf63z2eYVO1ywl7lY3MshGdz7HpRs4B6tU9z157BUVtCAcNlKxLHEoasK8ty4T5FPQzIJWPnOTrCzD282L6U17Dk74pgBD0V2D-9XTjCLUaxRXcWbSm3gGy0YquAohE0z4sBB1ErsDYMaVTQo0XuzNVF9h55_B8_8ip9Roc5G5YOq7ivlTKeAxxyHWErieQhwJdFQYRR84zzMxxNFbCDTPjLgeBTkJfizBwlYeaL7LRvJ_rJQZ-ZgoRj08ktO9hIqTUMtISk0R6SrRbrN3MVYo1lzlJatymQxZmO94p4ddovNPnFtsaVrmviDx-K7zaGEBar-lBSiFbzhPjArbYdjPh769_bGz5T6U32ETvoJOeHndPVtikcc_iCpi2ykbL4kGvsXF8LG8Gxbq19Df9LAJ3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+discharge+coefficient+of+triangular+labyrinth+weir+using+extreme+learning+machine%2C+artificial+neural+network+and+genetic+programming&rft.jtitle=Neural+computing+%26+applications&rft.au=Karami%2C+Hojat&rft.au=Karimi%2C+Sohrab&rft.au=Bonakdari%2C+Hossein&rft.au=Shamshirband%2C+Shahabodin&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=29&rft.issue=11&rft.spage=983&rft.epage=989&rft_id=info:doi/10.1007%2Fs00521-016-2588-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon