Convergence of an extragradient-type method for variational inequality with applications to optimal control problems

Our aim in this paper is to introduce an extragradient-type method for solving variational inequality with uniformly continuous pseudomonotone operator. The strong convergence of the iterative sequence generated by our method is established in real Hilbert spaces. Our method uses computationally ine...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 81; číslo 1; s. 269 - 291
Hlavní autori: Vuong, Phan Tu, Shehu, Yekini
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2019
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Our aim in this paper is to introduce an extragradient-type method for solving variational inequality with uniformly continuous pseudomonotone operator. The strong convergence of the iterative sequence generated by our method is established in real Hilbert spaces. Our method uses computationally inexpensive Armijo-type linesearch procedure to compute the stepsize under reasonable assumptions. Finally, we give numerical implementations of our results for optimal control problems governed by ordinary differential equations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-018-0547-6