Rules Mining-Based Gene Expression Programming for the Multi-Skill Resource Constrained Project Scheduling Problem
The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science problem that extends from the resource-constrained project scheduling problem (RCPSP) and is integrated with a real project and production environment. To solve MS-RCPSP, it is an efficient...
Saved in:
| Published in: | Computer modeling in engineering & sciences Vol. 136; no. 3; pp. 2815 - 2840 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Henderson
Tech Science Press
2023
|
| Subjects: | |
| ISSN: | 1526-1506, 1526-1492, 1526-1506 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science problem that extends from the resource-constrained project scheduling problem (RCPSP) and is integrated with a real project and production environment. To solve MS-RCPSP, it is an efficient method to use dispatching rules combined with a parallel scheduling mechanism to generate a scheduling scheme. This paper proposes an improved gene expression programming (IGEP) approach to explore newly dispatching rules that can broadly solve MS-RCPSP. A new backward traversal decoding mechanism, and several neighborhood operators are applied in IGEP. The backward traversal decoding mechanism dramatically reduces the space complexity in the decoding process, and improves the algorithm’s performance. Several neighborhood operators improve the exploration of the potential search space. The experiment takes the intelligent multi-objective project scheduling environment (iMOPSE) benchmark dataset as the training set and testing set of IGEP. Ten newly dispatching rules are discovered and extracted by IGEP, and eight out of ten are superior to other typical dispatching rules. |
|---|---|
| AbstractList | The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science problem that extends from the resource-constrained project scheduling problem (RCPSP) and is integrated with a real project and production environment. To solve MS-RCPSP, it is an efficient method to use dispatching rules combined with a parallel scheduling mechanism to generate a scheduling scheme. This paper proposes an improved gene expression programming (IGEP) approach to explore newly dispatching rules that can broadly solve MS-RCPSP. A new backward traversal decoding mechanism, and several neighborhood operators are applied in IGEP. The backward traversal decoding mechanism dramatically reduces the space complexity in the decoding process, and improves the algorithm’s performance. Several neighborhood operators improve the exploration of the potential search space. The experiment takes the intelligent multi-objective project scheduling environment (iMOPSE) benchmark dataset as the training set and testing set of IGEP. Ten newly dispatching rules are discovered and extracted by IGEP, and eight out of ten are superior to other typical dispatching rules. |
| Author | Hu, Min Tang, Qiuhua Chen, Zhimin Xia, Yuan Zhang, Liping |
| Author_xml | – sequence: 1 givenname: Min surname: Hu fullname: Hu, Min – sequence: 2 givenname: Zhimin surname: Chen fullname: Chen, Zhimin – sequence: 3 givenname: Yuan surname: Xia fullname: Xia, Yuan – sequence: 4 givenname: Liping surname: Zhang fullname: Zhang, Liping – sequence: 5 givenname: Qiuhua surname: Tang fullname: Tang, Qiuhua |
| BookMark | eNp9kM1OwzAQhC0EEm3hAbhZ4pzin8ROjlCVgtQK1MI5cpxNm5LYxU4keHscygFx4LSr1Xy7OzNGp8YaQOiKkilngsQ3ugU_ZYTxKWGSxuIEjWjCREQTIk5_9edo7P2eEC54mo2QW_cNeLyqTW220Z3yUOIFGMDzj4MD72tr8LOzW6faNihwZR3udoBXfdPV0eatbhq8Bm97pwHPrPGdU7UJSwK0B93hjd5B2TcDG0ZFA-0FOqtU4-Hyp07Q6_38ZfYQLZ8Wj7PbZaQ5FV1Es7IoiEhjUug0rYRSXGWpFKxkUrKEV1JJAlBligNhZVwqmUCVxFJXipUq5RN0fdx7cPa9B9_l-_CmCSdzzgihjMZxElTyqNLOeu-gynXdqS74Hpw0OSX5d8D5EHA-BJwfAw4k_UMeXN0q9_kP8wVzc4KY |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_129307 crossref_primary_10_1080_0305215X_2024_2376852 |
| Cites_doi | 10.15439/2015F273 10.1007/978-1-4471-0123-9_54 10.1007/s11042-021-11142-1 10.1155/2018/9248318 10.1109/access.2021.3049175 10.1109/TII.2022.3168432 10.1016/j.eswa.2020.114021 10.1016/j.cie.2010.11.014 10.1016/j.eswa.2016.03.017 10.1016/j.energy.2017.07.005 10.1016/j.compchemeng.2016.02.018 10.1016/j.asoc.2021.107480 10.1109/MCI.2017.2708618 10.1016/j.asoc.2021.107404 10.1016/j.eswa.2015.04.040 10.2991/978-94-6239-148-2_40 10.1080/0305215X.2022.2067992 10.1016/j.asoc.2021.107513 10.1109/TIE.2020.3044808 10.1016/j.ins.2017.12.013 10.1016/j.oceaneng.2021.108823 10.1016/j.jclepro.2019.118289 10.1109/CSCWD.2011.5960088 10.1109/access.2021.3056067 10.1007/s10825-019-01394-4 10.1109/TIM.2020.304879 10.32604/cmes.2021.015462 10.1016/j.eswa.2021.116118 10.1016/j.jmsy.2022.04.019 10.1016/S0377-2217(99)00347-1 10.1016/j.ijpe.2010.03.009 10.32604/cmes.2022.020744 10.1016/B978-0-323-95879-0.50161-2 10.1016/j.knosys.2021.107099 10.1007/s10489-021-02608-8 10.1007/s00500-014-1455-x 10.1016/j.neucom.2013.05.062 10.1016/j.eswa.2019.112915 10.1016/j.swevo.2021.100985 10.1007/BF01721162 10.1109/TFUZZ.2019.2957263 10.1007/978-3-319-45243-237 |
| ContentType | Journal Article |
| Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.32604/cmes.2023.027146 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (subscription) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1526-1506 |
| EndPage | 2840 |
| ExternalDocumentID | 10_32604_cmes_2023_027146 |
| GroupedDBID | -~X AAFWJ AAYXX ABJCF ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION EBS EJD F5P HCIFZ IPNFZ J9A K7- M7S OK1 PHGZM PHGZT PIMPY PQGLB PTHSS RIG RTS 7SC 7TB 8FD 8FE 8FG ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c316t-19dbb06840bc88f6aa3a98762d277253f7a70eef9a3e02d4da75ef547cfa2da83 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000960786100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1526-1506 1526-1492 |
| IngestDate | Sat Sep 06 07:32:42 EDT 2025 Tue Nov 18 22:08:03 EST 2025 Sat Nov 29 05:50:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-19dbb06840bc88f6aa3a98762d277253f7a70eef9a3e02d4da75ef547cfa2da83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3200121445?pq-origsite=%requestingapplication% |
| PQID | 3200121445 |
| PQPubID | 2048798 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_3200121445 crossref_citationtrail_10_32604_cmes_2023_027146 crossref_primary_10_32604_cmes_2023_027146 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computer modeling in engineering & sciences |
| PublicationYear | 2023 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Zhang (ref2) 2021; 109 Koza (ref34) 1993; 33 Zhang (ref19) 2022 ref33 Browning (ref46) 2010; 126 Maghsoudlou (ref27) 2016; 88 Zhang (ref37) 2022; 63 Wang (ref12) 2021; 225 Tang (ref16) 2014; 8 ref39 Zhou (ref25) 2023; 134 Zhang (ref41) 2021; 21 Dziwiñski (ref5) 2020; 28 Myszkowski (ref26) 2015; 19 Zhang (ref42) 2017; 138 Shao (ref14) 2018; 2018 Chand (ref45) 2018; 432 Myszkowski (ref4) 2016 Huang (ref8) 2021; 80 Li (ref7) 2022; 51 Wen (ref21) 2021; 70 Li (ref29) 2021; 52 Lin (ref1) 2020; 140 Chen (ref17) 2021; 9 Klein (ref44) 2000; 127 Wang (ref15) 2021; 107 He (ref10) 2021; 9 Hrizi (ref13) 2019; 18 Guan (ref9) 2021; 164 Fescioglu-Ünver (ref11) 2011; 60 Wen (ref22) 2021; 68 Cui (ref28) 2021; 107 Gu (ref18) 2022; 189 Cheng (ref24) 2022; 69 Nie (ref40) 2011 Li (ref6) 2016 Almeida (ref32) 2016; 57 Peng (ref35) 2014; 137 Zhong (ref36) 2017; 12 Wen (ref23) 2022; 18 Zhang (ref38) 2019; 241 Myszkowski (ref3) 2015 Zhu (ref30) 2021; 225 Zhang (ref43) 2021; 127 Haupt (ref31) 1988; 11 Niroomand (ref20) 2015; 42 |
| References_xml | – start-page: 129 year: 2015 ident: ref3 article-title: A new benchmark dataset for multi-skill resource-constrained project scheduling problem doi: 10.15439/2015F273 – ident: ref33 doi: 10.1007/978-1-4471-0123-9_54 – volume: 80 start-page: 28975 year: 2021 ident: ref8 article-title: Study of delivery path optimization solution based on improved ant colony model publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-021-11142-1 – volume: 2018 start-page: 9248318 year: 2018 ident: ref14 article-title: Multiple-try simulated annealing algorithm for global optimization publication-title: Mathematical Problems in Engineering doi: 10.1155/2018/9248318 – volume: 9 start-page: 7723 year: 2021 ident: ref17 article-title: Process synthesis and design problems based on a global particle swarm optimization algorithm publication-title: IEEE Access doi: 10.1109/access.2021.3049175 – ident: ref39 – volume: 18 start-page: 8988 year: 2022 ident: ref23 article-title: A new cycle-consistent adversarial networks with attention mechanism for surface defect classification with small samples publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2022.3168432 – volume: 164 start-page: 114021 year: 2021 ident: ref9 article-title: An improved ant colony optimization with an automatic updating mechanism for constraint satisfaction problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114021 – volume: 33 start-page: 69 year: 1993 ident: ref34 article-title: Genetic programming: On the programming of computers by means of natural selection publication-title: Biosystems – volume: 60 start-page: 310 year: 2011 ident: ref11 article-title: Self controlling tabu search algorithm for the quadratic assignment problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2010.11.014 – volume: 57 start-page: 91 year: 2016 ident: ref32 article-title: Priority-based heuristics for the multi-skill resource constrained project scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.017 – volume: 138 start-page: 210 year: 2017 ident: ref42 article-title: Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops publication-title: Energy doi: 10.1016/j.energy.2017.07.005 – volume: 88 start-page: 157 year: 2016 ident: ref27 article-title: A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2016.02.018 – volume: 107 year: 2021 ident: ref28 article-title: A variable neighborhood search approach for the resource-constrained multi-project collaborative scheduling problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107480 – volume: 12 start-page: 54 year: 2017 ident: ref36 article-title: Gene expression programming: A survey publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2017.2708618 – volume: 107 start-page: 107404 year: 2021 ident: ref15 article-title: A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107404 – volume: 21 year: 2021 ident: ref41 article-title: Data-driven dispatching rules mining and real-time decision-making methodology in intelligent manufacturing shop floor with uncertainty publication-title: Sensors – volume: 42 start-page: 6586 year: 2015 ident: ref20 article-title: Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.04.040 – start-page: 399 year: 2016 ident: ref6 article-title: An improved self-adaptive genetic algorithm for scheduling steel-making continuous casting production doi: 10.2991/978-94-6239-148-2_40 – start-page: 1 year: 2022 ident: ref19 article-title: Multi-manned assembly line balancing with sequence-dependent set-up times using an enhanced migrating birds optimization algorithm publication-title: Engineering Optimization doi: 10.1080/0305215X.2022.2067992 – volume: 109 start-page: 107513 year: 2021 ident: ref2 article-title: A robust MILP and gene expression programming based on heuristic rules for mixed-model multi-manned assembly line balancing publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107513 – volume: 68 start-page: 12890 year: 2021 ident: ref22 article-title: A new reinforcement learning based learning rate scheduler for convolutional neural network in fault classification publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2020.3044808 – volume: 432 start-page: 146 year: 2018 ident: ref45 article-title: On the use of genetic programming to evolve priority rules for resource constrained project scheduling problems publication-title: Information Sciences doi: 10.1016/j.ins.2017.12.013 – volume: 225 start-page: 108823 year: 2021 ident: ref12 article-title: Research on intelligent design method of ship multi-deck compartment layout based on improved taboo search genetic algorithm publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.108823 – volume: 241 start-page: 118289 year: 2019 ident: ref38 article-title: Mathematical modeling and multi-attribute rule mining for energy efficient job-shop scheduling publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.118289 – start-page: 291 year: 2011 ident: ref40 article-title: Application of gene expression programming on dynamic job shop scheduling problem doi: 10.1109/CSCWD.2011.5960088 – volume: 9 start-page: 21258 year: 2021 ident: ref10 article-title: An adaptive variable neighborhood search ant colony algorithm for vehicle routing problem with soft time windows publication-title: IEEE Access doi: 10.1109/access.2021.3056067 – volume: 18 start-page: 1365 year: 2019 ident: ref13 article-title: Improving the wave iterative method by metaheuristic algorithms publication-title: Journal of Computational Electronics doi: 10.1007/s10825-019-01394-4 – volume: 8 start-page: 1981 year: 2014 ident: ref16 article-title: A hybrid particle swarm optimization algorithm for large-sized two-sided assembly line balancing problem publication-title: ICIC Express Letters – volume: 70 start-page: 1 year: 2021 ident: ref21 article-title: Convolutional neural network with automatic learning rate scheduler for fault classification publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2020.304879 – volume: 127 start-page: 1151 year: 2021 ident: ref43 article-title: An evolutionary algorithm for non-destructive reverse engineering of integrated circuits publication-title: Computer Modeling in Engineering & Sciences doi: 10.32604/cmes.2021.015462 – volume: 189 start-page: 116118 year: 2022 ident: ref18 article-title: An improved competitive particle swarm optimization for many-objective optimization problems publication-title: Expert Systems with Applications: An International Journal doi: 10.1016/j.eswa.2021.116118 – volume: 63 start-page: 424 year: 2022 ident: ref37 article-title: Effective dispatching rules mining based on near-optimal schedules in intelligent job shop environment publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2022.04.019 – volume: 127 start-page: 619 year: 2000 ident: ref44 article-title: Bidirectional planning: Improving priority rule-based heuristics for scheduling resource-constrained projects publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(99)00347-1 – volume: 126 start-page: 212 year: 2010 ident: ref46 article-title: Resource-constrained multi-project scheduling: Priority rule performance revisited publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2010.03.009 – volume: 134 start-page: 1263 year: 2023 ident: ref25 article-title: Optimization of multi-execution modes and multi-resource-constrained offshore equipment project scheduling based on a hybrid genetic algorithm publication-title: Computer Modeling in Engineering & Sciences doi: 10.32604/cmes.2022.020744 – volume: 51 start-page: 961 year: 2022 ident: ref7 article-title: A novel hybrid algorithm for scheduling multipurpose batch plants publication-title: Computer Aided Chemical Engineering doi: 10.1016/B978-0-323-95879-0.50161-2 – volume: 225 year: 2021 ident: ref30 article-title: A decomposition-based multi-objective genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107099 – volume: 52 start-page: 5718 year: 2021 ident: ref29 article-title: Multi-skill resource constrained project scheduling using a multi-objective discrete jaya algorithm publication-title: Applied Intelligence doi: 10.1007/s10489-021-02608-8 – volume: 19 start-page: 3599 year: 2015 ident: ref26 article-title: Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem publication-title: Soft Computing doi: 10.1007/s00500-014-1455-x – volume: 137 start-page: 293 year: 2014 ident: ref35 article-title: An improved gene expression programming approach for symbolic regression problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.062 – volume: 140 year: 2020 ident: ref1 article-title: A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112915 – volume: 69 start-page: 100985 year: 2022 ident: ref24 article-title: Multi-objective Q-learning-based hyper-heuristic with bi-criteria selection for energy-aware mixed shop scheduling publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2021.100985 – volume: 11 start-page: 3 year: 1988 ident: ref31 publication-title: Operations research spektrum doi: 10.1007/BF01721162 – volume: 28 start-page: 1140 year: 2020 ident: ref5 article-title: A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2019.2957263 – year: 2016 ident: ref4 article-title: GRASP applied to multi–skill resource–constrained project scheduling problem publication-title: Department of Computational Intelligence doi: 10.1007/978-3-319-45243-237 |
| SSID | ssj0036389 |
| Score | 2.33201 |
| Snippet | The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science problem that extends from the... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2815 |
| SubjectTerms | Algorithms Constraints Decoding Dispatching rules Gene expression Operators Project management Resource scheduling Scheduling |
| Title | Rules Mining-Based Gene Expression Programming for the Multi-Skill Resource Constrained Project Scheduling Problem |
| URI | https://www.proquest.com/docview/3200121445 |
| Volume | 136 |
| WOSCitedRecordID | wos000960786100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: P5Z dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: K7- dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: M7S dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: PIMPY dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYoZWChPMWjVB6YkAxp4sTJhAAVgYAqagEBS-TEjqgobekD8fO5cxweSxeWDIlfytl35_P5-wg5CCOe5zp0mJBpwHiQOiz0pWRNrrQG8-xLQ-fzcCPa7fDxMYptwG1i0ypLnWgUtRpmGCM_9lwDP8a5fzJ6Z8gahaerlkKjQqqIVAbzvHrWasedUhd7aI8NYqobQPeRW5xrgsvi8OPsTSNet-sdwdbMeMC_LdNfxWyszUXtv-NcJSvWz6SnxcRYIwt6sE5qJYcDtUt6g4w7s76e0FvDE8HOwKYpilDUtPVpU2QHNC5yuN6gBAUfl4LPSM3FXdZ97fX7tDwCoMj-aTgnoJG4CPFATy9gzfDSO75C8ppNcn_Ruju_ZJaHgWVeM5iyZqTS1EFUmDQLwzyQ0pMRalHlgm_ue7mQwtE6j6SnHVdxJYWvc5-LLJeukqG3RRYHw4HeJlT4aSDg54Os0PHhkQygLjgpTs4VbFZ2iFPKIMksSDmOu5_AZsWILUGxJSi2pBDbDjn8rjIqEDrmFa6XUkvsYp0kPyLbnf95jyxjW0UEpk4Wp-OZ3idL2ce0Nxk37NxrkMq1YA1MIu3CM_af4Ut8dRs_fQE4tOaW |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH6iQ6VyYSmtylof4FLJ4HGc7YAQqxgxM4paQPQUnNgRiGGAmWH7U_xG3nOSLhduHLgmthPbn977npf3AaxEsSoKGwke6izgKsgEj3yteVMZa9E9-9rJ-Zy0w243Oj2NkzF4ru_C0LHK2iY6Q22uc1ojX_ekSz-mlL95c8tJNYp2V2sJjRIWh_bpAUO24UZrF-d3Vcr9vaOdA16pCvDcawYj3oxNlgnKcZLlUVQEWns6JptgJDJN3ytCHQpri1h7VkijjA59W_gqzAstjY48bPcDjCsEu2jAeNLqJL9r2--R_3cZWmWA3Y1luY-KFEmo9fzKUn5w6a1hKOgY97-e8H9H4Lzb_tR7G5dpmKx4NNsqgT8DY7b_GaZqjQpWmaxZGPy869kh6zgdDL6NPtswSrXN9h6rI8B9lpRn1K6wBEMOz5ATM3cxmf-6vOj1WL3FwUjd1GlqYCNJuYSFXzpHb02X-ukRifN8geM36flXaPSv-_YbsNDPghAnG2kxETsV6wDrIgkThTIYjM2BqOc8zask7PTfvRSDMQeTlGCSEkzSEiZz8ONPlZsyA8lrhRdrlKSVMRqmfyEy__rr7_Dp4KjTTtut7uECTFC75WrTIjRGgzu7BB_z-9HFcLBc4Z7B2VtD6gVIV0C7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rules+Mining-Based+Gene+Expression+Programming+for+the+Multi-Skill+Resource+Constrained+Project+Scheduling+Problem&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Hu%2C+Min&rft.au=Chen%2C+Zhimin&rft.au=Xia%2C+Yuan&rft.au=Zhang%2C+Liping&rft.date=2023&rft.issn=1526-1506&rft.volume=136&rft.issue=3&rft.spage=2815&rft.epage=2840&rft_id=info:doi/10.32604%2Fcmes.2023.027146&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2023_027146 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon |