Rules Mining-Based Gene Expression Programming for the Multi-Skill Resource Constrained Project Scheduling Problem

The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science problem that extends from the resource-constrained project scheduling problem (RCPSP) and is integrated with a real project and production environment. To solve MS-RCPSP, it is an efficient...

Full description

Saved in:
Bibliographic Details
Published in:Computer modeling in engineering & sciences Vol. 136; no. 3; pp. 2815 - 2840
Main Authors: Hu, Min, Chen, Zhimin, Xia, Yuan, Zhang, Liping, Tang, Qiuhua
Format: Journal Article
Language:English
Published: Henderson Tech Science Press 2023
Subjects:
ISSN:1526-1506, 1526-1492, 1526-1506
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science problem that extends from the resource-constrained project scheduling problem (RCPSP) and is integrated with a real project and production environment. To solve MS-RCPSP, it is an efficient method to use dispatching rules combined with a parallel scheduling mechanism to generate a scheduling scheme. This paper proposes an improved gene expression programming (IGEP) approach to explore newly dispatching rules that can broadly solve MS-RCPSP. A new backward traversal decoding mechanism, and several neighborhood operators are applied in IGEP. The backward traversal decoding mechanism dramatically reduces the space complexity in the decoding process, and improves the algorithm’s performance. Several neighborhood operators improve the exploration of the potential search space. The experiment takes the intelligent multi-objective project scheduling environment (iMOPSE) benchmark dataset as the training set and testing set of IGEP. Ten newly dispatching rules are discovered and extracted by IGEP, and eight out of ten are superior to other typical dispatching rules.
AbstractList The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science problem that extends from the resource-constrained project scheduling problem (RCPSP) and is integrated with a real project and production environment. To solve MS-RCPSP, it is an efficient method to use dispatching rules combined with a parallel scheduling mechanism to generate a scheduling scheme. This paper proposes an improved gene expression programming (IGEP) approach to explore newly dispatching rules that can broadly solve MS-RCPSP. A new backward traversal decoding mechanism, and several neighborhood operators are applied in IGEP. The backward traversal decoding mechanism dramatically reduces the space complexity in the decoding process, and improves the algorithm’s performance. Several neighborhood operators improve the exploration of the potential search space. The experiment takes the intelligent multi-objective project scheduling environment (iMOPSE) benchmark dataset as the training set and testing set of IGEP. Ten newly dispatching rules are discovered and extracted by IGEP, and eight out of ten are superior to other typical dispatching rules.
Author Hu, Min
Tang, Qiuhua
Chen, Zhimin
Xia, Yuan
Zhang, Liping
Author_xml – sequence: 1
  givenname: Min
  surname: Hu
  fullname: Hu, Min
– sequence: 2
  givenname: Zhimin
  surname: Chen
  fullname: Chen, Zhimin
– sequence: 3
  givenname: Yuan
  surname: Xia
  fullname: Xia, Yuan
– sequence: 4
  givenname: Liping
  surname: Zhang
  fullname: Zhang, Liping
– sequence: 5
  givenname: Qiuhua
  surname: Tang
  fullname: Tang, Qiuhua
BookMark eNp9kM1OwzAQhC0EEm3hAbhZ4pzin8ROjlCVgtQK1MI5cpxNm5LYxU4keHscygFx4LSr1Xy7OzNGp8YaQOiKkilngsQ3ugU_ZYTxKWGSxuIEjWjCREQTIk5_9edo7P2eEC54mo2QW_cNeLyqTW220Z3yUOIFGMDzj4MD72tr8LOzW6faNihwZR3udoBXfdPV0eatbhq8Bm97pwHPrPGdU7UJSwK0B93hjd5B2TcDG0ZFA-0FOqtU4-Hyp07Q6_38ZfYQLZ8Wj7PbZaQ5FV1Es7IoiEhjUug0rYRSXGWpFKxkUrKEV1JJAlBligNhZVwqmUCVxFJXipUq5RN0fdx7cPa9B9_l-_CmCSdzzgihjMZxElTyqNLOeu-gynXdqS74Hpw0OSX5d8D5EHA-BJwfAw4k_UMeXN0q9_kP8wVzc4KY
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129307
crossref_primary_10_1080_0305215X_2024_2376852
Cites_doi 10.15439/2015F273
10.1007/978-1-4471-0123-9_54
10.1007/s11042-021-11142-1
10.1155/2018/9248318
10.1109/access.2021.3049175
10.1109/TII.2022.3168432
10.1016/j.eswa.2020.114021
10.1016/j.cie.2010.11.014
10.1016/j.eswa.2016.03.017
10.1016/j.energy.2017.07.005
10.1016/j.compchemeng.2016.02.018
10.1016/j.asoc.2021.107480
10.1109/MCI.2017.2708618
10.1016/j.asoc.2021.107404
10.1016/j.eswa.2015.04.040
10.2991/978-94-6239-148-2_40
10.1080/0305215X.2022.2067992
10.1016/j.asoc.2021.107513
10.1109/TIE.2020.3044808
10.1016/j.ins.2017.12.013
10.1016/j.oceaneng.2021.108823
10.1016/j.jclepro.2019.118289
10.1109/CSCWD.2011.5960088
10.1109/access.2021.3056067
10.1007/s10825-019-01394-4
10.1109/TIM.2020.304879
10.32604/cmes.2021.015462
10.1016/j.eswa.2021.116118
10.1016/j.jmsy.2022.04.019
10.1016/S0377-2217(99)00347-1
10.1016/j.ijpe.2010.03.009
10.32604/cmes.2022.020744
10.1016/B978-0-323-95879-0.50161-2
10.1016/j.knosys.2021.107099
10.1007/s10489-021-02608-8
10.1007/s00500-014-1455-x
10.1016/j.neucom.2013.05.062
10.1016/j.eswa.2019.112915
10.1016/j.swevo.2021.100985
10.1007/BF01721162
10.1109/TFUZZ.2019.2957263
10.1007/978-3-319-45243-237
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.32604/cmes.2023.027146
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (subscription)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 2840
ExternalDocumentID 10_32604_cmes_2023_027146
GroupedDBID -~X
AAFWJ
AAYXX
ABJCF
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
F5P
HCIFZ
IPNFZ
J9A
K7-
M7S
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
RIG
RTS
7SC
7TB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-19dbb06840bc88f6aa3a98762d277253f7a70eef9a3e02d4da75ef547cfa2da83
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000960786100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1526-1506
1526-1492
IngestDate Sat Sep 06 07:32:42 EDT 2025
Tue Nov 18 22:08:03 EST 2025
Sat Nov 29 05:50:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-19dbb06840bc88f6aa3a98762d277253f7a70eef9a3e02d4da75ef547cfa2da83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3200121445?pq-origsite=%requestingapplication%
PQID 3200121445
PQPubID 2048798
PageCount 26
ParticipantIDs proquest_journals_3200121445
crossref_citationtrail_10_32604_cmes_2023_027146
crossref_primary_10_32604_cmes_2023_027146
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Zhang (ref2) 2021; 109
Koza (ref34) 1993; 33
Zhang (ref19) 2022
ref33
Browning (ref46) 2010; 126
Maghsoudlou (ref27) 2016; 88
Zhang (ref37) 2022; 63
Wang (ref12) 2021; 225
Tang (ref16) 2014; 8
ref39
Zhou (ref25) 2023; 134
Zhang (ref41) 2021; 21
Dziwiñski (ref5) 2020; 28
Myszkowski (ref26) 2015; 19
Zhang (ref42) 2017; 138
Shao (ref14) 2018; 2018
Chand (ref45) 2018; 432
Myszkowski (ref4) 2016
Huang (ref8) 2021; 80
Li (ref7) 2022; 51
Wen (ref21) 2021; 70
Li (ref29) 2021; 52
Lin (ref1) 2020; 140
Chen (ref17) 2021; 9
Klein (ref44) 2000; 127
Wang (ref15) 2021; 107
He (ref10) 2021; 9
Hrizi (ref13) 2019; 18
Guan (ref9) 2021; 164
Fescioglu-Ünver (ref11) 2011; 60
Wen (ref22) 2021; 68
Cui (ref28) 2021; 107
Gu (ref18) 2022; 189
Cheng (ref24) 2022; 69
Nie (ref40) 2011
Li (ref6) 2016
Almeida (ref32) 2016; 57
Peng (ref35) 2014; 137
Zhong (ref36) 2017; 12
Wen (ref23) 2022; 18
Zhang (ref38) 2019; 241
Myszkowski (ref3) 2015
Zhu (ref30) 2021; 225
Zhang (ref43) 2021; 127
Haupt (ref31) 1988; 11
Niroomand (ref20) 2015; 42
References_xml – start-page: 129
  year: 2015
  ident: ref3
  article-title: A new benchmark dataset for multi-skill resource-constrained project scheduling problem
  doi: 10.15439/2015F273
– ident: ref33
  doi: 10.1007/978-1-4471-0123-9_54
– volume: 80
  start-page: 28975
  year: 2021
  ident: ref8
  article-title: Study of delivery path optimization solution based on improved ant colony model
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-021-11142-1
– volume: 2018
  start-page: 9248318
  year: 2018
  ident: ref14
  article-title: Multiple-try simulated annealing algorithm for global optimization
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2018/9248318
– volume: 9
  start-page: 7723
  year: 2021
  ident: ref17
  article-title: Process synthesis and design problems based on a global particle swarm optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/access.2021.3049175
– ident: ref39
– volume: 18
  start-page: 8988
  year: 2022
  ident: ref23
  article-title: A new cycle-consistent adversarial networks with attention mechanism for surface defect classification with small samples
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2022.3168432
– volume: 164
  start-page: 114021
  year: 2021
  ident: ref9
  article-title: An improved ant colony optimization with an automatic updating mechanism for constraint satisfaction problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114021
– volume: 33
  start-page: 69
  year: 1993
  ident: ref34
  article-title: Genetic programming: On the programming of computers by means of natural selection
  publication-title: Biosystems
– volume: 60
  start-page: 310
  year: 2011
  ident: ref11
  article-title: Self controlling tabu search algorithm for the quadratic assignment problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2010.11.014
– volume: 57
  start-page: 91
  year: 2016
  ident: ref32
  article-title: Priority-based heuristics for the multi-skill resource constrained project scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.017
– volume: 138
  start-page: 210
  year: 2017
  ident: ref42
  article-title: Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.005
– volume: 88
  start-page: 157
  year: 2016
  ident: ref27
  article-title: A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/j.compchemeng.2016.02.018
– volume: 107
  year: 2021
  ident: ref28
  article-title: A variable neighborhood search approach for the resource-constrained multi-project collaborative scheduling problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107480
– volume: 12
  start-page: 54
  year: 2017
  ident: ref36
  article-title: Gene expression programming: A survey
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2017.2708618
– volume: 107
  start-page: 107404
  year: 2021
  ident: ref15
  article-title: A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107404
– volume: 21
  year: 2021
  ident: ref41
  article-title: Data-driven dispatching rules mining and real-time decision-making methodology in intelligent manufacturing shop floor with uncertainty
  publication-title: Sensors
– volume: 42
  start-page: 6586
  year: 2015
  ident: ref20
  article-title: Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.04.040
– start-page: 399
  year: 2016
  ident: ref6
  article-title: An improved self-adaptive genetic algorithm for scheduling steel-making continuous casting production
  doi: 10.2991/978-94-6239-148-2_40
– start-page: 1
  year: 2022
  ident: ref19
  article-title: Multi-manned assembly line balancing with sequence-dependent set-up times using an enhanced migrating birds optimization algorithm
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2022.2067992
– volume: 109
  start-page: 107513
  year: 2021
  ident: ref2
  article-title: A robust MILP and gene expression programming based on heuristic rules for mixed-model multi-manned assembly line balancing
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107513
– volume: 68
  start-page: 12890
  year: 2021
  ident: ref22
  article-title: A new reinforcement learning based learning rate scheduler for convolutional neural network in fault classification
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2020.3044808
– volume: 432
  start-page: 146
  year: 2018
  ident: ref45
  article-title: On the use of genetic programming to evolve priority rules for resource constrained project scheduling problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.12.013
– volume: 225
  start-page: 108823
  year: 2021
  ident: ref12
  article-title: Research on intelligent design method of ship multi-deck compartment layout based on improved taboo search genetic algorithm
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.108823
– volume: 241
  start-page: 118289
  year: 2019
  ident: ref38
  article-title: Mathematical modeling and multi-attribute rule mining for energy efficient job-shop scheduling
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.118289
– start-page: 291
  year: 2011
  ident: ref40
  article-title: Application of gene expression programming on dynamic job shop scheduling problem
  doi: 10.1109/CSCWD.2011.5960088
– volume: 9
  start-page: 21258
  year: 2021
  ident: ref10
  article-title: An adaptive variable neighborhood search ant colony algorithm for vehicle routing problem with soft time windows
  publication-title: IEEE Access
  doi: 10.1109/access.2021.3056067
– volume: 18
  start-page: 1365
  year: 2019
  ident: ref13
  article-title: Improving the wave iterative method by metaheuristic algorithms
  publication-title: Journal of Computational Electronics
  doi: 10.1007/s10825-019-01394-4
– volume: 8
  start-page: 1981
  year: 2014
  ident: ref16
  article-title: A hybrid particle swarm optimization algorithm for large-sized two-sided assembly line balancing problem
  publication-title: ICIC Express Letters
– volume: 70
  start-page: 1
  year: 2021
  ident: ref21
  article-title: Convolutional neural network with automatic learning rate scheduler for fault classification
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2020.304879
– volume: 127
  start-page: 1151
  year: 2021
  ident: ref43
  article-title: An evolutionary algorithm for non-destructive reverse engineering of integrated circuits
  publication-title: Computer Modeling in Engineering & Sciences
  doi: 10.32604/cmes.2021.015462
– volume: 189
  start-page: 116118
  year: 2022
  ident: ref18
  article-title: An improved competitive particle swarm optimization for many-objective optimization problems
  publication-title: Expert Systems with Applications: An International Journal
  doi: 10.1016/j.eswa.2021.116118
– volume: 63
  start-page: 424
  year: 2022
  ident: ref37
  article-title: Effective dispatching rules mining based on near-optimal schedules in intelligent job shop environment
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2022.04.019
– volume: 127
  start-page: 619
  year: 2000
  ident: ref44
  article-title: Bidirectional planning: Improving priority rule-based heuristics for scheduling resource-constrained projects
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(99)00347-1
– volume: 126
  start-page: 212
  year: 2010
  ident: ref46
  article-title: Resource-constrained multi-project scheduling: Priority rule performance revisited
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2010.03.009
– volume: 134
  start-page: 1263
  year: 2023
  ident: ref25
  article-title: Optimization of multi-execution modes and multi-resource-constrained offshore equipment project scheduling based on a hybrid genetic algorithm
  publication-title: Computer Modeling in Engineering & Sciences
  doi: 10.32604/cmes.2022.020744
– volume: 51
  start-page: 961
  year: 2022
  ident: ref7
  article-title: A novel hybrid algorithm for scheduling multipurpose batch plants
  publication-title: Computer Aided Chemical Engineering
  doi: 10.1016/B978-0-323-95879-0.50161-2
– volume: 225
  year: 2021
  ident: ref30
  article-title: A decomposition-based multi-objective genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107099
– volume: 52
  start-page: 5718
  year: 2021
  ident: ref29
  article-title: Multi-skill resource constrained project scheduling using a multi-objective discrete jaya algorithm
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-02608-8
– volume: 19
  start-page: 3599
  year: 2015
  ident: ref26
  article-title: Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem
  publication-title: Soft Computing
  doi: 10.1007/s00500-014-1455-x
– volume: 137
  start-page: 293
  year: 2014
  ident: ref35
  article-title: An improved gene expression programming approach for symbolic regression problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.062
– volume: 140
  year: 2020
  ident: ref1
  article-title: A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112915
– volume: 69
  start-page: 100985
  year: 2022
  ident: ref24
  article-title: Multi-objective Q-learning-based hyper-heuristic with bi-criteria selection for energy-aware mixed shop scheduling
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100985
– volume: 11
  start-page: 3
  year: 1988
  ident: ref31
  publication-title: Operations research spektrum
  doi: 10.1007/BF01721162
– volume: 28
  start-page: 1140
  year: 2020
  ident: ref5
  article-title: A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2019.2957263
– year: 2016
  ident: ref4
  article-title: GRASP applied to multi–skill resource–constrained project scheduling problem
  publication-title: Department of Computational Intelligence
  doi: 10.1007/978-3-319-45243-237
SSID ssj0036389
Score 2.33201
Snippet The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science problem that extends from the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2815
SubjectTerms Algorithms
Constraints
Decoding
Dispatching rules
Gene expression
Operators
Project management
Resource scheduling
Scheduling
Title Rules Mining-Based Gene Expression Programming for the Multi-Skill Resource Constrained Project Scheduling Problem
URI https://www.proquest.com/docview/3200121445
Volume 136
WOSCitedRecordID wos000960786100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: P5Z
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: K7-
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: M7S
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: PIMPY
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYoZWChPMWjVB6YkAxp4sTJhAAVgYAqagEBS-TEjqgobekD8fO5cxweSxeWDIlfytl35_P5-wg5CCOe5zp0mJBpwHiQOiz0pWRNrrQG8-xLQ-fzcCPa7fDxMYptwG1i0ypLnWgUtRpmGCM_9lwDP8a5fzJ6Z8gahaerlkKjQqqIVAbzvHrWasedUhd7aI8NYqobQPeRW5xrgsvi8OPsTSNet-sdwdbMeMC_LdNfxWyszUXtv-NcJSvWz6SnxcRYIwt6sE5qJYcDtUt6g4w7s76e0FvDE8HOwKYpilDUtPVpU2QHNC5yuN6gBAUfl4LPSM3FXdZ97fX7tDwCoMj-aTgnoJG4CPFATy9gzfDSO75C8ppNcn_Ruju_ZJaHgWVeM5iyZqTS1EFUmDQLwzyQ0pMRalHlgm_ue7mQwtE6j6SnHVdxJYWvc5-LLJeukqG3RRYHw4HeJlT4aSDg54Os0PHhkQygLjgpTs4VbFZ2iFPKIMksSDmOu5_AZsWILUGxJSi2pBDbDjn8rjIqEDrmFa6XUkvsYp0kPyLbnf95jyxjW0UEpk4Wp-OZ3idL2ce0Nxk37NxrkMq1YA1MIu3CM_af4Ut8dRs_fQE4tOaW
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH6iQ6VyYSmtylof4FLJ4HGc7YAQqxgxM4paQPQUnNgRiGGAmWH7U_xG3nOSLhduHLgmthPbn977npf3AaxEsSoKGwke6izgKsgEj3yteVMZa9E9-9rJ-Zy0w243Oj2NkzF4ru_C0LHK2iY6Q22uc1ojX_ekSz-mlL95c8tJNYp2V2sJjRIWh_bpAUO24UZrF-d3Vcr9vaOdA16pCvDcawYj3oxNlgnKcZLlUVQEWns6JptgJDJN3ytCHQpri1h7VkijjA59W_gqzAstjY48bPcDjCsEu2jAeNLqJL9r2--R_3cZWmWA3Y1luY-KFEmo9fzKUn5w6a1hKOgY97-e8H9H4Lzb_tR7G5dpmKx4NNsqgT8DY7b_GaZqjQpWmaxZGPy869kh6zgdDL6NPtswSrXN9h6rI8B9lpRn1K6wBEMOz5ATM3cxmf-6vOj1WL3FwUjd1GlqYCNJuYSFXzpHb02X-ukRifN8geM36flXaPSv-_YbsNDPghAnG2kxETsV6wDrIgkThTIYjM2BqOc8zask7PTfvRSDMQeTlGCSEkzSEiZz8ONPlZsyA8lrhRdrlKSVMRqmfyEy__rr7_Dp4KjTTtut7uECTFC75WrTIjRGgzu7BB_z-9HFcLBc4Z7B2VtD6gVIV0C7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rules+Mining-Based+Gene+Expression+Programming+for+the+Multi-Skill+Resource+Constrained+Project+Scheduling+Problem&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Hu%2C+Min&rft.au=Chen%2C+Zhimin&rft.au=Xia%2C+Yuan&rft.au=Zhang%2C+Liping&rft.date=2023&rft.issn=1526-1506&rft.volume=136&rft.issue=3&rft.spage=2815&rft.epage=2840&rft_id=info:doi/10.32604%2Fcmes.2023.027146&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2023_027146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon