Soliton solutions to the non-local Boussinesq equation by multiple exp-function scheme and extended Kudryashov’s approach
In this paper, we study the exact solutions of non-local Boussinesq equation (nlBq) which appears in many scientific fields. We generate dark solitons, singular solitons, a new family of solitons and combo dark–singular soliton-type solutions of nlBq by the extended Kudryashov’s algorithm. Additiona...
Uloženo v:
| Vydáno v: | Pramāṇa Ročník 92; číslo 2; s. 1 - 11 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New Delhi
Springer India
01.02.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0304-4289, 0973-7111 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study the exact solutions of non-local Boussinesq equation (nlBq) which appears in many scientific fields. We generate dark solitons, singular solitons, a new family of solitons and combo dark–singular soliton-type solutions of nlBq by the extended Kudryashov’s algorithm. Additional solutions such as singular periodic solutions also fall out of this integration scheme. Also, one-soliton, two-soliton and three-soliton type solutions are presented using multiple exp-function algorithm. Lastly, Lie symmetry analysis with the new similarity reductions is also examined. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0304-4289 0973-7111 |
| DOI: | 10.1007/s12043-018-1679-x |