3-D SAR Imaging via Perceptual Learning Framework With Adaptive Sparse Prior

Mathematically, 3-D synthetic aperture radar (SAR) imaging is a typical inverse problem, which, by nature, can be solved by applying the theory of sparse signal recovery. However, many reconstruction algorithms are constructed by exploring the inherent sparsity of imaging space, which may cause unsa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 61; s. 1 - 16
Hlavní autoři: Wang, Mou, Wei, Shunjun, Shi, Jun, Zhang, Xiaoling, Guo, Yongxin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mathematically, 3-D synthetic aperture radar (SAR) imaging is a typical inverse problem, which, by nature, can be solved by applying the theory of sparse signal recovery. However, many reconstruction algorithms are constructed by exploring the inherent sparsity of imaging space, which may cause unsatisfactory estimations in weakly sparse cases. To address this issue, we propose a new perceptual learning framework, dubbed as PeFIST-Net, for 3-D SAR imaging, by unfolding the fast iterative shrinkage-thresholding algorithm (FISTA) and exploring the sparse prior offered by the convolutional neural network (CNN). We first introduce a pair of approximated sensing operators in lieu of the conventional sensing matrices, by which the computational efficiency is highly improved. Then, to improve the reconstruction accuracy in inherently nonsparse cases, a mirror-symmetric CNN structure is designed to explore an optimal sparse representation of roughly estimated SAR images. The network weights control the hyperparameters of FISTA by elaborated regularization functions, ensuring a well-behaved updating tendency. Unlike directly using pixelwise loss function in existing unfolded networks, we introduce the perceptual loss by defining loss term based on high-level features extracted from the pretrained VGG-16 model, which brings higher reconstruction quality in terms of visual perception. Finally, the methodology is validated on simulations and measured SAR experiments. The experimental results indicate that the proposed method can obtain well-focused SAR images from highly incomplete echoes while maintaining fast computational speed.
AbstractList Mathematically, 3-D synthetic aperture radar (SAR) imaging is a typical inverse problem, which, by nature, can be solved by applying the theory of sparse signal recovery. However, many reconstruction algorithms are constructed by exploring the inherent sparsity of imaging space, which may cause unsatisfactory estimations in weakly sparse cases. To address this issue, we propose a new perceptual learning framework, dubbed as PeFIST-Net, for 3-D SAR imaging, by unfolding the fast iterative shrinkage-thresholding algorithm (FISTA) and exploring the sparse prior offered by the convolutional neural network (CNN). We first introduce a pair of approximated sensing operators in lieu of the conventional sensing matrices, by which the computational efficiency is highly improved. Then, to improve the reconstruction accuracy in inherently nonsparse cases, a mirror-symmetric CNN structure is designed to explore an optimal sparse representation of roughly estimated SAR images. The network weights control the hyperparameters of FISTA by elaborated regularization functions, ensuring a well-behaved updating tendency. Unlike directly using pixelwise loss function in existing unfolded networks, we introduce the perceptual loss by defining loss term based on high-level features extracted from the pretrained VGG-16 model, which brings higher reconstruction quality in terms of visual perception. Finally, the methodology is validated on simulations and measured SAR experiments. The experimental results indicate that the proposed method can obtain well-focused SAR images from highly incomplete echoes while maintaining fast computational speed.
Author Shi, Jun
Wang, Mou
Wei, Shunjun
Zhang, Xiaoling
Guo, Yongxin
Author_xml – sequence: 1
  givenname: Mou
  orcidid: 0000-0003-3462-3989
  surname: Wang
  fullname: Wang, Mou
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Shunjun
  orcidid: 0000-0001-8091-9540
  surname: Wei
  fullname: Wei, Shunjun
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0001-7676-8380
  surname: Shi
  fullname: Shi, Jun
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Xiaoling
  orcidid: 0000-0003-2343-3055
  surname: Zhang
  fullname: Zhang, Xiaoling
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Yongxin
  orcidid: 0000-0001-8842-5609
  surname: Guo
  fullname: Guo, Yongxin
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Queenstown, Singapore
BookMark eNp9kE1PAjEQhhuDiYD-AG9NPC_2u7tHgoIkm0gA47FpSheLsF3bgvHfuxs4efAwmcmbeWaSZwB6ta8tAPcYjTBGxeN6tlyNCCJ0RAmVQqAr0Mec5xkSjPVAH-FCZCQvyA0YxLhDCDOOZR-UNHuCq_ESzg966-otPDkNFzYY26Sj3sPS6lB3-TTog_324RO-u_QBxxvdJHeycNXoEC1cBOfDLbiu9D7au0sfgrfp83rykpWvs_lkXGaGYpEyzIhBRUU3rGiLGMmN5kZurGHYdDMzUrahYYZjThAWluZMVppwU-VS0iF4ON9tgv862pjUzh9D3b5URErRspSLdguft0zwMQZbqSa4gw4_CiPVSVOdNNVJUxdpLSP_MMYlnZyvU9Bu_w_5CzcIcUc
CitedBy_id crossref_primary_10_1109_MGRS_2024_3494754
crossref_primary_10_1109_TAES_2025_3560943
crossref_primary_10_1109_TGRS_2024_3447900
crossref_primary_10_1109_TGRS_2025_3545675
crossref_primary_10_1109_TGRS_2024_3492070
crossref_primary_10_1109_TITS_2025_3541846
crossref_primary_10_1109_TVT_2024_3398218
crossref_primary_10_1109_JSEN_2025_3569231
crossref_primary_10_1109_JSTARS_2024_3472845
Cites_doi 10.1109/TGRS.2022.3205628
10.1109/MSP.2014.2311271
10.1109/TIM.2019.2918371
10.1109/CVPR.2018.00196
10.1109/TGRS.2010.2053038
10.1109/TMI.2020.2968472
10.1016/j.isprsjprs.2015.10.003
10.5555/3104322.3104374
10.1109/TGRS.2022.3150067
10.1109/TCI.2020.2993170
10.1109/JSTARS.2020.3000760
10.1109/TAES.2017.2675138
10.1109/JSEN.2020.3025053
10.1109/TMI.2018.2827462
10.1109/TGRS.2021.3093307
10.1109/MSP.2016.2573847
10.1109/JSTARS.2020.3014696
10.1109/TGRS.2010.2050487
10.1109/TAP.2018.2869660
10.1109/22.942570
10.1109/TGRS.2022.3164193
10.1109/SiPS47522.2019.9020494
10.1109/TSP.2007.914345
10.1109/TIP.2021.3104168
10.2528/PIER11033105
10.1109/TMM.2021.3087020
10.1109/MGRS.2013.2248301
10.1109/TGRS.2021.3073123
10.1109/jstsp.2022.3207902
10.1109/TGRS.2022.3165541
10.1109/JSTSP.2015.2469646
10.1109/MSP.2020.3016905
10.1137/080716542
10.1109/TIP.2019.2895768
10.1109/MAES.2013.6575407
10.1109/TNNLS.2022.3208252
10.1109/TGRS.2021.3068405
10.1109/TMI.2021.3054167
10.1109/36.868873
10.1109/TGRS.2021.3139914
10.1109/TGRS.2015.2448686
10.1109/TAP.2020.3027898
10.48550/arXiv.1603.08155
10.1073/pnas.0909892106
10.1109/tnnls.2022.3189997
10.1109/TSP.2017.2708040
10.1109/CVPR42600.2020.00328
10.1109/TGRS.2022.3169455
10.1109/TIT.2007.909108
10.1109/TAP.2020.3030974
10.1109/MSP.2012.2211477
10.1561/2200000016
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3237660
DatabaseName CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2023_3237660
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
7UA
8FD
AARMG
ABAZT
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c316t-142c09f3d493d42c75ca5c7dec41c5ca54c7775cc4c5152016e3847fa25cf8773
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935399000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:19:41 EDT 2025
Tue Nov 18 22:21:55 EST 2025
Sat Nov 29 02:50:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c316t-142c09f3d493d42c75ca5c7dec41c5ca54c7775cc4c5152016e3847fa25cf8773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8842-5609
0000-0003-3462-3989
0000-0001-8091-9540
0000-0003-2343-3055
0000-0001-7676-8380
OpenAccessLink https://scholarbank.nus.edu.sg/handle/10635/238745
PQID 2776775356
PQPubID 85465
PageCount 16
ParticipantIDs proquest_journals_2776775356
crossref_primary_10_1109_TGRS_2023_3237660
crossref_citationtrail_10_1109_TGRS_2023_3237660
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationYear 2023
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Curlander (ref1) 1991; 11
ref51
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
Hershey (ref28) 2014
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
Simonyan (ref42) 2014
Sun (ref26); 29
ref24
ref23
ref25
ref20
ref22
ref21
ref27
ref29
References_xml – ident: ref54
  doi: 10.1109/TGRS.2022.3205628
– ident: ref3
  doi: 10.1109/MSP.2014.2311271
– ident: ref6
  doi: 10.1109/TIM.2019.2918371
– volume: 29
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: Deep ADMM-Net for compressive sensing MRI
– ident: ref25
  doi: 10.1109/CVPR.2018.00196
– ident: ref8
  doi: 10.1109/TGRS.2010.2053038
– ident: ref44
  doi: 10.1109/TMI.2020.2968472
– ident: ref10
  doi: 10.1016/j.isprsjprs.2015.10.003
– ident: ref24
  doi: 10.5555/3104322.3104374
– ident: ref37
  doi: 10.1109/TGRS.2022.3150067
– ident: ref18
  doi: 10.1109/TCI.2020.2993170
– ident: ref15
  doi: 10.1109/JSTARS.2020.3000760
– ident: ref17
  doi: 10.1109/TAES.2017.2675138
– ident: ref35
  doi: 10.1109/JSEN.2020.3025053
– ident: ref43
  doi: 10.1109/TMI.2018.2827462
– ident: ref39
  doi: 10.1109/TGRS.2021.3093307
– ident: ref23
  doi: 10.1109/MSP.2016.2573847
– ident: ref33
  doi: 10.1109/JSTARS.2020.3014696
– year: 2014
  ident: ref42
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref12
  doi: 10.1109/TGRS.2010.2050487
– ident: ref47
  doi: 10.1109/TAP.2018.2869660
– ident: ref7
  doi: 10.1109/22.942570
– ident: ref34
  doi: 10.1109/TGRS.2022.3164193
– ident: ref30
  doi: 10.1109/SiPS47522.2019.9020494
– ident: ref22
  doi: 10.1109/TSP.2007.914345
– ident: ref49
  doi: 10.1109/TIP.2021.3104168
– ident: ref14
  doi: 10.2528/PIER11033105
– ident: ref45
  doi: 10.1109/TMM.2021.3087020
– ident: ref2
  doi: 10.1109/MGRS.2013.2248301
– ident: ref36
  doi: 10.1109/TGRS.2021.3073123
– ident: ref55
  doi: 10.1109/jstsp.2022.3207902
– ident: ref40
  doi: 10.1109/TGRS.2022.3165541
– volume: 11
  volume-title: Synthetic Aperture Radar
  year: 1991
  ident: ref1
– ident: ref5
  doi: 10.1109/JSTSP.2015.2469646
– ident: ref31
  doi: 10.1109/MSP.2020.3016905
– ident: ref21
  doi: 10.1137/080716542
– ident: ref46
  doi: 10.1109/TIP.2019.2895768
– ident: ref4
  doi: 10.1109/MAES.2013.6575407
– ident: ref53
  doi: 10.1109/TNNLS.2022.3208252
– ident: ref38
  doi: 10.1109/TGRS.2021.3068405
– ident: ref48
  doi: 10.1109/TMI.2021.3054167
– ident: ref11
  doi: 10.1109/36.868873
– ident: ref32
  doi: 10.1109/TGRS.2021.3139914
– ident: ref13
  doi: 10.1109/TGRS.2015.2448686
– ident: ref50
  doi: 10.1109/TAP.2020.3027898
– ident: ref41
  doi: 10.48550/arXiv.1603.08155
– ident: ref19
  doi: 10.1073/pnas.0909892106
– ident: ref56
  doi: 10.1109/tnnls.2022.3189997
– ident: ref27
  doi: 10.1109/TSP.2017.2708040
– ident: ref29
  doi: 10.1109/CVPR42600.2020.00328
– ident: ref9
  doi: 10.1109/TGRS.2022.3169455
– year: 2014
  ident: ref28
  article-title: Deep unfolding: Model-based inspiration of novel deep architectures
  publication-title: arXiv:1409.2574
– ident: ref16
  doi: 10.1109/TIT.2007.909108
– ident: ref51
  doi: 10.1109/TAP.2020.3030974
– ident: ref52
  doi: 10.1109/MSP.2012.2211477
– ident: ref20
  doi: 10.1561/2200000016
SSID ssj0014517
Score 2.4901435
Snippet Mathematically, 3-D synthetic aperture radar (SAR) imaging is a typical inverse problem, which, by nature, can be solved by applying the theory of sparse...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Computer applications
Echoes
Feature extraction
Image reconstruction
Imaging techniques
Inverse problems
Iterative methods
Learning
Mathematical analysis
Neural networks
Operators (mathematics)
Radar imaging
Regularization
SAR (radar)
Signal reconstruction
Synthetic aperture radar
Visual perception
Title 3-D SAR Imaging via Perceptual Learning Framework With Adaptive Sparse Prior
URI https://www.proquest.com/docview/2776775356
Volume 61
WOSCitedRecordID wos000935399000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FAlI5ICggWgraAycsFz_WXu-xAspDoarqIOVm2eN1G1ScKC_1T_CfmX05DhWIHjjEclbJOPF8np33EPJaIIpExSO_AnzcWFNKXwgI_AzqhjFeQlTplvlDfnqajcfibDD46Wph1le8bbPrazH7r6zGNWS2Kp29Bbs7oriA58h0PCLb8fhPjI_9915-fO59_mEGEK0npcpzV-krqlRk6HwhJy4tCyWDCt3U5UynEeUztHWldzafTOd91VWZhWqihBsvruMMF3LqCoN0orpEzktvobLi7ZaonfVGoHydrjaBIJ1FkF-u2u-rDp-5njDsfdmsdP7s8aRU44Uu-l4KU0LsXJYi9dGsMzJXWjGbZD4qQ6wvh01TditIw96ObIoxb8p63Sp19PE8P1JXPIpVgo8ZTrDdV_u3_a7LQtT2TyAKRaJQJApL4g65G3G0tEw5YBeUYkloq-_NH7JBciTx9sav2FZztnd5rbqMHpGH1uagxwYrj8lAtnvkQa8T5R65rzOBYfGEDBE_FPFDLX4o4odu8EMdfmiHH6rwQx1-qMEP1fh5Sr6dfBi9--TbkRs-xGG69EMWQSCauGYCXxHwBMoEeC2BhaDOGXCOi8AAFWFUHlMZo37TlFECTcZ5_IzstNNWPic0rWQIohaiDhrWBHGVBiKrJOdBJMtKRPskcHeoANuPXo1FuSr-yJd98qb7ysw0Y_nbhw_dbS_s47koItW8Ci30JD24Da0XZFe9Na63Q7KznK_kS3IP1svJYv5Ko-QXdwuHag
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+SAR+Imaging+via+Perceptual+Learning+Framework+With+Adaptive+Sparse+Prior&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Mou&rft.au=Wei%2C+Shunjun&rft.au=Shi%2C+Jun&rft.au=Zhang%2C+Xiaoling&rft.date=2023&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2023.3237660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3237660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon