Evolution equations with fractional Gross Laplacian and Caputo time fractional derivative
In this paper, we consider the evolution equations with fractional Gross Laplacian and generalized Caputo time fractional deravitive in infinite dimensional space of entire functions with growth condition. The convolution between a generalized function related to the Mittag–Leffler function and the...
Uloženo v:
| Vydáno v: | Proceedings of the Indian Academy of Sciences. Mathematical sciences Ročník 129; číslo 5; s. 1 - 13 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New Delhi
Springer India
01.11.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0253-4142, 0973-7685 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we consider the evolution equations with fractional Gross Laplacian and generalized Caputo time fractional deravitive in infinite dimensional space of entire functions with growth condition. The convolution between a generalized function related to the Mittag–Leffler function and the initial condition has been given to demonstrate the explicit solutions. Moreover, we prove that the fundamental solution is related to the inverse stable subordinators and the symmetric
α
-stable distribution. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0253-4142 0973-7685 |
| DOI: | 10.1007/s12044-019-0507-7 |