Evolution equations with fractional Gross Laplacian and Caputo time fractional derivative

In this paper, we consider the evolution equations with fractional Gross Laplacian and generalized Caputo time fractional deravitive in infinite dimensional space of entire functions with growth condition. The convolution between a generalized function related to the Mittag–Leffler function and the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the Indian Academy of Sciences. Mathematical sciences Ročník 129; číslo 5; s. 1 - 13
Hlavní autoři: Ghanmi, Abdeljabbar, Horrigue, Samah
Médium: Journal Article
Jazyk:angličtina
Vydáno: New Delhi Springer India 01.11.2019
Springer Nature B.V
Témata:
ISSN:0253-4142, 0973-7685
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider the evolution equations with fractional Gross Laplacian and generalized Caputo time fractional deravitive in infinite dimensional space of entire functions with growth condition. The convolution between a generalized function related to the Mittag–Leffler function and the initial condition has been given to demonstrate the explicit solutions. Moreover, we prove that the fundamental solution is related to the inverse stable subordinators and the symmetric α -stable distribution.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0253-4142
0973-7685
DOI:10.1007/s12044-019-0507-7