A Cell Model of an Ion-Exchange Membrane. Hydrodynamic Permeability

A cell model formulated in terms of the thermodynamics of nonequilibrium processes has been proposed for an ion-exchange membrane. The membrane is assumed to consist of an ordered set of porous charged spherical particles placed into spherical shells filled with a binary electrolyte solution. The pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloid journal of the Russian Academy of Sciences Jg. 80; H. 6; S. 716 - 727
1. Verfasser: Filippov, A. N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.11.2018
Springer Nature B.V
Schlagworte:
ISSN:1061-933X, 1608-3067
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A cell model formulated in terms of the thermodynamics of nonequilibrium processes has been proposed for an ion-exchange membrane. The membrane is assumed to consist of an ordered set of porous charged spherical particles placed into spherical shells filled with a binary electrolyte solution. The problem of determining all the kinetic coefficients in the Onsager matrix has been set and the general solution of the boundary value problem has been obtained for the cell. The consideration has been realized within the framework of small deviations of system parameters from their equilibrium values upon imposition of external fields. The boundary value problem has been analytically solved for determining the hydrodynamic permeability of the membrane under the Kuwabara boundary condition imposed on the cell surface. It has been found that, when the volume charge disappears, the equation for the permeability is transformed into the equation derived previously for an uncharged membrane. It has been shown that the hydrodynamic permeability (direct kinetic coefficient) of a cation-exchange membrane grows, tending to its limiting value, with increasing electrolyte concentration and decreases with a rise in the exchange capacity of ion exchanger grains.
AbstractList A cell model formulated in terms of the thermodynamics of nonequilibrium processes has been proposed for an ion-exchange membrane. The membrane is assumed to consist of an ordered set of porous charged spherical particles placed into spherical shells filled with a binary electrolyte solution. The problem of determining all the kinetic coefficients in the Onsager matrix has been set and the general solution of the boundary value problem has been obtained for the cell. The consideration has been realized within the framework of small deviations of system parameters from their equilibrium values upon imposition of external fields. The boundary value problem has been analytically solved for determining the hydrodynamic permeability of the membrane under the Kuwabara boundary condition imposed on the cell surface. It has been found that, when the volume charge disappears, the equation for the permeability is transformed into the equation derived previously for an uncharged membrane. It has been shown that the hydrodynamic permeability (direct kinetic coefficient) of a cation-exchange membrane grows, tending to its limiting value, with increasing electrolyte concentration and decreases with a rise in the exchange capacity of ion exchanger grains.
Author Filippov, A. N.
Author_xml – sequence: 1
  givenname: A. N.
  surname: Filippov
  fullname: Filippov, A. N.
  email: filippov.a@gubkin.ru
  organization: National University of Oil and Gas “Gubkin University”
BookMark eNp9kEFLw0AQhRepYK3-AG8LnlN3Ms3u9lhKtYUWBRW8hU0y0ZRkt25SMP_eLRUERU8zzHvfzPDO2cA6S4xdgRgD4OTmEYSEKeILaCGFQHHChiCFjlBINQh9kKODfsbO23YrhJAToYdsPuNzqmu-cQXV3JXcWL5yNlp85G_GvhLfUJN5Y2nMl33hXdFb01Q5fyDfkMmquur6C3Zamrqly686Ys-3i6f5Mlrf363ms3WUI8guAlTayAJRlhmASHQGJlF6SihzMhqFyaQpkxiVTMKMTKGQMKGkmMQ4hQJH7Pq4d-fd-57aLt26vbfhZBqD0jJRsVLBpY6u3Lu29VSmedWZrnK286aqUxDpIbH0V2KBhB_kzleN8f2_THxk2uANefnvn_6GPgG0q3v2
CitedBy_id crossref_primary_10_1134_S2517751619020021
crossref_primary_10_3390_ijms232112778
crossref_primary_10_57634_RCR5074
crossref_primary_10_1134_S2517751623050025
crossref_primary_10_1134_S1061933X21030066
crossref_primary_10_1134_S2517751623050037
crossref_primary_10_1134_S2517751620010072
crossref_primary_10_1134_S2517751619050020
crossref_primary_10_1134_S2517751623060082
crossref_primary_10_1134_S1061933X18060042
crossref_primary_10_31857_S2218117223050036
crossref_primary_10_1016_j_cis_2023_102843
crossref_primary_10_1134_S1061933X19050041
crossref_primary_10_1134_S1061933X2560040X
crossref_primary_10_3390_ijms24010034
crossref_primary_10_1134_S1061933X25600551
crossref_primary_10_1134_S2517751622050043
Cites_doi 10.1016/0001-8686(93)80016-5
10.1134/S1061933X09010049
10.1016/j.colsurfa.2012.11.047
10.1016/j.cis.2008.01.005
10.1002/sapm197150293
10.1134/S1061933X18020060
10.3390/polym10040366
10.1002/cjce.5450850517
ContentType Journal Article
Copyright Pleiades Publishing, Inc. 2018
Copyright Springer Nature B.V. 2018
Copyright_xml – notice: Pleiades Publishing, Inc. 2018
– notice: Copyright Springer Nature B.V. 2018
DBID AAYXX
CITATION
DOI 10.1134/S1061933X18060030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1608-3067
EndPage 727
ExternalDocumentID 10_1134_S1061933X18060030
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
ML-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9N
PF0
PT4
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
XU3
YLTOR
Z5O
Z7V
Z7W
Z7Y
Z85
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PDBOC
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c316t-1378a6d336fb11058b1a5789e36cea830ab6af523765e36ead73e35e5d42391d3
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458412400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-933X
IngestDate Wed Sep 17 23:58:56 EDT 2025
Tue Nov 18 21:06:23 EST 2025
Sat Nov 29 04:49:22 EST 2025
Fri Feb 21 02:37:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-1378a6d336fb11058b1a5789e36cea830ab6af523765e36ead73e35e5d42391d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2178657277
PQPubID 2043575
PageCount 12
ParticipantIDs proquest_journals_2178657277
crossref_citationtrail_10_1134_S1061933X18060030
crossref_primary_10_1134_S1061933X18060030
springer_journals_10_1134_S1061933X18060030
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Colloid journal of the Russian Academy of Sciences
PublicationTitleAbbrev Colloid J
PublicationYear 2018
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Filippov, A. and Philippova, T., Abstracts of Papers, Conf. on Ion Transport in Organic and Inorganic Membranes, Sochi, 2017, p. 129.
Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Leyden: Noordhoff, 1965, 1973.
FilippovA.PetrovaD.FalinaI.KononenkoN.IvanovE.LvovY.VinokurovV.Polymers20181036610.3390/polym100403661:CAS:528:DC%2BC1cXps1ymsr4%3D6415090
Moelwyn-HughesE.A.Physical Chemistry1961LondonPergamon
RoldughinV.I.FilippovA.N.KharitonovaT.V.Colloid J.20188018910.1134/S1061933X180200601:CAS:528:DC%2BC1cXmt1agt7w%3D
StarovV.M.ChuraevN.V.Adv. Colloid Interface Sci.19934314510.1016/0001-8686(93)80016-51:CAS:528:DyaK3sXksFKkurk%3D8318168
ZholkovskiyE.K.ShilovV.N.MasliyahJ.H.BondarenkoM.P.Can. J. Chem. Eng.20078570110.1002/cjce.54508505171:CAS:528:DC%2BD2sXht1ynsr7M
ShilovV.N.ZharkikhN.I.BorkovskayaYu.B.Kolloidn. Zh.1981435401:CAS:528:DyaL3MXksFSjsrk%3D
SaffmanP.G.Stud. Appl. Math.1971509310.1002/sapm197150293
TongK.ZhangY.ChuP.K.Colloids Surf. A20134194610.1016/j.colsurfa.2012.11.0471:CAS:528:DC%2BC3sXptlGrsA%3D%3D
Filippov, A.N. and Shkirskaya, S.A., Membr. Membr. Tekhnol., 2018, vol. 8, p. 254.
PerepelkinP.V.StarovV.M.FilippovA.N.Kolloidn. Zh.1992541391:CAS:528:DyaK38XltlyntLc%3D
VasinS.I.FilippovA.N.StarovV.M.Adv. Colloid Interface Sci.20081398310.1016/j.cis.2008.01.0051:CAS:528:DC%2BD1cXls1Kru7s%3D18328455
VasinS.I.FilippovA.N.Colloid J.2009713110.1134/S1061933X090100491:CAS:528:DC%2BD1MXjs1Wkt7o%3D
BrinkmanH.C.Appl. Sci. Res.1947A1271:CAS:528:DyaH1cXjsl2msg%3D%3D
8015_CR3
8015_CR4
E.K. Zholkovskiy (8015_CR11) 2007; 85
P.G. Saffman (8015_CR6) 1971; 50
V.M. Starov (8015_CR8) 1993; 43
K. Tong (8015_CR15) 2013; 419
P.V. Perepelkin (8015_CR9) 1992; 54
E.A. Moelwyn-Hughes (8015_CR14) 1961
S.I. Vasin (8015_CR10) 2008; 139
S.I. Vasin (8015_CR12) 2009; 71
V.N. Shilov (8015_CR2) 1981; 43
H.C. Brinkman (8015_CR5) 1947; A1
V.I. Roldughin (8015_CR7) 2018; 80
8015_CR1
A. Filippov (8015_CR13) 2018; 10
References_xml – reference: SaffmanP.G.Stud. Appl. Math.1971509310.1002/sapm197150293
– reference: PerepelkinP.V.StarovV.M.FilippovA.N.Kolloidn. Zh.1992541391:CAS:528:DyaK38XltlyntLc%3D
– reference: Filippov, A. and Philippova, T., Abstracts of Papers, Conf. on Ion Transport in Organic and Inorganic Membranes, Sochi, 2017, p. 129.
– reference: StarovV.M.ChuraevN.V.Adv. Colloid Interface Sci.19934314510.1016/0001-8686(93)80016-51:CAS:528:DyaK3sXksFKkurk%3D8318168
– reference: FilippovA.PetrovaD.FalinaI.KononenkoN.IvanovE.LvovY.VinokurovV.Polymers20181036610.3390/polym100403661:CAS:528:DC%2BC1cXps1ymsr4%3D6415090
– reference: RoldughinV.I.FilippovA.N.KharitonovaT.V.Colloid J.20188018910.1134/S1061933X180200601:CAS:528:DC%2BC1cXmt1agt7w%3D
– reference: VasinS.I.FilippovA.N.Colloid J.2009713110.1134/S1061933X090100491:CAS:528:DC%2BD1MXjs1Wkt7o%3D
– reference: TongK.ZhangY.ChuP.K.Colloids Surf. A20134194610.1016/j.colsurfa.2012.11.0471:CAS:528:DC%2BC3sXptlGrsA%3D%3D
– reference: Moelwyn-HughesE.A.Physical Chemistry1961LondonPergamon
– reference: BrinkmanH.C.Appl. Sci. Res.1947A1271:CAS:528:DyaH1cXjsl2msg%3D%3D
– reference: ZholkovskiyE.K.ShilovV.N.MasliyahJ.H.BondarenkoM.P.Can. J. Chem. Eng.20078570110.1002/cjce.54508505171:CAS:528:DC%2BD2sXht1ynsr7M
– reference: Filippov, A.N. and Shkirskaya, S.A., Membr. Membr. Tekhnol., 2018, vol. 8, p. 254.
– reference: ShilovV.N.ZharkikhN.I.BorkovskayaYu.B.Kolloidn. Zh.1981435401:CAS:528:DyaL3MXksFSjsrk%3D
– reference: Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Leyden: Noordhoff, 1965, 1973.
– reference: VasinS.I.FilippovA.N.StarovV.M.Adv. Colloid Interface Sci.20081398310.1016/j.cis.2008.01.0051:CAS:528:DC%2BD1cXls1Kru7s%3D18328455
– volume: 43
  start-page: 145
  year: 1993
  ident: 8015_CR8
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/0001-8686(93)80016-5
– ident: 8015_CR3
– ident: 8015_CR1
– volume: A1
  start-page: 27
  year: 1947
  ident: 8015_CR5
  publication-title: Appl. Sci. Res.
– volume: 71
  start-page: 31
  year: 2009
  ident: 8015_CR12
  publication-title: Colloid J.
  doi: 10.1134/S1061933X09010049
– ident: 8015_CR4
– volume: 54
  start-page: 139
  year: 1992
  ident: 8015_CR9
  publication-title: Kolloidn. Zh.
– volume: 419
  start-page: 46
  year: 2013
  ident: 8015_CR15
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2012.11.047
– volume: 43
  start-page: 540
  year: 1981
  ident: 8015_CR2
  publication-title: Kolloidn. Zh.
– volume-title: Physical Chemistry
  year: 1961
  ident: 8015_CR14
– volume: 139
  start-page: 83
  year: 2008
  ident: 8015_CR10
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2008.01.005
– volume: 50
  start-page: 93
  year: 1971
  ident: 8015_CR6
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm197150293
– volume: 80
  start-page: 189
  year: 2018
  ident: 8015_CR7
  publication-title: Colloid J.
  doi: 10.1134/S1061933X18020060
– volume: 10
  start-page: 366
  year: 2018
  ident: 8015_CR13
  publication-title: Polymers
  doi: 10.3390/polym10040366
– volume: 85
  start-page: 701
  year: 2007
  ident: 8015_CR11
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450850517
SSID ssj0006408
Score 2.2208457
Snippet A cell model formulated in terms of the thermodynamics of nonequilibrium processes has been proposed for an ion-exchange membrane. The membrane is assumed to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 716
SubjectTerms Boundary conditions
Boundary value problems
Cation exchanging
Charged particles
Chemistry
Chemistry and Materials Science
Electrolytes
Ion exchange
Ion exchangers
Kinetic coefficients
Permeability
Polymer Sciences
Spherical shells
Surfaces and Interfaces
Thin Films
Title A Cell Model of an Ion-Exchange Membrane. Hydrodynamic Permeability
URI https://link.springer.com/article/10.1134/S1061933X18060030
https://www.proquest.com/docview/2178657277
Volume 80
WOSCitedRecordID wos000458412400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1608-3067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006408
  issn: 1061-933X
  databaseCode: RSV
  dateStart: 20001101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oVNQHL1NxOiUPPinVdknT9HGUyXxwDKeyt5I0KQi1k3WK-_cmvWzeQV_b01CSk3POx7l8ACdEea7wY2qpFm9ZxJHE8kUkLDP5hPpSUhHLnGzC6_XYcOj3yz7urKp2r1KSuaUueEfIxcCAFw2_hw6zqdHNRVjS3o4Zvoabwf3M_FJiF_1v1LGMeJnK_HaJj85oHmF-SormvuZy819_uQUbZWiJ2oUubMOCSuuwGlSMbnVYfzd8sA4refFnlO1A0EaBShJkeNESNIoRT9HVKLU6r0VbMLpWjxpUp-ocdadSW9yCxR71tVVXxZzv6S7cXXZug65VkitYEXaooaD3GKcSYxoLHQK4TDhc315fYRopzrDNBeWxa4pmXP1MK5yHFXaVK83IQEfiPailo1TtAxJujH3eUhr5eYQLnwlhe1I4hNOYasDXALva5TAqJ48bAowkzBEIJuGXXWvA6eyTp2Lsxm_CzerowvIGZqGGWoy6OjrzGnBWHdX89Y-LHfxJ-hDWdATFiubEJtQm42d1BMvRy-QhGx_nivkGC5fX1w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFD5R1KAPXlAjitoHnzTTjXbd9kgIBiIQImh4W9q1S0zmMIBG_r3tLuA90deta5b29Jzzped8H8AZkY7NvZAassqqBrEEMTwecEMzn1BPCMpDkYhNON2uOxx6vayPe5JXu-dXkomnTnVHyFVfgxcFv4eWa1Jtm8uwQlTA0oT5t_37ufulxEz736hl6OHZVea3U3wMRosM89OlaBJrrrf-9ZfbsJmllqiW2sIOLMm4BMV6ruhWgo135IMlWEuKP4PJLtRrqC6jCGldtAiNQsRi1BrFRuM1bQtGHfmoQHUsL1FzJpTHTVXsUU95dZnyfM_24O66Mag3jUxcwQiwRbUEveMyKjCmIVcpgO1yi6nT60lMA8lcbDJOWWjrohlbPVMG52CJbWkLTRloCbwPhXgUywNA3A6xx6pSIT-HMO65nJuO4BZhNKQK8JXBzFfZDzLmcS2AEfkJAsHE_7JqZTiff_KU0m78NriSb52fncCJr6CWS22VnTlluMi3avH6x8kO_zT6FIrNQaftt1vdmyNYV9mUmzYqVqAwHT_LY1gNXqYPk_FJYqRvMnjauw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD5RvD94QY0oah980kw22nXbI0EIRCUkqOFtadcuMZmDABr597a7gPfE-LqdNUt7enq-9JzvAzgj0rG5F1JDVlnVIJYghscDbmjmE-oJQXkoErEJp9Nx-32vm-mcjvNq9_xKMu1p0CxN8aQyFGGmQUIqPQ1kFBTvW65JtZ8uwhLRdfQarvceZqGYEjPthaOWoc2za81vh_h4MM2zzU8XpMm509z69x9vw2aWcqJa6iM7sCDjIqzVc6W3Imy8IyUswkpSFBqMd6FeQ3UZRUjrpUVoECIWo_YgNhqvabswupVPCmzH8hK1pkJF4lTdHnVVtJcp__d0D-6bjbt6y8hEF4wAW1RL0zsuowJjGnKVGtgut5ja1Z7ENJDMxSbjlIW2Lqax1TPliA6W2Ja20FSClsD7UIgHsTwAxO0Qe6wqFSJ0COOey7npCG4RRkOqgGAJzHzG_SBjJNfCGJGfIBNM_C-zVoLz2SfDlI7jN-Nyvox-tjPHvoJgLrVV1uaU4CJftvnrHwc7_JP1Kax2r5r-TbtzfQTrKsly0_7FMhQmo2d5DMvBy-RxPDpJ_PUNl6rjnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cell+Model+of+an+Ion-Exchange+Membrane.+Hydrodynamic+Permeability&rft.jtitle=Colloid+journal+of+the+Russian+Academy+of+Sciences&rft.au=Filippov%2C+A+N&rft.date=2018-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1061-933X&rft.eissn=1608-3067&rft.volume=80&rft.issue=6&rft.spage=716&rft.epage=727&rft_id=info:doi/10.1134%2FS1061933X18060030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-933X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-933X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-933X&client=summon