Motion cues and saliency based unconstrained video segmentation

The segmentation of moving objects become challenging when the object motion is small, the shape of object changes, and there is global background motion in unconstrained videos. In this paper, we propose a fully automatic, efficient, fast and composite framework to segment the moving object on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 77; H. 6; S. 7429 - 7446
Hauptverfasser: Ullah, Javid, Khan, Ahmad, Jaffar, Muhammad Arfan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2018
Springer Nature B.V
Schlagworte:
ISSN:1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The segmentation of moving objects become challenging when the object motion is small, the shape of object changes, and there is global background motion in unconstrained videos. In this paper, we propose a fully automatic, efficient, fast and composite framework to segment the moving object on the basis of saliency, locality, color and motion cues. First, we propose a new saliency measure to predict the potential salient regions. In the second step, we use the RANSAC homography and optical flow to compensate the background motion and get reliable motion information, called motion cues. Furthermore, the saliency information and motion cues are combined to get the initial segmented object (seeded region). A refinement is performed to remove the unwanted noisy details and expand the seeded region to the whole object. Detailed experimentation is carried out on challenging video benchmarks to evaluate the performance of the proposed method. The results show that the proposed method is faster and performs better than state-of-the-art approaches.
AbstractList The segmentation of moving objects become challenging when the object motion is small, the shape of object changes, and there is global background motion in unconstrained videos. In this paper, we propose a fully automatic, efficient, fast and composite framework to segment the moving object on the basis of saliency, locality, color and motion cues. First, we propose a new saliency measure to predict the potential salient regions. In the second step, we use the RANSAC homography and optical flow to compensate the background motion and get reliable motion information, called motion cues. Furthermore, the saliency information and motion cues are combined to get the initial segmented object (seeded region). A refinement is performed to remove the unwanted noisy details and expand the seeded region to the whole object. Detailed experimentation is carried out on challenging video benchmarks to evaluate the performance of the proposed method. The results show that the proposed method is faster and performs better than state-of-the-art approaches.
Author Khan, Ahmad
Jaffar, Muhammad Arfan
Ullah, Javid
Author_xml – sequence: 1
  givenname: Javid
  surname: Ullah
  fullname: Ullah, Javid
  organization: National University of Computer and Emerging Sciences
– sequence: 2
  givenname: Ahmad
  surname: Khan
  fullname: Khan, Ahmad
  organization: Department of Computer Sciences, COMSATS Institue of Information Technology
– sequence: 3
  givenname: Muhammad Arfan
  surname: Jaffar
  fullname: Jaffar, Muhammad Arfan
  email: arfan.jaffar@ccis.imamu.edu.sa
  organization: National University of Computer and Emerging Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnqOZfO6eRIpfUPGi55DNZsuWNqnJrtB_b5YVBEFPMwPvM_POu0AzH7xD6BLINRCibhIA4RQTUJhLITA_QXMQimGlKMxyz0qClSBwhhYpbQkBKSifo9uX0HfBF3ZwqTC-KZLZdc7bY1Gb5Jpi8Db41EfT-Tx9do0LRXKbvfO9GcFzdNqaXXIX33WJ3h_u31ZPeP36-Ly6W2PLQPYYGGWuUqU0JauorZiRUpRU1rbkjlfAa8Xr0jipWs4ltDxrlYBGNa2lihK2RFfT3kMMH9lrr7dhiD6f1JRAVUouKGSVmlQ2hpSia7XtJp_jBzsNRI9p6SktndPSY1qaZxJ-kYfY7U08_svQiUlZ6zcu_nj6G_oC_bZ8rg
CitedBy_id crossref_primary_10_1007_s11760_019_01419_2
crossref_primary_10_1007_s11042_019_7699_9
crossref_primary_10_3390_app10155143
crossref_primary_10_1007_s11042_023_16593_2
crossref_primary_10_1007_s11042_021_10510_1
Cites_doi 10.1109/ICCV.2007.4408963
10.1109/CVPR.2013.87
10.1109/ICCV.2011.6126418
10.1109/CVPR.2007.383244
10.1142/S012906571100281X
10.1109/CVPR.2001.991039
10.1109/ICCV.1999.791228
10.1007/s11760-012-0347-8
10.1109/CVPR.2005.86
10.5244/C.28.21
10.1145/358669.358692
10.1109/CVPR.1997.609374
10.5244/C.24.56
10.1109/ICCV.2013.273
10.1109/ICCV.2013.438
10.1109/ICCV.2011.6126471
10.1109/CVPR.2012.6247728
10.1145/1531326.1531376
10.1109/CVPR.2007.383008
10.1109/TCSVT.2012.2203199
10.1007/11744047_48
10.1109/CVPR.2010.5539893
10.1109/ICCV.2009.5459293
10.1109/ICCVW.2013.45
10.1016/j.cviu.2011.01.007
10.1002/scj.10166
10.1109/TPAMI.2006.68
10.1109/ICCV.2013.223
10.1109/CVPR.2005.26
10.1007/978-3-642-15555-0_27
10.1007/978-3-642-15555-0_21
10.1109/ICCV.2009.5459276
10.1109/CVPR.2006.80
10.1109/JPROC.2002.801448
10.1145/1180639.1180805
10.1017/CBO9780511811685
10.1109/CVPR.2013.48
10.1109/CVPR.2012.6247719
10.1145/957013.957017
10.1109/TPAMI.2010.143
10.1007/978-3-319-10578-9_48
10.1109/CVPR.2015.7299035
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-017-4655-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 7446
ExternalDocumentID 10_1007_s11042_017_4655_4
GrantInformation_xml – fundername: Higher Education Commission, Pakistan (PK)
  grantid: Indegenious Scholarship
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-1323e9786a8392c93a665826bc84e4914b74b8ae67f4461f4978751d7dfc27203
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427927700046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Tue Nov 04 22:20:34 EST 2025
Sat Nov 29 03:25:49 EST 2025
Tue Nov 18 21:50:53 EST 2025
Fri Feb 21 02:37:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Saliency
Moving object
Homography
Segmentation
Optical flow
Recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-1323e9786a8392c93a665826bc84e4914b74b8ae67f4461f4978751d7dfc27203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2019864521
PQPubID 54626
PageCount 18
ParticipantIDs proquest_journals_2019864521
crossref_citationtrail_10_1007_s11042_017_4655_4
crossref_primary_10_1007_s11042_017_4655_4
springer_journals_10_1007_s11042_017_4655_4
PublicationCentury 2000
PublicationDate 20180300
2018-3-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180300
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bugeau A, Perez P (2007) Detection and segmentation of moving objects in highly dynamic scenes. IEEE Conference on Computer Vision and Pattern Recognition, 1–8
Xu D, Zhang B, Fu H, Lin S (2014) Object-based multiple foreground video co-segmentation. IEEE Conference on Computer Vision and Pattern Recognition
Rahtu E, Kannala J, Salo M, Heikki J (2010) Segmenting salient objects from images and videos. ECCV
Xu C, Corso JJ (2012) Evaluation of supervoxel methods for early video processing. IEEE Conference on Computer Vision and Pattern Recognition
KhanAUllahJJaffarMColor imagesegmentation: A novel spatial fuzzy genetic algorithmSIViP, Springer2014871233124310.1007/s11760-012-0347-8
Bai X, Wang J, Simons D, Sapiro G (2009) Video snapcut: robust video object cutout using localized classifiers. ACM Transactions on Graphics, 28(3)
Li F, Kim T, Humayun A, Tsai D, Rehg J (2013) Video segmentation by tracking many figure-ground segments. IEEE Conference on Computer Vision
ElgammalADuraiswamiRHarwoodDDavisLBackground and foreground modeling using nonparametric kernel density estimation for visual surveillanceProc IEEE20029071151116310.1109/JPROC.2002.801448
Joulin A, Bach F, Ponce J (2012) Multi-class cosegmentation. IEEE Conference on Computer Vision and Pattern Recognition
Banica D, Agape A, Ion A, Sminchisescu C (2013) Video object segmentation by salient segment chain composition. IEEE Conference on Computer Vision Workshop
Faktor A, Irani M (2014) Video segmentation by non-local consensus voting. Proceedings of the British Machine Vision Conference
Fragkiadaki K, Arbelaez P, Felsen P, Malik J (2015) Learning to segment moving objects in videos. IEEE Conference on Computer Vision and Pattern Recognition, 4083–4090
RubioEBaenaRStochastic approximation for background modellingInt J Comput Vis Image Underst2011115673574910.1016/j.cviu.2011.01.007
Ma T, Latecki LL (2012) Maximum weight cliques with mutex constraints for video object segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 670–677
Grundmann M, Kwatra V, Han M, Essa I (2010) Efficient hierarchical graph based video segmentation. IEEE Conference on Computer Vision and Pattern Recognition
HeikkilaMPietikainenMA texture-based method for modeling the background and detecting moving objectsIEEE Trans Pattern Anal Mach Intelligence200628465766210.1109/TPAMI.2006.68
ReddyVSandersonCLovellBImproved foreground detection via block-based classifier cascade with probabilistic decision integrationIEEE Trans Circuits Syst Video Technol2013231839310.1109/TCSVT.2012.2203199
Liu C (2009) Beyond pixels: Exploring new representations and applications for motion analysis. In: Doctoral Thesis. Massachusetts Institute of Technology
Chockalingam P, Pradeep N, Birchfield S (2009) Adaptive fragments-based tracking of non-rigid objects using level sets. In: BMVC, pp 1530–1537
Zhang D, Javed O, Shah M (2013) Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. IEEE Conference on Computer Vision and Pattern Recognition, 1451–1458
Jojic B, Kannan A (2003) Learning appearance and transparency manifolds of occluded objects in layers. IEEE Conference on Computer Vision and Pattern Recognition
Papazoglou A, Ferrari V (2013) Fast object segmentation in unconstrained video. IEEE International Conference on Computer Vision (ICCV), 1777–1784
Liu F, Gleicher M (2009) Learning color and locality cues for moving object detection and segmentation. IEEE Conference on Computer Vision and Pattern Recognition
MatsuyamaTWadaTHabeHTanahashiKBackground subtraction under varying illuminationSyst Comput Japan2006374778810.1002/scj.10166
Wang Y, Ji Q (2005) A dynamic conditional random field model for object segmentation in image sequences. In: Proceedings of IEEE CVPR, pp 264–270
KaewTraKulPongPBowdenRAn improved adaptive background mixture model for real-time tracking with shadow detectionProceedings of the 2nd European Workshop Advanced Video Based Surveillance Systems2001115
Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: Principles and practice of background maintenance. Seventh International Conference on Computer Vision, 255–261
Chiu W, Fritz M (2013) Multi-class video co-segmentation with a generative multi-video model. IEEE Conference on Computer Vision and Pattern Recognition
Galasso F, Nagaraja NS, Cardenas TJ, Brox T, Schiele B (2013) A unified video segmentation benchmark: Annotation, metrics and analysis. IEEE Conference on Computer Vision
I2R (2010) Efficient hierar chicalgraph-based video segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 2141–2148
Ochs T, Brox P (2012) Higher order motion models and spectral clustering. IEEE Conference on Computer Vision and Pattern Recognition
Gelgon M, Bouthemy P (1997) A region-level graph labeling approach to motion-based segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 514–519
BroxTMalikJLarge displacement optical flow: descriptor matching in variational motion estimationIEEE Trans Pattern Anal Mach Intell201033350051310.1109/TPAMI.2010.143
Hartley R, Zisserman A (2004) Multiple View Geometry in Computer Vision. Cambridge University Press second edition
Ochs P, Brox T (2011) Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. IEEE Conference on Computer Vision
Lee Y, Kim J, Grauman K (2011) Key-segments for video object segmentation. IEEE Conference on Computer Vision, 1995–2002
Khan S, Shah M (2001) Object based segmentation of video using color, motion and spatial information. IEEE Conference on Computer Vision and Pattern Recognition, 746–751
Zhang G, Jia J, Xiong W, Wong T, Heng P, Bao H (2007) Moving object extraction with a hand-held camera. IEEE Conference on Computer Vision, 1–8
Brox T, Malik J (2010) Object segmentation by long term analysis of point trajectories. In: European Conference on Computer Vision
Liu C, Yuen J, Russell B, Torralba A (2009) Labelme video: Building a video database with human annotations. IEEE Conference on Computer Vision, 1451–1458
Han M, Xu W, Gong Y (2006) Video object segmentation by motion-based sequential feature clustering. In: ACM Multimedia, pp 773–782
Sheikh Y, Shah M (2005) Bayesian object detection in dynamic scenes. IEEE Conference on Computer Vision and Pattern Recognition, 74–79
Price B, Morse B, Cohen S (2009) Livecut: Learning-based interactive video segmentation by evaluation of multiple propagated cues. IEEE Conference on Computer Vision, 779–786
Sun J, Zhang W, Tang X, Shum HY (2006) Background cut. In: Proceedings of ECCV, pp 628–641
FischlerMBollesRRandom sample consensus: a paradigm for model fitting with application to image analysis and automated cartographyCommun ACM198124638139561815810.1145/358669.358692
Rodriguez DM, Ahmed J, Shah M (2011) Action mach: A spatio-temporal maximum average correlation height filter for action recognition. IEEE Conference on Computer Vision and Pattern Recognition
RubioEBaenaRDominguezEForeground detection in video sequences with probabilistic self-organizing mapsInt J Neural Syst201121322524610.1142/S012906571100281X
Mahamud S (2006) Comparing belief propagation and graph cuts for novelty detection. IEEE Conference on Computer Vision and Pattern Recognition, 1154–1159
Xu X, Huang T (2008) A loopy belief propagation approach for robust background estimation. IEEE Conference on Computer Vision and Pattern Recognition, 1–7
Yin P, Criminisi A, Winn J, Essa I (2007) Tree-based classifiers for bilayer video segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 1–8
Li L, Huang W, Gu I, Tian Q (2003) Foreground object detection from videos containing complex background. ACM International Conference on Multimedia, 2–10
Tsai D, Flagg M, Rehg J (2010) Motion coherent tracking with multi-label mrf optimization. In: BMVC
Oneata D, Revaud J, Verbeek J, Schmid C (2014) Spatio-temporal object detection proposals. In: European Conference on Computer Vision
A Khan (4655_CR23) 2014; 8
4655_CR18
4655_CR16
4655_CR15
4655_CR19
4655_CR53
4655_CR52
4655_CR51
4655_CR14
T Brox (4655_CR3) 2010; 33
4655_CR13
4655_CR12
4655_CR11
4655_CR50
P KaewTraKulPong (4655_CR21) 2001; 1
4655_CR29
4655_CR28
4655_CR27
4655_CR26
4655_CR20
4655_CR25
4655_CR24
4655_CR22
E Rubio (4655_CR41) 2011; 115
T Matsuyama (4655_CR32) 2006; 37
E Rubio (4655_CR42) 2011; 21
M Fischler (4655_CR10) 1981; 24
4655_CR38
4655_CR37
4655_CR1
4655_CR31
4655_CR30
4655_CR2
4655_CR36
4655_CR35
4655_CR34
4655_CR33
V Reddy (4655_CR39) 2013; 23
4655_CR9
4655_CR5
4655_CR4
4655_CR7
4655_CR6
4655_CR49
4655_CR48
4655_CR43
M Heikkila (4655_CR17) 2006; 28
4655_CR40
4655_CR47
4655_CR46
4655_CR45
4655_CR44
A Elgammal (4655_CR8) 2002; 90
References_xml – reference: Ochs T, Brox P (2012) Higher order motion models and spectral clustering. IEEE Conference on Computer Vision and Pattern Recognition
– reference: Liu C (2009) Beyond pixels: Exploring new representations and applications for motion analysis. In: Doctoral Thesis. Massachusetts Institute of Technology
– reference: Liu F, Gleicher M (2009) Learning color and locality cues for moving object detection and segmentation. IEEE Conference on Computer Vision and Pattern Recognition
– reference: Chockalingam P, Pradeep N, Birchfield S (2009) Adaptive fragments-based tracking of non-rigid objects using level sets. In: BMVC, pp 1530–1537
– reference: Fragkiadaki K, Arbelaez P, Felsen P, Malik J (2015) Learning to segment moving objects in videos. IEEE Conference on Computer Vision and Pattern Recognition, 4083–4090
– reference: Bugeau A, Perez P (2007) Detection and segmentation of moving objects in highly dynamic scenes. IEEE Conference on Computer Vision and Pattern Recognition, 1–8
– reference: Khan S, Shah M (2001) Object based segmentation of video using color, motion and spatial information. IEEE Conference on Computer Vision and Pattern Recognition, 746–751
– reference: Chiu W, Fritz M (2013) Multi-class video co-segmentation with a generative multi-video model. IEEE Conference on Computer Vision and Pattern Recognition
– reference: Bai X, Wang J, Simons D, Sapiro G (2009) Video snapcut: robust video object cutout using localized classifiers. ACM Transactions on Graphics, 28(3)
– reference: Mahamud S (2006) Comparing belief propagation and graph cuts for novelty detection. IEEE Conference on Computer Vision and Pattern Recognition, 1154–1159
– reference: KhanAUllahJJaffarMColor imagesegmentation: A novel spatial fuzzy genetic algorithmSIViP, Springer2014871233124310.1007/s11760-012-0347-8
– reference: Wang Y, Ji Q (2005) A dynamic conditional random field model for object segmentation in image sequences. In: Proceedings of IEEE CVPR, pp 264–270
– reference: Han M, Xu W, Gong Y (2006) Video object segmentation by motion-based sequential feature clustering. In: ACM Multimedia, pp 773–782
– reference: Brox T, Malik J (2010) Object segmentation by long term analysis of point trajectories. In: European Conference on Computer Vision
– reference: Price B, Morse B, Cohen S (2009) Livecut: Learning-based interactive video segmentation by evaluation of multiple propagated cues. IEEE Conference on Computer Vision, 779–786
– reference: Liu C, Yuen J, Russell B, Torralba A (2009) Labelme video: Building a video database with human annotations. IEEE Conference on Computer Vision, 1451–1458
– reference: Xu C, Corso JJ (2012) Evaluation of supervoxel methods for early video processing. IEEE Conference on Computer Vision and Pattern Recognition
– reference: Papazoglou A, Ferrari V (2013) Fast object segmentation in unconstrained video. IEEE International Conference on Computer Vision (ICCV), 1777–1784
– reference: ReddyVSandersonCLovellBImproved foreground detection via block-based classifier cascade with probabilistic decision integrationIEEE Trans Circuits Syst Video Technol2013231839310.1109/TCSVT.2012.2203199
– reference: Sheikh Y, Shah M (2005) Bayesian object detection in dynamic scenes. IEEE Conference on Computer Vision and Pattern Recognition, 74–79
– reference: Banica D, Agape A, Ion A, Sminchisescu C (2013) Video object segmentation by salient segment chain composition. IEEE Conference on Computer Vision Workshop
– reference: Lee Y, Kim J, Grauman K (2011) Key-segments for video object segmentation. IEEE Conference on Computer Vision, 1995–2002
– reference: Joulin A, Bach F, Ponce J (2012) Multi-class cosegmentation. IEEE Conference on Computer Vision and Pattern Recognition
– reference: Jojic B, Kannan A (2003) Learning appearance and transparency manifolds of occluded objects in layers. IEEE Conference on Computer Vision and Pattern Recognition
– reference: Oneata D, Revaud J, Verbeek J, Schmid C (2014) Spatio-temporal object detection proposals. In: European Conference on Computer Vision
– reference: RubioEBaenaRStochastic approximation for background modellingInt J Comput Vis Image Underst2011115673574910.1016/j.cviu.2011.01.007
– reference: Xu X, Huang T (2008) A loopy belief propagation approach for robust background estimation. IEEE Conference on Computer Vision and Pattern Recognition, 1–7
– reference: ElgammalADuraiswamiRHarwoodDDavisLBackground and foreground modeling using nonparametric kernel density estimation for visual surveillanceProc IEEE20029071151116310.1109/JPROC.2002.801448
– reference: Li L, Huang W, Gu I, Tian Q (2003) Foreground object detection from videos containing complex background. ACM International Conference on Multimedia, 2–10
– reference: HeikkilaMPietikainenMA texture-based method for modeling the background and detecting moving objectsIEEE Trans Pattern Anal Mach Intelligence200628465766210.1109/TPAMI.2006.68
– reference: RubioEBaenaRDominguezEForeground detection in video sequences with probabilistic self-organizing mapsInt J Neural Syst201121322524610.1142/S012906571100281X
– reference: Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: Principles and practice of background maintenance. Seventh International Conference on Computer Vision, 255–261
– reference: Yin P, Criminisi A, Winn J, Essa I (2007) Tree-based classifiers for bilayer video segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 1–8
– reference: FischlerMBollesRRandom sample consensus: a paradigm for model fitting with application to image analysis and automated cartographyCommun ACM198124638139561815810.1145/358669.358692
– reference: Tsai D, Flagg M, Rehg J (2010) Motion coherent tracking with multi-label mrf optimization. In: BMVC
– reference: Faktor A, Irani M (2014) Video segmentation by non-local consensus voting. Proceedings of the British Machine Vision Conference
– reference: MatsuyamaTWadaTHabeHTanahashiKBackground subtraction under varying illuminationSyst Comput Japan2006374778810.1002/scj.10166
– reference: Hartley R, Zisserman A (2004) Multiple View Geometry in Computer Vision. Cambridge University Press second edition
– reference: Grundmann M, Kwatra V, Han M, Essa I (2010) Efficient hierarchical graph based video segmentation. IEEE Conference on Computer Vision and Pattern Recognition
– reference: Rodriguez DM, Ahmed J, Shah M (2011) Action mach: A spatio-temporal maximum average correlation height filter for action recognition. IEEE Conference on Computer Vision and Pattern Recognition
– reference: Zhang D, Javed O, Shah M (2013) Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. IEEE Conference on Computer Vision and Pattern Recognition, 1451–1458
– reference: Gelgon M, Bouthemy P (1997) A region-level graph labeling approach to motion-based segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 514–519
– reference: KaewTraKulPongPBowdenRAn improved adaptive background mixture model for real-time tracking with shadow detectionProceedings of the 2nd European Workshop Advanced Video Based Surveillance Systems2001115
– reference: Ma T, Latecki LL (2012) Maximum weight cliques with mutex constraints for video object segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 670–677
– reference: Xu D, Zhang B, Fu H, Lin S (2014) Object-based multiple foreground video co-segmentation. IEEE Conference on Computer Vision and Pattern Recognition
– reference: I2R (2010) Efficient hierar chicalgraph-based video segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 2141–2148
– reference: Li F, Kim T, Humayun A, Tsai D, Rehg J (2013) Video segmentation by tracking many figure-ground segments. IEEE Conference on Computer Vision
– reference: Ochs P, Brox T (2011) Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. IEEE Conference on Computer Vision
– reference: Rahtu E, Kannala J, Salo M, Heikki J (2010) Segmenting salient objects from images and videos. ECCV
– reference: BroxTMalikJLarge displacement optical flow: descriptor matching in variational motion estimationIEEE Trans Pattern Anal Mach Intell201033350051310.1109/TPAMI.2010.143
– reference: Galasso F, Nagaraja NS, Cardenas TJ, Brox T, Schiele B (2013) A unified video segmentation benchmark: Annotation, metrics and analysis. IEEE Conference on Computer Vision
– reference: Sun J, Zhang W, Tang X, Shum HY (2006) Background cut. In: Proceedings of ECCV, pp 628–641
– reference: Zhang G, Jia J, Xiong W, Wong T, Heng P, Bao H (2007) Moving object extraction with a hand-held camera. IEEE Conference on Computer Vision, 1–8
– ident: 4655_CR18
– ident: 4655_CR53
  doi: 10.1109/ICCV.2007.4408963
– ident: 4655_CR52
  doi: 10.1109/CVPR.2013.87
– ident: 4655_CR33
  doi: 10.1109/ICCV.2011.6126418
– ident: 4655_CR5
  doi: 10.1109/CVPR.2007.383244
– volume: 21
  start-page: 225
  issue: 3
  year: 2011
  ident: 4655_CR42
  publication-title: Int J Neural Syst
  doi: 10.1142/S012906571100281X
– ident: 4655_CR22
  doi: 10.1109/CVPR.2001.991039
– ident: 4655_CR45
  doi: 10.1109/ICCV.1999.791228
– volume: 8
  start-page: 1233
  issue: 7
  year: 2014
  ident: 4655_CR23
  publication-title: SIViP, Springer
  doi: 10.1007/s11760-012-0347-8
– ident: 4655_CR43
  doi: 10.1109/CVPR.2005.86
– ident: 4655_CR9
  doi: 10.5244/C.28.21
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 4655_CR10
  publication-title: Commun ACM
  doi: 10.1145/358669.358692
– ident: 4655_CR28
– ident: 4655_CR13
  doi: 10.1109/CVPR.1997.609374
– ident: 4655_CR30
– ident: 4655_CR46
  doi: 10.5244/C.24.56
– ident: 4655_CR26
  doi: 10.1109/ICCV.2013.273
– ident: 4655_CR12
  doi: 10.1109/ICCV.2013.438
– ident: 4655_CR24
  doi: 10.1109/ICCV.2011.6126471
– ident: 4655_CR34
  doi: 10.1109/CVPR.2012.6247728
– ident: 4655_CR40
– ident: 4655_CR48
– ident: 4655_CR1
  doi: 10.1145/1531326.1531376
– ident: 4655_CR51
  doi: 10.1109/CVPR.2007.383008
– ident: 4655_CR27
– ident: 4655_CR50
– volume: 23
  start-page: 83
  issue: 1
  year: 2013
  ident: 4655_CR39
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2012.2203199
– ident: 4655_CR44
  doi: 10.1007/11744047_48
– ident: 4655_CR14
  doi: 10.1109/CVPR.2010.5539893
– ident: 4655_CR37
  doi: 10.1109/ICCV.2009.5459293
– ident: 4655_CR2
  doi: 10.1109/ICCVW.2013.45
– ident: 4655_CR49
– volume: 115
  start-page: 735
  issue: 6
  year: 2011
  ident: 4655_CR41
  publication-title: Int J Comput Vis Image Underst
  doi: 10.1016/j.cviu.2011.01.007
– volume: 37
  start-page: 77
  issue: 4
  year: 2006
  ident: 4655_CR32
  publication-title: Syst Comput Japan
  doi: 10.1002/scj.10166
– volume: 28
  start-page: 657
  issue: 4
  year: 2006
  ident: 4655_CR17
  publication-title: IEEE Trans Pattern Anal Mach Intelligence
  doi: 10.1109/TPAMI.2006.68
– ident: 4655_CR36
  doi: 10.1109/ICCV.2013.223
– ident: 4655_CR47
  doi: 10.1109/CVPR.2005.26
– ident: 4655_CR38
  doi: 10.1007/978-3-642-15555-0_27
– ident: 4655_CR4
  doi: 10.1007/978-3-642-15555-0_21
– ident: 4655_CR7
  doi: 10.1109/ICCV.2009.5459276
– ident: 4655_CR31
  doi: 10.1109/CVPR.2006.80
– ident: 4655_CR19
– volume: 90
  start-page: 1151
  issue: 7
  year: 2002
  ident: 4655_CR8
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2002.801448
– ident: 4655_CR15
  doi: 10.1145/1180639.1180805
– ident: 4655_CR16
  doi: 10.1017/CBO9780511811685
– ident: 4655_CR6
  doi: 10.1109/CVPR.2013.48
– ident: 4655_CR20
  doi: 10.1109/CVPR.2012.6247719
– ident: 4655_CR29
– ident: 4655_CR25
  doi: 10.1145/957013.957017
– volume: 33
  start-page: 500
  issue: 3
  year: 2010
  ident: 4655_CR3
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.143
– ident: 4655_CR35
  doi: 10.1007/978-3-319-10578-9_48
– ident: 4655_CR11
  doi: 10.1109/CVPR.2015.7299035
– volume: 1
  start-page: 1
  year: 2001
  ident: 4655_CR21
  publication-title: Proceedings of the 2nd European Workshop Advanced Video Based Surveillance Systems
SSID ssj0016524
Score 2.1612039
Snippet The segmentation of moving objects become challenging when the object motion is small, the shape of object changes, and there is global background motion in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7429
SubjectTerms Automobile driving
Computer Communication Networks
Computer Science
Cues
Data Structures and Information Theory
Drivers licenses
Experimentation
Multimedia Information Systems
Object motion
Optical flow (image analysis)
Salience
Segmentation
Special Purpose and Application-Based Systems
Visual task performance
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS8MwFH7o9KAHp1NxOiUHT0qgadOmPQ0Rh6AODyq7lTRJRdBurtPfb16Xriq4i8fQNg15L3nfy8t7H8CpZ1Evy1RAPZMnlIvMx2TlgAplwaz1J3Rc0QE93YrhMB6Nknt34Fa6a5X1nlht1Hqs8IzcOukMK4lba9OfvFNkjcLoqqPQWIU15vsM9fxG0EUUIQodqW3sUWsZWR3VrFLnGCam4B6NFcQo_2mXGrD5Kz5amZ1B-78D3oYtBzjJxVxDdmDFFB1o12QOxK3tDmx-q0y4C_27it2HKPtDIgtNSovXMUuToNnTxFpDBJbIL2FbmMs3JqV5fnOZTMUePA6uHi6vqeNaoCpgETLS-4GxHmUkETGpJJCRxSZ-lKmYG54wngmexdJEIrcOJMuRmE6ETAudqyqUuw-tYlyYAyAByxJPCal47nMhresehVozEyrPkzJRXfDqmU6VK0SO431NmxLKKJzUCidF4aS8C2eLTybzKhzLXu7VAkndgizTRhpdOK9F2jz-s7PD5Z0dwYZtxPNLaT1ozaYf5hjW1efspZyeVNr4Bc_O4dc
  priority: 102
  providerName: ProQuest
Title Motion cues and saliency based unconstrained video segmentation
URI https://link.springer.com/article/10.1007/s11042-017-4655-4
https://www.proquest.com/docview/2019864521
Volume 77
WOSCitedRecordID wos000427927700046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-c80Ef_JiK0zny4JNSaNq0aZ9ExSHo5pg6py-lTVMRtJN1-vd717Wbigr6EghN0nD5uN9xufsB7JmIenmkbMPUiW8IGVkUrGwbUiGYRXsi9nI6oP6F7HS8wcDvFnHcWfnavXRJ5jf1LNiNUygJ3aqU88sQFaiitvPoNPau-lPXgesUTLaeaaA65KUr87shPiujGcL84hTNdU1r5V-zXIXlAlqyo8leWIM5ndZgpaRtYMUprsHShxyE63DYznl8mMI5sTCNWYbInOIxGSm4mKHeIwhJTBJYo6i9Icv0w3MRs5RuwE3r9PrkzChYFQxlc5e45y1bo-3ohoSNlG-HLqIQy42UJ7TwuYikiLxQuzJBU5EnREEnHR7LOFG503YT5tNhqreA2TzyTSVDJRJLyBCNdNeJY64dZZph6Ks6mKV4A1WkHKf5PgWzZMkkrgDFFZC4AlGH_WmXl0m-jd8aN8o1C4qjlwWIaCjlPMKSOhyUazT7_ONg239qvQOL-CNv8hqtAfPj0avehQX1Nn7MRk2oyNu7JlSPTzvdHtbOpYFl2zyh0rrEsuvcN_N9-w48Nt3O
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT4NAEJ7UR6IerFaN9bkHvWhIWNiycDDGVI1NH_FQjTeEZTEmSmvxEf-Uv9EZCq2a2JsHj2RhwzKz880wO_MB7Jno9fJQ2YapY88QMrSoWNk2pEJnFuOJyM3ogK5bstNxb268yxJ8FLUwdKyysImZoY56iv6RY5DOqZM4os1x_8kg1ijKrhYUGkO1aOr3NwzZ0qPGKcp337LOz7r1CyNnFTCUzR3iXrdsjbGTE5BvoDw7cBCFLSdUrtDC4yKUInQD7cgYQyUeEwWbrPFIRrHKkpY47xTMCIHbgY4KmvVR1sKp5SS6rmkgEvMii5qV6nEqhCFMoI5lhviOg2Pn9kc-NoO58_J_-0BLsJg71OxkuAOWoaSTCpQLsgqW264KLHzpvLgCx-2MvYgpXCALkoilGI9QFSojWI8Yoj05zsSfgVdUq9hjqb57zCu1klW4-pNFrcF00kv0OjCbh56pZKBEbAkZ6NByalHEdU2ZZhB4qgpmIVlf5Y3W6X0f_HGLaFIGH5XBJ2XwRRUORo_0h11GJt28VSiAnxuc1B9LvwqHhQqNh3-dbGPyZLswd9Ftt_xWo9PchHkccIcH8LZg-nnwordhVr0-36eDnWwnMLj9a836BAK1OyY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT4QwEJ74itGDb-P67EEvGiKFQuFgNkbdaFY3e1BjvCCUYkyUXWXV-Nf8dc6wsKiJ3jx45NVQ-rUzH9OZD2DTRK-XR8o2TJ34hpCRRcnKtiEVOrPIJ2IvlwO6PJWtlnd15beH4L3MhaFtleWamC_UcUfRP3Ik6ZwqiaO12U2KbRHtw0a9-2iQghRFWks5jT5EmvrtFelbtndyiGO9ZVmNo_ODY6NQGDCUzV3SYbdsjTzKDclPUL4dumiRLTdSntDC5yKSIvJC7coEaRNPSI5NOjyWcaLyACa2OwyjEjkmEb-2cz2IYLhOIajrmQZaZV5GVPO0PU5JMWQfqHqZIb7axMrR_RabzU1eY_o_f6wZmCocbbbfnxmzMKTTOZguRSxYsabNweSniozzUD_LVY2Yws6yMI1ZhjyFslMZmfuYoRdADjXpauAR5TB2WKZvH4oMrnQBLv6kU4swknZSvQTM5pFvKhkqkVhChjqyXCeOuXaUaYahr2pglqMcqKIAO73vfVCVjiZgBAiMgIARiBpsDx7p9quP_HbzagmGoFiIsqBCQg12SjhVl39sbPn3xjZgHAEVnJ60miswgee9_r68VRjpPT3rNRhTL7277Gk9nxQMbv4aWB81lEQ3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+cues+and+saliency+based+unconstrained+video+segmentation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ullah%2C+Javid&rft.au=Khan%2C+Ahmad&rft.au=Jaffar%2C+Muhammad+Arfan&rft.date=2018-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=77&rft.issue=6&rft.spage=7429&rft.epage=7446&rft_id=info:doi/10.1007%2Fs11042-017-4655-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_017_4655_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon