Atomistic modeling and experimental study of dopant segregation induced morphology transition in ZnO nanoparticles

Elemental dopants, commonly introduced during the synthesis of ZnO nanopowders, tend to segregate to surfaces and grain boundaries. However, the atomistic mechanisms underlying dopant segregation and its impact on surface energetics and particle morphology are not yet fully understood. In this study...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Ceramic Society Ročník 108; číslo 9
Hlavní autoři: Panwar, Vishal, Yadav, Navya, Rowthu, Sriharitha, Tewari, Abhishek
Médium: Journal Article
Jazyk:angličtina
Vydáno: Columbus Wiley Subscription Services, Inc 01.09.2025
Témata:
ISSN:0002-7820, 1551-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Elemental dopants, commonly introduced during the synthesis of ZnO nanopowders, tend to segregate to surfaces and grain boundaries. However, the atomistic mechanisms underlying dopant segregation and its impact on surface energetics and particle morphology are not yet fully understood. In this study, we combine experimental and computational approaches to investigate Al‐ and Mg‐doped ZnO nanopowders synthesized via the coprecipitation method. Electron microscopy analysis reveals that Al doping transforms the flower‐shaped ZnO particles into granular‐shaped particles and reduces the particle size, whereas Mg doping does not alter the morphology and results into bigger particles. Atomistic modeling of the surface segregation of dopants indicates that Al preferentially segregates to the surfaces, whereas Mg remains in the bulk. These findings are supported by lattice strain calculations from X‐ray diffraction. The preferential segregation of Al to the high energy surfaces results in the homogenization of ZnO surface energies, which is primarily responsible for the observed morphological transformation. This study provides fundamental insights into how Al and Mg dopant segregation influences ZnO nanoparticle's characteristics, offering valuable guidance for designing them for applications in sensing, catalysis, and beyond.
AbstractList Elemental dopants, commonly introduced during the synthesis of ZnO nanopowders, tend to segregate to surfaces and grain boundaries. However, the atomistic mechanisms underlying dopant segregation and its impact on surface energetics and particle morphology are not yet fully understood. In this study, we combine experimental and computational approaches to investigate Al‐ and Mg‐doped ZnO nanopowders synthesized via the coprecipitation method. Electron microscopy analysis reveals that Al doping transforms the flower‐shaped ZnO particles into granular‐shaped particles and reduces the particle size, whereas Mg doping does not alter the morphology and results into bigger particles. Atomistic modeling of the surface segregation of dopants indicates that Al preferentially segregates to the surfaces, whereas Mg remains in the bulk. These findings are supported by lattice strain calculations from X‐ray diffraction. The preferential segregation of Al to the high energy surfaces results in the homogenization of ZnO surface energies, which is primarily responsible for the observed morphological transformation. This study provides fundamental insights into how Al and Mg dopant segregation influences ZnO nanoparticle's characteristics, offering valuable guidance for designing them for applications in sensing, catalysis, and beyond.
Author Tewari, Abhishek
Panwar, Vishal
Yadav, Navya
Rowthu, Sriharitha
Author_xml – sequence: 1
  givenname: Vishal
  surname: Panwar
  fullname: Panwar, Vishal
  organization: Indian Institute of Technology
– sequence: 2
  givenname: Navya
  surname: Yadav
  fullname: Yadav, Navya
  organization: Indian Institute of Technology
– sequence: 3
  givenname: Sriharitha
  surname: Rowthu
  fullname: Rowthu, Sriharitha
  organization: Indian Institute of Technology
– sequence: 4
  givenname: Abhishek
  surname: Tewari
  fullname: Tewari, Abhishek
  email: abhishek@mt.iitr.ac.in
  organization: Indian Institute of Technology
BookMark eNp9kD9PwzAQxS1UJNrCwiewxIaUEtuJnYxVVf6pUhdYWCLHvoRUqR3sRJBvj0s6c8vpdL93T_cWaGasAYRuSbwioR4OUsGKxpzxCzQnaUoimhM-Q_M4jmkkMhpfoYX3hzCSPEvmyK17e2x83yh8tBraxtRYGo3hpwPXHMH0ssW-H_SIbYW17aTpsYfaQS37xhrcGD0o0EHtuk_b2nrEvZPGN-ct_jB7bKQJShdcWvDX6LKSrYebc1-i98ft2-Y52u2fXjbrXaQY4TwSrCwzlgtWpcAFCK1plgqdMaAl0yIJvxCeEwo0KUtIK66EVHESZpUKTiq2RHfT3c7ZrwF8Xxzs4EywLBileVBnJAnU_UQpZ713UBVd-Fu6sSBxccq0OGVa_GUaYDLB300L4z9k8brebCfNL0zqfOE
Cites_doi 10.1016/j.jeurceramsoc.2012.02.056
10.1016/0016‐7037(70)90077‐3
10.1103/PhysRevB.48.4335
10.1016/S0039‐6028(01)01588‐6
10.1021/cr400544s
10.1016/j.jallcom.2019.07.011
10.1111/jace.15096
10.1016/j.rser.2017.08.020
10.1016/j.powtec.2024.119444
10.1063/1.4952395
10.1016/j.jeurceramsoc.2021.01.054
10.1016/j.jallcom.2018.12.101
10.1088/0022‐3719/18/6/010
10.1039/D0CP04868B
10.1016/j.jeurceramsoc.2014.04.018
10.1039/C2CE25154J
10.3390/ma15062160
10.1021/jp0564445
10.1524/zkri.1908.45.1.433
10.1039/ft9969200433
10.1016/j.apsusc.2020.147326
10.1002/1099‐0712(199909/10)9:5<205::AID‐AMO383>3.0.CO;2‐8
10.1016/j.matdes.2017.02.020
10.1016/j.ceramint.2021.07.030
10.1016/j.susc.2014.02.014
10.1002/pssa.201200907
10.1103/PhysRev.112.90
10.1039/C3TA11516J
10.1063/1.3478216
10.1021/acs.chemmater.7b01487
10.1016/j.snb.2012.11.088
10.1016/j.ceramint.2017.12.125
10.1155/2011/269692
10.1016/j.cossms.2016.06.004
10.1039/D4NR01296H
10.3390/nano13060978
10.1021/acs.cgd.8b01886
10.1016/j.matchemphys.2020.122720
10.1016/j.jallcom.2016.12.187
10.1016/j.jallcom.2020.156172
10.1016/j.ceramint.2023.07.248
10.1016/j.scriptamat.2022.114740
10.1016/j.snb.2011.05.023
10.1111/jace.20062
10.1039/C3RA47617K
10.1016/j.apsusc.2020.147057
10.1016/j.ceramint.2014.04.057
10.1021/nl202439h
10.1016/j.apsusc.2009.01.032
10.1016/j.jeurceramsoc.2023.09.050
10.1016/j.electacta.2014.05.152
10.1016/j.jallcom.2017.03.150
10.1021/acscatal.8b04873
10.1111/jace.13008
10.1021/acs.jpcc.2c07353
10.1016/j.saa.2014.03.047
10.1021/nn2017606
10.1002/pssr.200802084
10.1039/A606455H
10.1111/jace.13552
ContentType Journal Article
Copyright 2025 The American Ceramic Society.
Copyright_xml – notice: 2025 The American Ceramic Society.
DBID AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/jace.20636
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
EndPage n/a
ExternalDocumentID 10_1111_jace_20636
JACE20636
Genre researchArticle
GrantInformation_xml – fundername: Science and Engineering Research Board (SERB), India
  funderid: CRG/2022/006689
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADMLS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
7QQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c3166-73bb83973f5e67e7dd2857d83e2b3d7482016912e24bbe5f6c7ac042e2c5761f3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001484579800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0002-7820
IngestDate Sat Aug 23 12:43:38 EDT 2025
Sat Nov 29 06:56:27 EST 2025
Thu Jul 03 09:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3166-73bb83973f5e67e7dd2857d83e2b3d7482016912e24bbe5f6c7ac042e2c5761f3
Notes Vishal Panwar and Navya Yadav have equally contributed to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3229016814
PQPubID 41752
PageCount 16
ParticipantIDs proquest_journals_3229016814
crossref_primary_10_1111_jace_20636
wiley_primary_10_1111_jace_20636_JACE20636
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 97
2011; 157
1958; 112
2013; 1
2024; 107
2019; 804
2018; 81
1970; 34
2020; 844
2011; 11
2019; 19
2020; 244
2012; 14
2018; 44
2008; 2
2022; 216
2014; 131
2014; 137
2017; 710
2020; 529
1985; 18
2014; 4
1997; 93
2024; 435
2016; 119
2017; 120
2021; 41
2014; 97
2021; 47
1993; 48
2019; 9
1908; 45
2023; 13
2002; 498
2015; 98
2023; 127
2009; 255
2006; 110
2017; 29
1996; 92
2014; 40
2024; 16
2011; 5
2017; 698
2012; 32
2014; 114
1999; 9
2019; 781
2011; 2011
2014; 625
2022
2023; 49
2021; 536
2013; 177
2013; 210
2016; 20
2022; 15
2024; 44
2020; 22
2017; 100
2014; 34
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Adams BM (e_1_2_6_44_1) 2022
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 120
  start-page: 363
  year: 2017
  end-page: 75
  article-title: The interplay between morphology and photocatalytic activity in ZnO and N‐doped ZnO crystals
  publication-title: Mater Design
– volume: 9
  start-page: 4593
  issue: 5
  year: 2019
  end-page: 4599
  article-title: ZnO As an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide
  publication-title: ACS Catal
– volume: 44
  start-page: 944
  issue: 2
  year: 2024
  end-page: 953
  article-title: Genetic algorithm assisted multiscale modeling of grain boundary segregation of Al in ZnO and its correlation with nominal dopant concentration
  publication-title: J Eur Ceram Soc
– volume: 131
  start-page: 183
  year: 2014
  end-page: 188
  article-title: FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co‐precipitation method
  publication-title: Spectrochim Acta, Part A
– volume: 498
  start-page: 135
  issue: 1–2
  year: 2002
  end-page: 146
  article-title: Surface structure of zinc oxide (101̄0)), using an atomistic, semi‐infinite treatment
  publication-title: Surf Sci
– volume: 112
  start-page: 90
  issue: 1
  year: 1958
  end-page: 103
  article-title: Theory of the dielectric constants of alkali halide crystals
  publication-title: Phys Rev
– volume: 110
  start-page: 7985
  issue: 15
  year: 2006
  end-page: 7991
  article-title: Surface structure of (101̄0) and (112̄0) surfaces of ZnO with density functional theory and atomistic simulation
  publication-title: J Phys Chem B
– volume: 781
  start-page: 929
  year: 2019
  end-page: 935
  article-title: Synthesis of Mn doped ZnO nanopowders by MW‐HTS and its structural, morphological and optical characteristics
  publication-title: J Alloys Compd
– volume: 97
  issue: 7
  year: 2010
  article-title: On the transition‐metal doping efficiency of zinc oxide nanocrystals
  publication-title: Appl Phys Lett
– volume: 34
  start-page: 945
  issue: 9
  year: 1970
  end-page: 956
  article-title: Ionic radii for use in geochemistry
  publication-title: Geochim Cosmochim Acta
– volume: 435
  year: 2024
  article-title: Unveiling the impact of excessive dopant content on morphology and optical defects in carbonation synthesis of nanostructured Al‐doped ZnO
  publication-title: Powder Technol
– volume: 9
  start-page: 205
  issue: 5
  year: 1999
  end-page: 209
  article-title: Characterisation of ZnO‐based varistors prepared from nanometre Precursor powders
  publication-title: Adv Mater Opt Electron
– volume: 93
  start-page: 629
  issue: 4
  year: 1997
  end-page: 637
  article-title: GULP: a computer program for the symmetry‐adapted simulation of solids
  publication-title: J Chem Soc, Faraday Trans
– volume: 216
  year: 2022
  article-title: Study on the mechanism of Y doping effect for improving the properties of ZnO thermoelectric ceramics
  publication-title: Scr Mater
– volume: 47
  start-page: 28714
  issue: 20
  year: 2021
  end-page: 28722
  article-title: Morphological, magnetic and EPR studies of ZnO nanostructures doped and co‐doped with Ni and Sr
  publication-title: Ceram Int
– year: 2022
– volume: 119
  issue: 20
  year: 2016
  article-title: New approaches for calculating absolute surface energies of wurtzite (0001)/(0001¯): a study of ZnO and GaN
  publication-title: J Appl Phys
– volume: 244
  year: 2020
  article-title: Anisotropic growth and strain‐induced tunable optical properties of Ag–ZnO hierarchical nanostructures by a microwave synthesis method
  publication-title: Mater Chem Phys
– volume: 210
  start-page: 1552
  issue: 8
  year: 2013
  end-page: 1556
  article-title: Effects of in or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process
  publication-title: Physica Status Solidi (A) Appl Mat Sci
– volume: 19
  start-page: 2758
  issue: 5
  year: 2019
  end-page: 2764
  article-title: ZnO tetrakaidecahedrons with coexposed {001}, {101}, and {100} facets: shape‐selective synthesis and enhancing photocatalytic performance
  publication-title: Cryst Growth Des
– volume: 97
  start-page: 2596
  issue: 8
  year: 2014
  end-page: 2601
  article-title: Atomistic modeling of effect of Mg on oxygen vacancy diffusion in α‐alumina
  publication-title: J Am Ceram Soc
– volume: 29
  start-page: 5306
  issue: 12
  year: 2017
  end-page: 5320
  article-title: Why are polar surfaces of ZnO stable?
  publication-title: Chem Mater
– volume: 625
  start-page: 1
  year: 2014
  end-page: 6
  article-title: Surface segregation of W doped in ZnO thin films
  publication-title: Surf Sci
– volume: 11
  start-page: 4337
  issue: 10
  year: 2011
  end-page: 4342
  article-title: Al‐doped zinc oxide nanocomposites with enhanced thermoelectric properties
  publication-title: Nano Lett
– volume: 137
  start-page: 108
  year: 2014
  end-page: 113
  article-title: Nickel hydroxide decorated hydrogenated zinc oxide nanorod arrays with enhanced photoelectrochemical performance
  publication-title: Electrochim Acta
– volume: 127
  start-page: 4239
  issue: 8
  year: 2023
  end-page: 4250
  article-title: Designed Y3+ surface segregation increases stability of nanocrystalline zinc aluminate
  publication-title: J Phys Chem C
– volume: 14
  start-page: 4041
  issue: 11
  year: 2012
  end-page: 4048
  article-title: Facet‐controlled self‐assembly of ZnO nanocrystals by non‐hydrolytic aminolysis and their photodegradation activities
  publication-title: CrystEngComm
– volume: 48
  start-page: 4335
  issue: 7
  year: 1993
  end-page: 4351
  article-title: Electronic, optical, and structural properties of some wurtzite crystals
  publication-title: Phys Rev B
– volume: 32
  start-page: 2935
  issue: 11
  year: 2012
  end-page: 2948
  article-title: Atomistic modeling of the effect of codoping on the atomistic structure of interfaces in α‐alumina
  publication-title: J Eur Ceram Soc
– volume: 98
  start-page: 1959
  issue: 6
  year: 2015
  end-page: 1964
  article-title: Toward knowledge‐based grain‐boundary engineering of transparent alumina combining advanced TEM and atomistic modeling
  publication-title: J Am Ceram Soc
– volume: 529
  year: 2020
  article-title: The role of counter‐ions in crystal morphology, surface structure and photocatalytic activity of ZnO crystals grown onto a substrate
  publication-title: Appl Surf Sci
– volume: 844
  year: 2020
  article-title: A review on ZnO‐based piezoelectric nanogenerators: synthesis, characterization techniques, performance enhancement and applications
  publication-title: J Alloys Compd
– volume: 20
  start-page: 278
  issue: 5
  year: 2016
  end-page: 285
  article-title: Grain boundary complexion and transparent polycrystalline alumina from an atomistic simulation perspective
  publication-title: Curr Opin Solid State Mater Sci
– volume: 177
  start-page: 562
  year: 2013
  end-page: 569
  article-title: Morphology‐controlled ZnO spherical nanobelt‐flower arrays and their sensing properties
  publication-title: Sens Actuators, B
– volume: 45
  start-page: 433
  issue: 1–6
  year: 1908
  end-page: 472
  article-title: XXVI. Zur Theorie des Krystallhabitus
  publication-title: Zeitschrift für Kristallographie—Crystal Mater
– volume: 41
  start-page: 4182
  issue: 7
  year: 2021
  end-page: 4188
  article-title: Multiple doped ZnO with enhanced thermoelectric properties
  publication-title: J Eur Ceram Soc
– volume: 804
  start-page: 503
  year: 2019
  end-page: 510
  article-title: Controllable synthesis of ZnO with different morphologies and their morphology‐dependent infrared emissivity in high temperature conditions
  publication-title: J Alloys Compd
– volume: 81
  start-page: 536
  year: 2018
  end-page: 551
  article-title: A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications
  publication-title: Renewable Sustainable Energy Rev
– volume: 2
  start-page: 197
  issue: 5
  year: 2008
  end-page: 199
  article-title: Surface morphology and growth mechanism of catalyst‐free ZnO and mgx Zn1–x O nanorods
  publication-title: Physica Status Solidi (RRL)—Rapid Res Let
– volume: 710
  start-page: 102
  year: 2017
  end-page: 113
  article-title: Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity
  publication-title: J Alloys Compd
– volume: 22
  start-page: 27987
  issue: 48
  year: 2020
  end-page: 27998
  article-title: Segregation tendencies of transition‐metal dopants in wide band gap semiconductor nanowires
  publication-title: Phys Chem Chem Phys
– volume: 157
  start-page: 565
  issue: 2
  year: 2011
  end-page: 574
  article-title: High‐sensitivity NO2 gas sensors based on flower‐like and tube‐like ZnO nanomaterials
  publication-title: Sens Actuators, B
– volume: 49
  start-page: 33513
  issue: 21
  year: 2023
  end-page: 33524
  article-title: Effect of lithium codoping on the structural, morphological and photocatalytic properties of Nd‐doped ZnO
  publication-title: Ceram Int
– volume: 255
  start-page: 5869
  issue: 11
  year: 2009
  end-page: 5875
  article-title: Dopant induced morphology changes in ZnO nanocrystals
  publication-title: Appl Surf Sci
– volume: 44
  start-page: 5193
  issue: 5
  year: 2018
  end-page: 5201
  article-title: Flexural strength evaluations and fractography analyses of slip cast mesoporous submicron alumina
  publication-title: Ceram Int
– volume: 107
  start-page: 8269
  issue: 12
  year: 2024
  end-page: 8280
  article-title: Precursor impurity‐mediated effect in the photocatalytic activity of precipitated zinc oxide
  publication-title: J Am Ceram Soc
– volume: 13
  start-page: 978
  issue: 6
  year: 2023
  article-title: Back to the basics: probing the role of surfaces in the experimentally observed morphological evolution of ZnO
  publication-title: Nanomaterials
– volume: 100
  start-page: 5629
  issue: 12
  year: 2017
  end-page: 5637
  article-title: Effect of the morphology of solution‐grown ZnO nanostructures on gas‐sensing properties
  publication-title: J Am Ceram Soc
– volume: 16
  start-page: 11232
  issue: 23
  year: 2024
  end-page: 11249
  article-title: Composition‐dependent morphologies of CeO2 nanoparticles in the presence of Co‐adsorbed H2O and CO2: a density functional theory study
  publication-title: Nanoscale
– volume: 698
  start-page: 555
  year: 2017
  end-page: 564
  article-title: Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods
  publication-title: J Alloys Compd
– volume: 114
  start-page: 7610
  issue: 15
  year: 2014
  end-page: 7630
  article-title: Mechanisms of nucleation and growth of nanoparticles in solution
  publication-title: Chem Rev
– volume: 1
  issue: 37
  year: 2013
  article-title: Mechanism enhancing gas sensing and first‐principle calculations of Al‐doped ZnO nanostructures
  publication-title: J Mater Chem A
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  article-title: Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method
  publication-title: J Nanomater
– volume: 18
  start-page: 1149
  issue: 6
  year: 1985
  end-page: 1161
  article-title: Potential models for ionic oxides
  publication-title: J Phys C: Solid State Phys
– volume: 40
  start-page: 12171
  issue: 8
  year: 2014
  end-page: 12177
  article-title: Synthesis and optical characterization of aluminum doped ZnO nanoparticles
  publication-title: Ceram Int
– volume: 4
  issue: 24
  year: 2014
  article-title: Effects of morphology on the thermoelectric properties of Al‐doped ZnO
  publication-title: RSC Adv
– volume: 15
  start-page: 2160
  issue: 6
  year: 2022
  article-title: Exploring the journey of zinc oxide nanoparticles (ZnO‐NPs) toward biomedical applications
  publication-title: Materials
– volume: 536
  year: 2021
  article-title: High‐index crystal plane of ZnO nanopyramidal structures: stabilization, growth, and improved photocatalytic performance
  publication-title: Appl Surf Sci
– volume: 92
  start-page: 433
  issue: 3
  year: 1996
  article-title: Atomistic simulation of dislocations, surfaces and interfaces in MgO
  publication-title: Faraday Trans
– volume: 5
  start-page: 5987
  issue: 7
  year: 2011
  end-page: 5994
  article-title: Stabilization principles for polar surfaces of ZnO
  publication-title: ACS Nano
– volume: 34
  start-page: 3037
  issue: 12
  year: 2014
  end-page: 3045
  article-title: Segregation of anion (Cl−) impurities at transparent polycrystalline α‐alumina interfaces
  publication-title: J Eur Ceram Soc
– ident: e_1_2_6_57_1
  doi: 10.1016/j.jeurceramsoc.2012.02.056
– ident: e_1_2_6_48_1
  doi: 10.1016/0016‐7037(70)90077‐3
– ident: e_1_2_6_35_1
  doi: 10.1103/PhysRevB.48.4335
– ident: e_1_2_6_27_1
  doi: 10.1016/S0039‐6028(01)01588‐6
– ident: e_1_2_6_59_1
  doi: 10.1021/cr400544s
– ident: e_1_2_6_62_1
  doi: 10.1016/j.jallcom.2019.07.011
– ident: e_1_2_6_4_1
  doi: 10.1111/jace.15096
– ident: e_1_2_6_7_1
  doi: 10.1016/j.rser.2017.08.020
– ident: e_1_2_6_23_1
  doi: 10.1016/j.powtec.2024.119444
– ident: e_1_2_6_53_1
  doi: 10.1063/1.4952395
– ident: e_1_2_6_55_1
  doi: 10.1016/j.jeurceramsoc.2021.01.054
– ident: e_1_2_6_19_1
  doi: 10.1016/j.jallcom.2018.12.101
– ident: e_1_2_6_36_1
  doi: 10.1088/0022‐3719/18/6/010
– ident: e_1_2_6_24_1
  doi: 10.1039/D0CP04868B
– ident: e_1_2_6_39_1
  doi: 10.1016/j.jeurceramsoc.2014.04.018
– ident: e_1_2_6_61_1
  doi: 10.1039/C2CE25154J
– ident: e_1_2_6_11_1
  doi: 10.3390/ma15062160
– ident: e_1_2_6_28_1
  doi: 10.1021/jp0564445
– ident: e_1_2_6_47_1
  doi: 10.1524/zkri.1908.45.1.433
– ident: e_1_2_6_42_1
  doi: 10.1039/ft9969200433
– ident: e_1_2_6_34_1
  doi: 10.1016/j.apsusc.2020.147326
– ident: e_1_2_6_2_1
  doi: 10.1002/1099‐0712(199909/10)9:5<205::AID‐AMO383>3.0.CO;2‐8
– ident: e_1_2_6_33_1
  doi: 10.1016/j.matdes.2017.02.020
– ident: e_1_2_6_16_1
  doi: 10.1016/j.ceramint.2021.07.030
– ident: e_1_2_6_26_1
  doi: 10.1016/j.susc.2014.02.014
– ident: e_1_2_6_18_1
  doi: 10.1002/pssa.201200907
– ident: e_1_2_6_41_1
  doi: 10.1103/PhysRev.112.90
– ident: e_1_2_6_50_1
  doi: 10.1039/C3TA11516J
– ident: e_1_2_6_25_1
  doi: 10.1063/1.3478216
– ident: e_1_2_6_30_1
  doi: 10.1021/acs.chemmater.7b01487
– ident: e_1_2_6_12_1
  doi: 10.1016/j.snb.2012.11.088
– ident: e_1_2_6_52_1
  doi: 10.1016/j.ceramint.2017.12.125
– ident: e_1_2_6_20_1
  doi: 10.1155/2011/269692
– ident: e_1_2_6_58_1
  doi: 10.1016/j.cossms.2016.06.004
– ident: e_1_2_6_43_1
  doi: 10.1039/D4NR01296H
– ident: e_1_2_6_31_1
  doi: 10.3390/nano13060978
– ident: e_1_2_6_60_1
  doi: 10.1021/acs.cgd.8b01886
– ident: e_1_2_6_14_1
  doi: 10.1016/j.matchemphys.2020.122720
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jallcom.2016.12.187
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jallcom.2020.156172
– ident: e_1_2_6_13_1
  doi: 10.1016/j.ceramint.2023.07.248
– ident: e_1_2_6_56_1
  doi: 10.1016/j.scriptamat.2022.114740
– ident: e_1_2_6_51_1
  doi: 10.1016/j.snb.2011.05.023
– ident: e_1_2_6_8_1
  doi: 10.1111/jace.20062
– ident: e_1_2_6_10_1
  doi: 10.1039/C3RA47617K
– ident: e_1_2_6_32_1
  doi: 10.1016/j.apsusc.2020.147057
– ident: e_1_2_6_49_1
  doi: 10.1016/j.ceramint.2014.04.057
– ident: e_1_2_6_6_1
  doi: 10.1021/nl202439h
– ident: e_1_2_6_22_1
  doi: 10.1016/j.apsusc.2009.01.032
– ident: e_1_2_6_37_1
  doi: 10.1016/j.jeurceramsoc.2023.09.050
– volume-title: Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.16 User's Manual
  year: 2022
  ident: e_1_2_6_44_1
– ident: e_1_2_6_9_1
  doi: 10.1016/j.electacta.2014.05.152
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jallcom.2017.03.150
– ident: e_1_2_6_3_1
  doi: 10.1021/acscatal.8b04873
– ident: e_1_2_6_40_1
  doi: 10.1111/jace.13008
– ident: e_1_2_6_46_1
  doi: 10.1021/acs.jpcc.2c07353
– ident: e_1_2_6_17_1
  doi: 10.1016/j.saa.2014.03.047
– ident: e_1_2_6_29_1
  doi: 10.1021/nn2017606
– ident: e_1_2_6_54_1
  doi: 10.1002/pssr.200802084
– ident: e_1_2_6_45_1
  doi: 10.1039/A606455H
– ident: e_1_2_6_38_1
  doi: 10.1111/jace.13552
SSID ssj0001984
Score 2.4904327
Snippet Elemental dopants, commonly introduced during the synthesis of ZnO nanopowders, tend to segregate to surfaces and grain boundaries. However, the atomistic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Aluminum
Al‐doping
coprecipitation
Dopants
Doping
Grain boundaries
Lattice strain
Magnesium
Mg‐doping
Modelling
Morphology
Nanoparticles
surface energy
Zinc oxide
Title Atomistic modeling and experimental study of dopant segregation induced morphology transition in ZnO nanoparticles
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.20636
https://www.proquest.com/docview/3229016814
Volume 108
WOSCitedRecordID wos001484579800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1551-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001984
  issn: 0002-7820
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH6Zmwc9-C1OpwT0JBTWpklb8DKmQ2RMETeGl9I2iexgJ2vn7_dN-mG9COKtpUkoeT_yPOHNE4ArHrgcU4BvuYprgtJnVuRS1_IVl45iLOqbU2mzsTeZ-PN58NSCm-osTKEPUW-46cgw-VoHeBRnzSCPEi1zySnfgI6Djuu2oXP7PJqO60yMhNqt4K_WhSvlSU0lT93754L0jTKbWNUsNqPd__3mHuyUIJMMCq_Yh5ZMD2C7IT2Ib7NFti7aZIewGuTLdyPZTMzVONiERKkgTf1_YpRoyVIRgUQ7zUkmkau_GcsSZPboIwJ7o93MTj3J9Sq4KL-S1_SRpFGKPctKvCOYju5ehvdWeRuDlVCbc8ujcYxoyqOKSe5JTwjHZ57wqXRiKjxXQwke2I503DiWTPHEixJMCdJJkNPYih5DO12m8gQIlUhUJLoBUwECwsD3A8kS2hcMpwkxRRcuK5OEH4XoRliTFZzP0MxnF3qVtcIy8LKQav16m_s2DnJt7PLLCOHDYHhnnk7_0vgMthx9C7CpNOtBO1-t5TlsJp_5IltdlE74BZhz36o
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJqgP3sXp1IA-CYW1adL0ccyNqXWKbGP4UnpJZQ92snb-fk-yrtYXQXxraRJKziXfF5LvAFxz1-aYAoRhJ1wRlBYzApvahki4tBLGgpa-lTb2nMFATCbuc3E2R92FWepDlBtuKjJ0vlYBrjakq1EeRErnklO-DnUb_YjVoH770ht5ZSpGRm2v8K8Shiv0SfVRnrL3zxXpG2ZWwapebXq7__zPPdgpYCZpL_1iH9ZkegDbFfFBfBtPs8WyTXYI83Y-e9eizUQXx8EmJEhjUq0AQLQWLZklJEaqneYkk8jW37RtCXJ79JIYe6Pl9F49ydU6OC2-ktf0iaRBij2Ls3hHMOp1h52-UdRjMCJqcm44NAwRTzk0YZI70oljSzAnFlRaIY0dW4EJ7pqWtOwwlCzhkRNEmBSkFSGrMRN6DLV0lsoTIFQiVZHoCCxxERK6QriSRbQVM5wmRBUNuFrZxP9Yym74JV3B-fT1fDaguTKXX4Re5lOlYG9yYeIgN9owv4zg37c7Xf10-pfGl7DZHz56vnc3eDiDLUvVBNbnzppQy-cLeQ4b0Wc-zeYXhUd-AQGr45o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwGA26ieiDd3E6NaBPQmFtLm0fxy54GXOIG8OX0jaJ7MFurJ2_3y9pV-uLIL61NAkl3yXnhC8nCN1yn3JIAZ5FFdcEpcWskBJqeYpLRzEWtsyptMnAHQ696dQfFbU5-ixMrg9RbrjpyDD5Wge4XAhVjfIw1jqXnPBNVKfM5xCX9e5LfzwoUzEwarrGv1oYrtAnNaU8Ze-fK9I3zKyCVbPa9Pf_-Z8HaK-Ambid-8Uh2pDJEdqtiA_C22SWrvI26TFatrP5hxFtxuZyHGiCw0Tg6g0A2GjR4rnCAqh2kuFUAlt_N7bFwO3BSwT0BsuZvXqc6XVwVnzFb8kzTsIEeha1eCdo3O-9du6t4j4GKyY255ZLogjwlEsUk9yVrhCOx1zhEelERLhUgwnu2450aBRJpnjshjEkBenEwGpsRU5RLZkn8gxhIoGqSHAEpnyAhL7n-ZLFpCUYTBOgiga6WdskWOSyG0FJV2A-AzOfDdRcmysoQi8NiFawt7lnwyB3xjC_jBA8tjs983T-l8bXaHvU7QeDh-HTBdpx9JXApuysiWrZciUv0Vb8mc3S5VXhkF-2cOMV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomistic+modeling+and+experimental+study+of+dopant+segregation+induced+morphology+transition+in+ZnO+nanoparticles&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Panwar%2C+Vishal&rft.au=Yadav%2C+Navya&rft.au=Rowthu%2C+Sriharitha&rft.au=Tewari%2C+Abhishek&rft.date=2025-09-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=108&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fjace.20636&rft.externalDBID=10.1111%252Fjace.20636&rft.externalDocID=JACE20636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon