Ripser: efficient computation of Vietoris–Rips persistence barcodes

We present an algorithm for the computation of Vietoris–Rips persistence barcodes and describe its implementation in the software Ripser. The method relies on implicit representations of the coboundary operator and the filtration order of the simplices, avoiding the explicit construction and storage...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied and computational topology Vol. 5; no. 3; pp. 391 - 423
Main Author: Bauer, Ulrich
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.09.2021
Subjects:
ISSN:2367-1726, 2367-1734
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present an algorithm for the computation of Vietoris–Rips persistence barcodes and describe its implementation in the software Ripser. The method relies on implicit representations of the coboundary operator and the filtration order of the simplices, avoiding the explicit construction and storage of the filtration coboundary matrix. Moreover, it makes use of apparent pairs, a simple but powerful method for constructing a discrete gradient field from a total order on the simplices of a simplicial complex, which is also of independent interest. Our implementation shows substantial improvements over previous software both in time and memory usage.
AbstractList We present an algorithm for the computation of Vietoris–Rips persistence barcodes and describe its implementation in the software Ripser. The method relies on implicit representations of the coboundary operator and the filtration order of the simplices, avoiding the explicit construction and storage of the filtration coboundary matrix. Moreover, it makes use of apparent pairs, a simple but powerful method for constructing a discrete gradient field from a total order on the simplices of a simplicial complex, which is also of independent interest. Our implementation shows substantial improvements over previous software both in time and memory usage.
Author Bauer, Ulrich
Author_xml – sequence: 1
  givenname: Ulrich
  surname: Bauer
  fullname: Bauer, Ulrich
  email: mail@ulrich-bauer.org
  organization: Technical University of Munich (TUM)
BookMark eNp9kM1KAzEQgINUsNa-gKd9gegk2WR3vUmpP1AQRL2GNDuRSJssyfbgzXfwDX0St6548NDT_DDfDPOdkkmIAQk5Z3DBAKrLXLJS1RQ4ozDUjMojMuVCVZRVopz85VydkHnOfg2CcSWUYlOyfPRdxnRVoHPeegx9YeO22_Wm9zEU0RUvHvuYfP76-NzPFh2m7HOPwWKxNsnGFvMZOXZmk3H-G2fk-Wb5tLijq4fb-8X1ilrBlKSGS4lQlrC2KFFKC2ANVK0YGo3gTKnKOQWNaQyIFpQDrFtpG8VqZ7k1Ykb4uNemmHNCp7vktya9awZ670KPLvTgQv-40HKA6n-Q9eN7fTJ-cxgVI5qHO-EVk36LuxSGFw9R3xVIduE
CitedBy_id crossref_primary_10_1063_5_0177180
crossref_primary_10_1038_s41467_025_61108_2
crossref_primary_10_7554_eLife_89851_3
crossref_primary_10_1177_14759217231196217
crossref_primary_10_1038_s41746_025_01635_w
crossref_primary_10_1017_apr_2024_66
crossref_primary_10_3390_app12136799
crossref_primary_10_1109_LSP_2025_3561095
crossref_primary_10_1007_s41468_023_00117_w
crossref_primary_10_1007_s41468_024_00194_5
crossref_primary_10_1080_23746149_2023_2202331
crossref_primary_10_1007_s41468_024_00179_4
crossref_primary_10_1016_j_gmod_2025_101261
crossref_primary_10_1137_22M1481440
crossref_primary_10_1002_cpe_7732
crossref_primary_10_1016_j_amc_2025_129302
crossref_primary_10_1007_s13160_024_00681_3
crossref_primary_10_1063_5_0265896
crossref_primary_10_1038_s41467_024_49703_1
crossref_primary_10_3390_a15100371
crossref_primary_10_1007_s11227_024_06374_5
crossref_primary_10_47743_jpd_2023_30_1_930
crossref_primary_10_1007_s10910_021_01309_4
crossref_primary_10_1103_PhysRevE_111_045306
crossref_primary_10_1371_journal_pcbi_1011617
crossref_primary_10_1063_5_0137223
crossref_primary_10_1090_tran_9514
crossref_primary_10_1007_s00454_023_00613_x
crossref_primary_10_1093_rasti_rzaf006
crossref_primary_10_3390_rs16122116
crossref_primary_10_1016_j_it_2023_05_003
crossref_primary_10_1145_3682112_3682114
crossref_primary_10_1371_journal_pone_0318108
crossref_primary_10_1007_s10208_025_09695_w
crossref_primary_10_1021_acs_jpclett_5c01831
crossref_primary_10_1007_s41468_023_00138_5
crossref_primary_10_1007_s41468_023_00131_y
crossref_primary_10_1007_s41468_022_00110_9
crossref_primary_10_1038_s41598_024_63971_3
crossref_primary_10_1007_s41468_021_00083_1
crossref_primary_10_1007_s00454_023_00624_8
crossref_primary_10_1016_j_apsusc_2024_160640
crossref_primary_10_1016_j_matcom_2024_04_013
crossref_primary_10_1109_TVCG_2021_3114870
crossref_primary_10_20965_ijat_2024_p0632
crossref_primary_10_1016_j_jbi_2022_104082
crossref_primary_10_1029_2023WR035990
crossref_primary_10_1038_s41586_021_04268_7
crossref_primary_10_1063_5_0293673
crossref_primary_10_3390_e26080701
crossref_primary_10_1080_10586458_2025_2474034
crossref_primary_10_3389_fnhum_2024_1431153
crossref_primary_10_1007_s00029_025_01043_8
crossref_primary_10_1007_s40062_024_00340_x
crossref_primary_10_1016_j_jpdc_2025_105036
crossref_primary_10_1016_j_disc_2023_113516
crossref_primary_10_1007_s41468_024_00192_7
crossref_primary_10_1016_j_physd_2025_134595
crossref_primary_10_1016_j_comgeo_2024_102089
crossref_primary_10_1109_TKDE_2022_3147070
crossref_primary_10_3934_fods_2025014
crossref_primary_10_3934_dcdss_2024144
crossref_primary_10_3934_fods_2025013
crossref_primary_10_1016_j_jocs_2024_102290
crossref_primary_10_3390_e23091211
crossref_primary_10_1016_j_mbs_2024_109158
crossref_primary_10_7554_eLife_89851
crossref_primary_10_1080_10586458_2024_2337910
crossref_primary_10_1007_s41468_022_00093_7
crossref_primary_10_1007_s41468_025_00214_y
crossref_primary_10_3390_e24101450
crossref_primary_10_3389_fams_2023_1179301
crossref_primary_10_3934_fods_2021024
crossref_primary_10_3390_app14052197
crossref_primary_10_1038_s41598_023_46535_9
crossref_primary_10_1093_tse_tdaf015
crossref_primary_10_1038_s41598_023_37842_2
crossref_primary_10_3389_fnhum_2024_1452197
crossref_primary_10_1371_journal_pone_0276419
crossref_primary_10_1016_j_comgeo_2022_101921
crossref_primary_10_1016_j_eswa_2023_120765
crossref_primary_10_7566_JPSJ_91_091013
crossref_primary_10_1140_epjds_s13688_023_00379_5
crossref_primary_10_1016_j_ijgfs_2024_101088
crossref_primary_10_1093_bib_bbae176
crossref_primary_10_1103_PhysRevResearch_6_023107
crossref_primary_10_1007_s00009_025_02945_9
crossref_primary_10_1109_ACCESS_2024_3410327
crossref_primary_10_3389_fnagi_2023_1294139
crossref_primary_10_1007_s11634_023_00548_4
crossref_primary_10_1016_j_comgeo_2024_102148
crossref_primary_10_1039_D5DD00007F
crossref_primary_10_1007_s40590_022_00434_7
crossref_primary_10_1016_j_jbusres_2023_114410
crossref_primary_10_1214_24_AOS2465
crossref_primary_10_1016_j_comgeo_2022_101938
crossref_primary_10_1016_j_patrec_2024_02_003
crossref_primary_10_1007_s00285_025_02253_6
crossref_primary_10_1007_s41468_023_00141_w
crossref_primary_10_1371_journal_pcbi_1012801
Cites_doi 10.1145/1998196.1998229
10.1007/978-3-319-42545-0
10.1007/s00454-004-1146-y
10.1090/mbk/069
10.1007/s00454-011-9344-x
10.1109/TPAMI.2014.2346172
10.1109/HPTCDL.2014.10
10.1016/j.comgeo.2012.02.010
10.21105/joss.02614
10.1145/1137856.1137877
10.1016/j.jsc.2016.03.008
10.1016/j.crma.2005.04.036
10.1090/S0002-9947-05-04079-1
10.1007/BF01447877
10.1145/3330345.3332147
10.1007/s00454-002-2885-2
10.1090/memo/0923
10.1515/9781400882588-013
10.1016/0022-0000(79)90042-4
10.1007/s00454-010-9319-3
10.1142/S0219498815500668
10.1090/S0002-9939-1956-0078686-7
10.1137/1.9781611973198.4
10.1145/3350755.3400244
10.1088/0266-5611/27/12/124003
10.1007/PL00000526
10.1016/j.entcs.2014.06.011
10.1006/aima.1997.1650
10.1007/978-1-4613-9586-7_3
10.1140/epjds/s13688-017-0109-5
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOI 10.1007/s41468-021-00071-5
DatabaseName Springer Nature Open Access Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2367-1734
EndPage 423
ExternalDocumentID 10_1007_s41468_021_00071_5
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: SFB-TR-109
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYUE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c3165-a255e0440bce5e55c00ca07d30bc9321667ff609a9a03d06f0e8d5c9618fc2ca3
IEDL.DBID RSV
ISSN 2367-1726
IngestDate Tue Nov 18 21:47:08 EST 2025
Sat Nov 29 04:45:18 EST 2025
Fri Feb 21 02:47:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 55N31 . 55-04
Persistent homology . Vietoris-Rips complexes . Topological data analysis . Discrete Morse theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3165-a255e0440bce5e55c00ca07d30bc9321667ff609a9a03d06f0e8d5c9618fc2ca3
OpenAccessLink https://link.springer.com/10.1007/s41468-021-00071-5
PageCount 33
ParticipantIDs crossref_primary_10_1007_s41468_021_00071_5
crossref_citationtrail_10_1007_s41468_021_00071_5
springer_journals_10_1007_s41468_021_00071_5
PublicationCentury 2000
PublicationDate 20210900
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Journal of applied and computational topology
PublicationTitleAbbrev J Appl. and Comput. Topology
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley (1984)
Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. SpringerBriefs in Mathematics. Springer (2016)
SköldbergEMorse theory from an algebraic viewpointTrans. Am. Math. Soc.20063581115129217122510.1090/S0002-9947-05-04079-1
EdelsbrunnerHLetscherDZomorodianATopological persistence and simplificationDiscrete Comput. Geom.2002284511533194989810.1007/s00454-002-2885-2
Zhang, S., Xiao, M., Wang, H.: GPU-Accelerated Computation of Vietoris-Rips Persistence Barcodes. In: Cabello, S., Chen, D.Z. (eds), 36th International Symposium on Computational Geometry (SoCG 2020), Volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 70:1–70:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2020). Software available at https://github.com/simonzhang00/ripser-plusplus.git
Henselman, G., Ghrist, R.: Matroid filtrations and computational persistent homology. arXiv preprint (2016). arXiv: 1606.00199. Software available at http://gregoryhenselman.org/eirene
BauerUKerberMReininghausJWagnerHPHAT—persistent homology algorithms toolboxJ. Symb. Comput.2016787690353533010.1016/j.jsc.2016.03.008
Nanda, V.: Perseus, the persistent homology software (2010). http://people.maths.ox.ac.uk/nanda/perseus/index.html
KruskalJBJrOn the shortest spanning subtree of a graph and the traveling salesman problemProc. Am. Math. Soc.1956748507868610.1090/S0002-9939-1956-0078686-7
Zhang, S., Xiao, M., Guo, C., Geng, L., Wang, H., Zhang, X.: Hypha: a framework based on separation of parallelisms to accelerate persistent homology matrix reduction. In: Proceedings of the ACM International Conference on Supercomputing, pp. 69–81 (2019). Software available at https://github.com/simonzhang00/hypha
OtterNPorterMATillmannUGrindrodPHarringtonHAA roadmap for the computation of persistent homologyEPJ Data Sci.2017611710.1140/epjds/s13688-017-0109-5
LatschevJVietoris–Rips complexes of metric spaces near a closed Riemannian manifoldArch. Math. (Basel)2001776522528187905710.1007/PL00000526
ČufarMRipserer.jl: flexible and efficient persistent homology computation in JuliaJ. Open Source Softw.2020554261410.21105/joss.02614
Bauer, U.: Ripser: a lean C++ code for the computation of Vietoris–Rips persistence barcodes (2016). http://ripser.org
Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)
Olver, S., Townsend, A.: A practical framework for infinite-dimensional linear algebra. In: Proceedings of the 1st First Workshop for High Performance Technical Computing in Dynamic Languages, HPTCDL ’14, pp. 57–62. IEEE Press (2014)
Chen, C., Kerber, M.: Persistent homology computation with a twist. In: 27th European Workshop on Computational Geometry (EuroCG), pp. 197–200 (2011)
Delgado-FriedrichsORobinsVSheppardASkeletonization and partitioning of digital images using discrete Morse theoryIEEE Trans. Pattern Anal. Mach. Intell.201537365466610.1109/TPAMI.2014.2346172
VietorisLÜber den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen AbbildungenMath. Ann.1927971454472151237110.1007/BF01447877
Huber, S.: Libstick: a C++ library to compute persistent homology (2013). https://www.sthu.org/code/libstick
ChenCKerberMAn output-sensitive algorithm for persistent homologyComput. Geom.2013464435447300390010.1016/j.comgeo.2012.02.010
Barannikov, S.A.: The framed Morse complex and its invariants. In: Singularities and Bifurcations, Volume 21 of Advances in Soviet Mathematics, pp. 93–115. American Mathematical Society, Providence (1994)
KahleMRandom geometric complexesDiscrete Comput. Geom.2011453553573277055210.1007/s00454-010-9319-3
KozlovDNDiscrete Morse theory for free chain complexesC. R. Math. Acad. Sci. Paris200534012867872215177510.1016/j.crma.2005.04.036
The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015. Software available at http://gudhi.gforge.inria.fr
Tausz, A., Vejdemo-Johansson, M., Adams, H.: JavaPlex: A research software package for persistent (co)homology. In: Hong, H., Yap, C. (eds), Proceedings of ICMS 2014, Lecture Notes in Computer Science 8592, pp. 129–136 (2014). Software available at http://appliedtopology.github.io/javaplex
Milosavljević, N., Morozov, D., Škraba, P.: Zigzag persistent homology in matrix multiplication time. In: SoCG ’11: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, pp. 216–225. ACM, New York (2011)
BinchiJMerelliERuccoMPetriGVaccarinoFjHoles: a tool for understanding biological complex networks via clique weight rank persistent homologyElectron. Notes Theor. Comput. Sci.2014306518340418110.1016/j.entcs.2014.06.011
Hausmann, J.-C.: On the Vietoris–Rips complexes and a cohomology theory for metric spaces. In: Prospects in Topology (Princeton, NJ, 1994), Volume 138 of Annals of Mathematics Studies, pp. 175–188. Princeton University Press, Princeton, NJ (1995)
de SilvaVMorozovDVejdemo-JohanssonMPersistent cohomology and circular coordinatesDiscrete Comput. Geom.2011454737759278756710.1007/s00454-011-9344-x
Jöllenbeck, M., Welker, V.: Minimal resolutions via algebraic discrete Morse theory. Mem. Am. Math. Soc. 197(923), vi+74 (2009)
Perry, P., de Silva, V., Kettner, L., Zomorodian, A.: Plex: simplicial complexes in MATLAB (2000). http://mii.stanford.edu/research/comptop/programs
Tausz, A.: pHom: Persistent Homology in R (2011). https://cran.r-project.org/src/contrib/Archive/phom
Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. In: Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 31–38. SIAM (2014). Software available at https://github.com/DIPHA/dipha
Gromov, M.: Hyperbolic groups. In: Essays in group theory, Volume 8 of Mathematical Sciences Research Institute Publications, pp. 75–263. Springer, New York (1987)
Sexton, H., Vejdemo-Johansson, M.: jPlex (2008). http://www.math.colostate.edu/~adams/jplex/index.html
Morozov, D.: Dionysus 2: a computational topology package focused on persistent homology (2014). http://www.mrzv.org/software/dionysus2
Henselman-Petrusek, G.: Matroids and Canonical Forms: Theory and Applications. Ph.D. Thesis, University of Pennsylvania (2017)
Lewis, R.H.: CTL: The Computational Topology Library (2013). http://ctl.appliedtopology.org
Silva, V.d., Carlsson, G.: Topological estimation using witness complexes. In: Gross, M., Pfister, H., Alexa, M., Rusinkiewicz, S. (eds), SPBG’04 Symposium on Point—Based Graphics 2004. The Eurographics Association (2004)
Knuth, D.E.: Generating all combinations. In: The Art of Computer Programming, volume 4A: Combinatorial Algorithms, Part 1, chapter 7.2.1.3, pp. 355–389. Addison-Wesley Professional (2011)
ZomorodianACarlssonGComputing persistent homologyDiscrete Comput. Geom.2005332249274212129610.1007/s00454-004-1146-y
FormanRMorse theory for cell complexesAdv. Math.1998134190145161239110.1006/aima.1997.1650
Mendoza-Smith, R., Tanner, J.: Parallel multi-scale reduction of persistent homology filtrations. arXiv preprint (2017). arXiv: 1708.04710. Software available at https://github.com/rodrgo/OpenPH
Morozov, D., Nigmetov, A.: Towards lockfree persistent homology. In: Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’20, pp. 555–557. Association for Computing Machinery (2020)
TarjanREA class of algorithms which require nonlinear time to maintain disjoint setsJ. Comput. Syst. Sci.197918211012753217110.1016/0022-0000(79)90042-4
Lampret, L.: Chain complex reduction via fast digraph traversal. Preprint (2020). arXiv: 1903.00783
Bauer, U., Schmahl, M.: Lifespan functors and natural dualities in persistent homology. Preprint (2020). arXiv: 2012.12881
Morozov, D.: Dionysus: a C++ library for computing persistent homology (2006). http://www.mrzv.org/software/dionysus
de SilvaVMorozovDVejdemo-JohanssonMDualities in persistent (co)homologyInverse Probl.20112712124003, 17285431910.1088/0266-5611/27/12/124003
Morozov, D., Edelsbrunner, H.: Persistent homology. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, Chapter 24, 3rd edn. CRC Press (2017)
Crawley-BoeveyWDecomposition of pointwise finite-dimensional persistence modulesJ. Algebra Appl.20151451550066+332332710.1142/S0219498815500668
Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: SCG ’06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 119–126 (2006)
PascalESopra una formola numericaG. Mat.188725454919.0174.01
71_CR1
71_CR3
71_CR2
O Delgado-Friedrichs (71_CR15) 2015; 37
E Pascal (71_CR42) 1887; 25
J Latschev (71_CR30) 2001; 77
71_CR48
J Binchi (71_CR6) 2014; 306
71_CR49
V de Silva (71_CR13) 2011; 45
71_CR44
71_CR45
71_CR43
71_CR40
M Čufar (71_CR12) 2020; 5
C Chen (71_CR9) 2013; 46
A Zomorodian (71_CR54) 2005; 33
N Otter (71_CR41) 2017; 6
E Sköldberg (71_CR46) 2006; 358
71_CR39
71_CR37
71_CR38
H Edelsbrunner (71_CR17) 2002; 28
71_CR35
71_CR36
71_CR33
71_CR34
DN Kozlov (71_CR27) 2005; 340
71_CR31
W Crawley-Boevey (71_CR11) 2015; 14
71_CR32
V de Silva (71_CR14) 2011; 27
RE Tarjan (71_CR47) 1979; 18
71_CR29
71_CR26
71_CR24
71_CR22
71_CR23
71_CR20
71_CR21
71_CR50
M Kahle (71_CR25) 2011; 45
JB Kruskal Jr (71_CR28) 1956; 7
R Forman (71_CR18) 1998; 134
U Bauer (71_CR5) 2016; 78
71_CR19
71_CR16
L Vietoris (71_CR51) 1927; 97
71_CR4
71_CR7
71_CR53
71_CR8
71_CR10
71_CR52
References_xml – reference: Morozov, D., Nigmetov, A.: Towards lockfree persistent homology. In: Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’20, pp. 555–557. Association for Computing Machinery (2020)
– reference: Olver, S., Townsend, A.: A practical framework for infinite-dimensional linear algebra. In: Proceedings of the 1st First Workshop for High Performance Technical Computing in Dynamic Languages, HPTCDL ’14, pp. 57–62. IEEE Press (2014)
– reference: Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. SpringerBriefs in Mathematics. Springer (2016)
– reference: The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015. Software available at http://gudhi.gforge.inria.fr
– reference: KruskalJBJrOn the shortest spanning subtree of a graph and the traveling salesman problemProc. Am. Math. Soc.1956748507868610.1090/S0002-9939-1956-0078686-7
– reference: Zhang, S., Xiao, M., Guo, C., Geng, L., Wang, H., Zhang, X.: Hypha: a framework based on separation of parallelisms to accelerate persistent homology matrix reduction. In: Proceedings of the ACM International Conference on Supercomputing, pp. 69–81 (2019). Software available at https://github.com/simonzhang00/hypha
– reference: VietorisLÜber den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen AbbildungenMath. Ann.1927971454472151237110.1007/BF01447877
– reference: Morozov, D.: Dionysus 2: a computational topology package focused on persistent homology (2014). http://www.mrzv.org/software/dionysus2
– reference: Hausmann, J.-C.: On the Vietoris–Rips complexes and a cohomology theory for metric spaces. In: Prospects in Topology (Princeton, NJ, 1994), Volume 138 of Annals of Mathematics Studies, pp. 175–188. Princeton University Press, Princeton, NJ (1995)
– reference: Huber, S.: Libstick: a C++ library to compute persistent homology (2013). https://www.sthu.org/code/libstick/
– reference: Knuth, D.E.: Generating all combinations. In: The Art of Computer Programming, volume 4A: Combinatorial Algorithms, Part 1, chapter 7.2.1.3, pp. 355–389. Addison-Wesley Professional (2011)
– reference: Silva, V.d., Carlsson, G.: Topological estimation using witness complexes. In: Gross, M., Pfister, H., Alexa, M., Rusinkiewicz, S. (eds), SPBG’04 Symposium on Point—Based Graphics 2004. The Eurographics Association (2004)
– reference: Tausz, A.: pHom: Persistent Homology in R (2011). https://cran.r-project.org/src/contrib/Archive/phom/
– reference: SköldbergEMorse theory from an algebraic viewpointTrans. Am. Math. Soc.20063581115129217122510.1090/S0002-9947-05-04079-1
– reference: ČufarMRipserer.jl: flexible and efficient persistent homology computation in JuliaJ. Open Source Softw.2020554261410.21105/joss.02614
– reference: Chen, C., Kerber, M.: Persistent homology computation with a twist. In: 27th European Workshop on Computational Geometry (EuroCG), pp. 197–200 (2011)
– reference: PascalESopra una formola numericaG. Mat.188725454919.0174.01
– reference: Henselman, G., Ghrist, R.: Matroid filtrations and computational persistent homology. arXiv preprint (2016). arXiv: 1606.00199. Software available at http://gregoryhenselman.org/eirene/
– reference: Sexton, H., Vejdemo-Johansson, M.: jPlex (2008). http://www.math.colostate.edu/~adams/jplex/index.html
– reference: Mendoza-Smith, R., Tanner, J.: Parallel multi-scale reduction of persistent homology filtrations. arXiv preprint (2017). arXiv: 1708.04710. Software available at https://github.com/rodrgo/OpenPH
– reference: Henselman-Petrusek, G.: Matroids and Canonical Forms: Theory and Applications. Ph.D. Thesis, University of Pennsylvania (2017)
– reference: BinchiJMerelliERuccoMPetriGVaccarinoFjHoles: a tool for understanding biological complex networks via clique weight rank persistent homologyElectron. Notes Theor. Comput. Sci.2014306518340418110.1016/j.entcs.2014.06.011
– reference: Bauer, U.: Ripser: a lean C++ code for the computation of Vietoris–Rips persistence barcodes (2016). http://ripser.org
– reference: Nanda, V.: Perseus, the persistent homology software (2010). http://people.maths.ox.ac.uk/nanda/perseus/index.html
– reference: de SilvaVMorozovDVejdemo-JohanssonMDualities in persistent (co)homologyInverse Probl.20112712124003, 17285431910.1088/0266-5611/27/12/124003
– reference: TarjanREA class of algorithms which require nonlinear time to maintain disjoint setsJ. Comput. Syst. Sci.197918211012753217110.1016/0022-0000(79)90042-4
– reference: Delgado-FriedrichsORobinsVSheppardASkeletonization and partitioning of digital images using discrete Morse theoryIEEE Trans. Pattern Anal. Mach. Intell.201537365466610.1109/TPAMI.2014.2346172
– reference: KahleMRandom geometric complexesDiscrete Comput. Geom.2011453553573277055210.1007/s00454-010-9319-3
– reference: ZomorodianACarlssonGComputing persistent homologyDiscrete Comput. Geom.2005332249274212129610.1007/s00454-004-1146-y
– reference: Morozov, D.: Dionysus: a C++ library for computing persistent homology (2006). http://www.mrzv.org/software/dionysus
– reference: Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: SCG ’06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 119–126 (2006)
– reference: Milosavljević, N., Morozov, D., Škraba, P.: Zigzag persistent homology in matrix multiplication time. In: SoCG ’11: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, pp. 216–225. ACM, New York (2011)
– reference: BauerUKerberMReininghausJWagnerHPHAT—persistent homology algorithms toolboxJ. Symb. Comput.2016787690353533010.1016/j.jsc.2016.03.008
– reference: FormanRMorse theory for cell complexesAdv. Math.1998134190145161239110.1006/aima.1997.1650
– reference: Lampret, L.: Chain complex reduction via fast digraph traversal. Preprint (2020). arXiv: 1903.00783
– reference: KozlovDNDiscrete Morse theory for free chain complexesC. R. Math. Acad. Sci. Paris200534012867872215177510.1016/j.crma.2005.04.036
– reference: Lewis, R.H.: CTL: The Computational Topology Library (2013). http://ctl.appliedtopology.org
– reference: Perry, P., de Silva, V., Kettner, L., Zomorodian, A.: Plex: simplicial complexes in MATLAB (2000). http://mii.stanford.edu/research/comptop/programs/
– reference: Morozov, D., Edelsbrunner, H.: Persistent homology. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, Chapter 24, 3rd edn. CRC Press (2017)
– reference: Jöllenbeck, M., Welker, V.: Minimal resolutions via algebraic discrete Morse theory. Mem. Am. Math. Soc. 197(923), vi+74 (2009)
– reference: Bauer, U., Schmahl, M.: Lifespan functors and natural dualities in persistent homology. Preprint (2020). arXiv: 2012.12881
– reference: Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley (1984)
– reference: Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. In: Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 31–38. SIAM (2014). Software available at https://github.com/DIPHA/dipha
– reference: ChenCKerberMAn output-sensitive algorithm for persistent homologyComput. Geom.2013464435447300390010.1016/j.comgeo.2012.02.010
– reference: EdelsbrunnerHLetscherDZomorodianATopological persistence and simplificationDiscrete Comput. Geom.2002284511533194989810.1007/s00454-002-2885-2
– reference: Barannikov, S.A.: The framed Morse complex and its invariants. In: Singularities and Bifurcations, Volume 21 of Advances in Soviet Mathematics, pp. 93–115. American Mathematical Society, Providence (1994)
– reference: de SilvaVMorozovDVejdemo-JohanssonMPersistent cohomology and circular coordinatesDiscrete Comput. Geom.2011454737759278756710.1007/s00454-011-9344-x
– reference: Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)
– reference: Zhang, S., Xiao, M., Wang, H.: GPU-Accelerated Computation of Vietoris-Rips Persistence Barcodes. In: Cabello, S., Chen, D.Z. (eds), 36th International Symposium on Computational Geometry (SoCG 2020), Volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 70:1–70:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2020). Software available at https://github.com/simonzhang00/ripser-plusplus.git
– reference: Gromov, M.: Hyperbolic groups. In: Essays in group theory, Volume 8 of Mathematical Sciences Research Institute Publications, pp. 75–263. Springer, New York (1987)
– reference: Tausz, A., Vejdemo-Johansson, M., Adams, H.: JavaPlex: A research software package for persistent (co)homology. In: Hong, H., Yap, C. (eds), Proceedings of ICMS 2014, Lecture Notes in Computer Science 8592, pp. 129–136 (2014). Software available at http://appliedtopology.github.io/javaplex/
– reference: Crawley-BoeveyWDecomposition of pointwise finite-dimensional persistence modulesJ. Algebra Appl.20151451550066+332332710.1142/S0219498815500668
– reference: LatschevJVietoris–Rips complexes of metric spaces near a closed Riemannian manifoldArch. Math. (Basel)2001776522528187905710.1007/PL00000526
– reference: OtterNPorterMATillmannUGrindrodPHarringtonHAA roadmap for the computation of persistent homologyEPJ Data Sci.2017611710.1140/epjds/s13688-017-0109-5
– ident: 71_CR8
– ident: 71_CR33
  doi: 10.1145/1998196.1998229
– ident: 71_CR50
– ident: 71_CR29
– ident: 71_CR7
  doi: 10.1007/978-3-319-42545-0
– ident: 71_CR48
– volume: 33
  start-page: 249
  issue: 2
  year: 2005
  ident: 71_CR54
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-004-1146-y
– ident: 71_CR16
  doi: 10.1090/mbk/069
– ident: 71_CR31
– volume: 45
  start-page: 737
  issue: 4
  year: 2011
  ident: 71_CR13
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-011-9344-x
– volume: 37
  start-page: 654
  issue: 3
  year: 2015
  ident: 71_CR15
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2346172
– ident: 71_CR38
– ident: 71_CR40
  doi: 10.1109/HPTCDL.2014.10
– volume: 46
  start-page: 435
  issue: 4
  year: 2013
  ident: 71_CR9
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2012.02.010
– ident: 71_CR45
– volume: 5
  start-page: 2614
  issue: 54
  year: 2020
  ident: 71_CR12
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02614
– ident: 71_CR22
– ident: 71_CR10
  doi: 10.1145/1137856.1137877
– ident: 71_CR53
– volume: 78
  start-page: 76
  year: 2016
  ident: 71_CR5
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2016.03.008
– ident: 71_CR49
– volume: 340
  start-page: 867
  issue: 12
  year: 2005
  ident: 71_CR27
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2005.04.036
– ident: 71_CR32
– volume: 358
  start-page: 115
  issue: 1
  year: 2006
  ident: 71_CR46
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-05-04079-1
– ident: 71_CR35
– ident: 71_CR1
– ident: 71_CR39
– ident: 71_CR21
– volume: 97
  start-page: 454
  issue: 1
  year: 1927
  ident: 71_CR51
  publication-title: Math. Ann.
  doi: 10.1007/BF01447877
– ident: 71_CR2
– ident: 71_CR52
  doi: 10.1145/3330345.3332147
– ident: 71_CR36
– volume: 28
  start-page: 511
  issue: 4
  year: 2002
  ident: 71_CR17
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-002-2885-2
– ident: 71_CR24
  doi: 10.1090/memo/0923
– ident: 71_CR20
  doi: 10.1515/9781400882588-013
– volume: 25
  start-page: 45
  year: 1887
  ident: 71_CR42
  publication-title: G. Mat.
– volume: 18
  start-page: 110
  issue: 2
  year: 1979
  ident: 71_CR47
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(79)90042-4
– ident: 71_CR43
– volume: 45
  start-page: 553
  issue: 3
  year: 2011
  ident: 71_CR25
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-010-9319-3
– ident: 71_CR26
– volume: 14
  start-page: 1550066+
  issue: 5
  year: 2015
  ident: 71_CR11
  publication-title: J. Algebra Appl.
  doi: 10.1142/S0219498815500668
– ident: 71_CR3
– volume: 7
  start-page: 48
  year: 1956
  ident: 71_CR28
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1956-0078686-7
– ident: 71_CR4
  doi: 10.1137/1.9781611973198.4
– ident: 71_CR34
– ident: 71_CR37
  doi: 10.1145/3350755.3400244
– volume: 27
  start-page: 124003, 17
  issue: 12
  year: 2011
  ident: 71_CR14
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/27/12/124003
– volume: 77
  start-page: 522
  issue: 6
  year: 2001
  ident: 71_CR30
  publication-title: Arch. Math. (Basel)
  doi: 10.1007/PL00000526
– volume: 306
  start-page: 5
  year: 2014
  ident: 71_CR6
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/j.entcs.2014.06.011
– ident: 71_CR44
– volume: 134
  start-page: 90
  issue: 1
  year: 1998
  ident: 71_CR18
  publication-title: Adv. Math.
  doi: 10.1006/aima.1997.1650
– ident: 71_CR19
  doi: 10.1007/978-1-4613-9586-7_3
– ident: 71_CR23
– volume: 6
  start-page: 17
  issue: 1
  year: 2017
  ident: 71_CR41
  publication-title: EPJ Data Sci.
  doi: 10.1140/epjds/s13688-017-0109-5
SSID ssib031263661
ssj0002734731
Score 2.6238365
Snippet We present an algorithm for the computation of Vietoris–Rips persistence barcodes and describe its implementation in the software Ripser. The method relies on...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 391
SubjectTerms Algebraic Topology
Computational Science and Engineering
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Title Ripser: efficient computation of Vietoris–Rips persistence barcodes
URI https://link.springer.com/article/10.1007/s41468-021-00071-5
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 2367-1734
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734731
  issn: 2367-1726
  databaseCode: RSV
  dateStart: 20170901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7G-2IM3XdhkH0m8ibR40CJVS29hs9lARdLSVM_-B_-hv8Td7SZQkIJewySE2Zl8s9mZ7wO44BFVnAmCeWK2qywiGmc8EThXLCgk0UTMKfPvo14vHg6TRz8UVtXd7vWRpPtSN8NuzE0J2ZYCB4yYr8KagbvYpmP_aVBHEQ1CQYWf1nz1BC6REya0bGXYILbw0zO_P3YRoRaPRx3qdLf_9747sOWrTHQzD4tdWNHlHmw-NBSt1T50-qOJCb9rpB2JhMEepJzCg1sqNC7QYKQtg0j1_fllbdHE_lqrXI2NMpMf41xXB_DS7Tzf3mGvqYAVDQTH0mwhtJWZzpTmmnNFiJIkyqm5YEq5QIioKARJZCIJzYkoiI5zrqwuTKFCJekhtMpxqY8AsTBnTJv6STrKSZHElPEoU4qaLbepQtoQ1H5MlScct7oXb2lDlexclBoXpc5FKW_DZXPPZE63sdT6qnZ96lOvWmJ-_DfzE9gI3erZhrJTaM2m7_oM1tXHbFRNz13M_QA308wn
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1ife_CmC5vsI403kZaKbZFaS28h2WygIm1pqmf_g__QX-LudhMoSEGvYRLC7Gy-mezM9wFc8YBKzgTBPNTlKguIwgkPBU4l87KYKCLmlPmtoNOpDQbhkxsKy4tu9-JI0n6py2E3ZqeETEuBBUbMV2GNacQyjXzd534RRdTzBRVuWvPVEbgEVpjQsJVhjdjCTc_8_thFhFo8HrWo09j53_vuwrbLMtHdPCz2YEWN9mGrXVK05gdQ7w4nOvxukbIkEhp7kLQKD3ap0DhD_aEyDCL59-eXsUUT82sttzk2SvT-GKcqP4SXRr1338ROUwFL6gmOY11CKCMznUjFFeeSEBmTIKX6gk7lPCGCLBMkjMOY0JSIjKhayqXRhcmkL2N6BJXReKSOATE_ZUzp_Cm2lJMirFHGg0RKqktunYVUwSv8GElHOG50L96ikirZuijSLoqsiyJehevynsmcbmOp9U3h-shtvXyJ-cnfzC9ho9lrt6LWQ-fxFDZ9u5KmuewMKrPpuzqHdfkxG-bTCxt_P9M3zws
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1ife_Cmi5vsI4030RbFWoqP0ltINxuoSBqa6tn_4D_0l7i7eWBBCuI1TJYwM8vMZPf7PoAT7lHJmSCY-3pcZR5ReMB9gSPJnDgkioicMr_tdTqNft_v_kDx29vu5ZFkjmkwLE3J5DyN4vMK-MYsYshcL7BFEvN5WGBGNMjM64-9MqOo4woqCuTmS0Hm4lmRQsNchnX1FgWS5vdlp6vV9FGprUCttf9_-zqsFt0nuszTZQPmVLIJK_cVdWu2Bc2HYarT8gIpSy6h10XSKj_YEKJRjHpDZZhFsq-PT2OLUvPLLbO9NxrofTOKVLYNz63m09UNLrQWsKSO4DjUo4Uy8tMDqbjiXBIiQ-JFVD_QLZ4jhBfHgvihHxIaERET1Yi4NHoxsXRlSHeglowStQuIuRFjSvdVoaWiFH6DMu4NpKR6FNfdSR2c0qeBLIjIjR7Ga1BRKFsXBdpFgXVRwOtwWr2T5jQcM63PyjAExZbMZpjv_c38GJa6162gfdu524dl1wbS3Dk7gNpk_KYOYVG-T4bZ-Mim4je1d9fv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ripser%3A+efficient+computation+of+Vietoris%E2%80%93Rips+persistence+barcodes&rft.jtitle=Journal+of+applied+and+computational+topology&rft.au=Bauer%2C+Ulrich&rft.date=2021-09-01&rft.issn=2367-1726&rft.eissn=2367-1734&rft.volume=5&rft.issue=3&rft.spage=391&rft.epage=423&rft_id=info:doi/10.1007%2Fs41468-021-00071-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41468_021_00071_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-1726&client=summon