CNN/Bi‐LSTM‐based deep learning algorithm for classification of power quality disturbances by using spectrogram images

This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long short‐term memory (Bi‐LSTM) together with spectrograms for the classification of power quality disturbances (PQDs). The proposed method focuses...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International transactions on electrical energy systems Ročník 31; číslo 12
Hlavní autoři: Özer, İlyas, Efe, Serhat Berat, Özbay, Harun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken John Wiley & Sons, Inc 01.12.2021
Témata:
ISSN:2050-7038, 2050-7038
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long short‐term memory (Bi‐LSTM) together with spectrograms for the classification of power quality disturbances (PQDs). The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal. By collecting this sine wave together with the original signal, spectrograms of both signals were obtained and converted into red/green/blue (RGB) images that were then combined. Finally, classification was carried out via CNN/Bi‐LSTM. In this context, 29 different disturbance events in both single and combined structures were used. The proposed model was applied to the disturbance events and 99.33% classification accuracy was obtained. The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal.
AbstractList This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long short‐term memory (Bi‐LSTM) together with spectrograms for the classification of power quality disturbances (PQDs). The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal. By collecting this sine wave together with the original signal, spectrograms of both signals were obtained and converted into red/green/blue (RGB) images that were then combined. Finally, classification was carried out via CNN/Bi‐LSTM. In this context, 29 different disturbance events in both single and combined structures were used. The proposed model was applied to the disturbance events and 99.33% classification accuracy was obtained. The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal.
This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long short‐term memory (Bi‐LSTM) together with spectrograms for the classification of power quality disturbances (PQDs). The proposed method focuses on the region where the PQD event occurs, using a deep learning‐based spectrogram with the aim of increasing classification success rates. In the proposed approach, the time shift of the signal relative to the pure sine signal was found and relative to this time shift, an inverse sine wave was generated according to the original signal. By collecting this sine wave together with the original signal, spectrograms of both signals were obtained and converted into red/green/blue (RGB) images that were then combined. Finally, classification was carried out via CNN/Bi‐LSTM. In this context, 29 different disturbance events in both single and combined structures were used. The proposed model was applied to the disturbance events and 99.33% classification accuracy was obtained.
Author Özbay, Harun
Efe, Serhat Berat
Özer, İlyas
Author_xml – sequence: 1
  givenname: İlyas
  surname: Özer
  fullname: Özer, İlyas
  email: iozer@bandirma.edu.tr
  organization: Bandırma Onyedi Eylül University
– sequence: 2
  givenname: Serhat Berat
  surname: Efe
  fullname: Efe, Serhat Berat
  organization: Bandırma Onyedi Eylül University
– sequence: 3
  givenname: Harun
  surname: Özbay
  fullname: Özbay, Harun
  organization: Bandırma Onyedi Eylül University
BookMark eNqFkMtKA0EQRRtRMMas3Ta4TtKPeWWpIT4gRsHsm37UxA6T6Un3DCGu_AS_0S9xkoiIC61NFcU9Vdx7ho5LVwJCF5QMKCFsyEhM-inh2YByRqIj1PneHP-YT1EvhCVpaxRRmmYd9DqezYbX9uPtffo8f2ibkgEMNgAVLkD60pYLLIuF87Z-WeHceawLGYLNrZa1dSV2Oa7cBjxeN7Kw9RYbG-rGK1lqCFhtcRN2N0IFuvZu4eUK25VcQDhHJ7ksAvS-ehfNbybz8V1_-nh7P76a9jWnSdQ3kUrTTCZUGU01Mxwy0AkBHgGD1qwaSa4ywkc0NqlOeKTUSLPMGEkypgzvosvD2cq7dQOhFkvX-LL9KFhC45glUUJbVXxQae9C8JALbeu9wdpLWwhKxC5osYtS7KIU-6BbbviLq3xrz2__IJIDsbEFbP-Ti8l88nQAPwEM6pOR
CitedBy_id crossref_primary_10_1155_2022_3740634
crossref_primary_10_33383_2024_088
crossref_primary_10_1088_1742_6596_2814_1_012029
crossref_primary_10_35414_akufemubid_1528549
crossref_primary_10_1016_j_rser_2023_114094
crossref_primary_10_1007_s10462_024_10773_8
crossref_primary_10_1016_j_epsr_2022_108887
crossref_primary_10_1038_s41598_025_14073_1
crossref_primary_10_34248_bsengineering_1608596
crossref_primary_10_1016_j_prime_2025_100919
Cites_doi 10.1109/SPEC.2016.7846169
10.1016/j.apenergy.2018.09.160
10.3390/en12071280
10.1016/j.epsr.2018.05.018
10.1080/15325008.2019.1666178
10.1016/j.ijepes.2012.05.052
10.1109/TPWRD.2003.822537
10.3390/en10010107
10.1016/j.rser.2014.08.070
10.1016/j.measurement.2016.10.013
10.1016/j.epsr.2012.09.007
10.1109/APEC39645.2020.9124252
10.1016/j.rser.2015.07.068
10.1016/j.asoc.2009.10.013
10.1109/ICHQP.2018.8378902
10.1109/61.997958
10.1109/IJCNN.2019.8852287
10.1016/j.neucom.2017.07.021
10.1109/61.847259
10.1109/TSG.2020.2982351
10.1186/s41601-019-0139-z
10.3906/elk-2006-29
10.1016/j.ijepes.2009.01.012
10.3906/elk-1112-51
10.1109/TPWRD.2009.2028792
10.1109/TIE.2008.928111
10.1002/2050-7038.12008
10.1016/j.neucom.2012.09.037
10.1016/j.ijepes.2007.07.003
10.1016/j.ijepes.2010.10.001
10.1016/j.ijepes.2014.04.015
10.1016/j.epsr.2010.10.032
10.1016/j.epsr.2009.08.014
10.1016/j.measurement.2018.06.059
10.1016/j.epsr.2010.07.001
10.1016/j.aej.2021.02.050
10.1016/j.epsr.2012.02.009
10.1016/j.eswa.2007.06.005
10.1109/TAPENERGY.2017.8397249
10.1016/j.epsr.2008.03.002
10.1016/j.neucom.2011.08.010
10.1016/j.neucom.2012.08.031
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/2050-7038.13204
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7038
EndPage n/a
ExternalDocumentID 10_1002_2050_7038_13204
ETEP13204
Genre article
GrantInformation_xml – fundername: Scientific Research Project (BAP) Coordinatorship of Bandırma Onyedi Eylül University
  funderid: BAP‐19‐1003‐006
GroupedDBID 1OC
24P
31~
8-1
8-4
8-5
AAEVG
AAHHS
AAJEY
AANHP
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
GROUPED_DOAJ
IX1
L8X
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
M~E
QB0
RHX
SUPJJ
WIH
WIK
AAMMB
AAYXX
ABJCF
ADMLS
AEFGJ
AEUYN
AFFHD
AFKRA
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
HCIFZ
M7S
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
1OB
7SP
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c3164-d4b778a61bdc1c2d3e8ec60e34e2e320b9a3b803915d7c634bb9c28dda082bd3
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718204800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-7038
IngestDate Sat Sep 06 07:30:37 EDT 2025
Tue Nov 18 21:27:33 EST 2025
Sat Nov 29 06:29:57 EST 2025
Wed Jan 22 16:26:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3164-d4b778a61bdc1c2d3e8ec60e34e2e320b9a3b803915d7c634bb9c28dda082bd3
Notes Funding information
Handling Editor
Wu Xuan
Scientific Research Project (BAP) Coordinatorship of Bandırma Onyedi Eylül University, Grant/Award Number: BAP‐19‐1003‐006
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2615526461
PQPubID 2034359
PageCount 16
ParticipantIDs proquest_journals_2615526461
crossref_citationtrail_10_1002_2050_7038_13204
crossref_primary_10_1002_2050_7038_13204
wiley_primary_10_1002_2050_7038_13204_ETEP13204
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle International transactions on electrical energy systems
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 7
2002; 17
2018; 163
2010; 10
2019; 2019
2009; 24
2019; 4
2018; 128
2013; 21
2015; 51
2021; 29
2011; 81
2019; 12
2013; 103
2011; 33
2008; 78
2008; 35
2020; 11
2008; 30
2010; 80
2014; 61
2012; 77
2017; 95
2009; 56
2020; 2020
2018; 272
2020; 1
2009; 31
2000; 15
2004; 19
2013; 95
2015; 41
2017; 10
2019; 47
2017; 34
2018
2019; 29
2019; 235
2016
2015
2021; 60
2018; 11
2012; 88
2012; 43
2014; 125
2010; 9
e_1_2_9_30_1
Anis Ibrahim WR (e_1_2_9_12_1) 2002; 17
Santoso S (e_1_2_9_26_1) 2000; 15
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
Ozer I (e_1_2_9_31_1) 2018; 272
Ekici S (e_1_2_9_9_1) 2020; 1
Feng C (e_1_2_9_36_1) 2020; 11
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_16_1
Özbay H (e_1_2_9_33_1) 2021; 29
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
Zhao W (e_1_2_9_6_1) 2019; 4
González‐De‐La‐Rosa JJ (e_1_2_9_8_1) 2018; 11
Glorot X (e_1_2_9_37_1) 2010; 9
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_46_1
Ma J (e_1_2_9_19_1) 2017; 34
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_4_1
e_1_2_9_3_1
Shi X (e_1_2_9_5_1) 2019; 7
Shen Y (e_1_2_9_21_1) 2019; 12
e_1_2_9_49_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
Zhang M (e_1_2_9_2_1) 2011; 81
e_1_2_9_29_1
References_xml – volume: 41
  start-page: 495
  year: 2015
  end-page: 505
  article-title: A critical review of detection and classification of power quality events
  publication-title: Renew Sust Energ Rev
– volume: 56
  start-page: 212
  issue: 1
  year: 2009
  end-page: 220
  article-title: Power quality disturbance classification using fuzzy C‐means algorithm and adaptive particle swarm optimization
  publication-title: IEEE Trans Ind Electron
– volume: 29
  start-page: 78
  issue: 1
  year: 2021
  end-page: 97
  article-title: Effects of COVID‐19 on electric energy consumption in Turkey and ANN‐based short‐term forecasting
  publication-title: Turk J Electr Eng Comput Sci
– volume: 1
  year: 2020
  article-title: Power quality event classification using optimized Bayesian convolutional neural networks
  publication-title: Electr Eng
– volume: 88
  start-page: 130
  year: 2012
  end-page: 136
  article-title: Applications of wavelets in electric power quality: voltage events
  publication-title: Electr Power Syst Res
– start-page: 178
  year: 2015
  end-page: 181
– volume: 47
  start-page: 1332
  issue: 14–15
  year: 2019
  end-page: 1348
  article-title: Signal processing and deep learning techniques for power quality events monitoring and classification
  publication-title: Electr Power Compon Syst
– volume: 80
  start-page: 71
  issue: 1
  year: 2010
  end-page: 76
  article-title: Fuzzy classifiers for power quality events analysis
  publication-title: Electr Power Syst Res
– volume: 81
  start-page: 660
  issue: 2
  year: 2011
  end-page: 666
  article-title: A real‐time classification method of power quality disturbances
  publication-title: Electr Power Syst Res
– volume: 34
  start-page: 408
  issue: 4
  year: 2017
  end-page: 415
  article-title: Classification of power quality disturbances via deep learning
  publication-title: IETE Tech Rev (Institution Electron Telecommun Eng India)
– volume: 11
  start-page: 1
  issue: 3
  year: 2018
  end-page: 12
  article-title: A dual monitoring technique to detect power quality transients based on the fourth‐order spectrogram
  publication-title: Energies
– volume: 21
  start-page: 1528
  issue: 6
  year: 2013
  end-page: 1538
  article-title: Classification of power quality disturbances using S‐transform and TT‐transform based on the articial neural network
  publication-title: Turk J Electr Eng Comput Sci
– volume: 95
  start-page: 246
  year: 2017
  end-page: 259
  article-title: A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network
  publication-title: Meas J Int Meas Confed
– volume: 61
  start-page: 594
  year: 2014
  end-page: 605
  article-title: Integrated DWT‐FFT approach for detection and classification of power quality disturbances
  publication-title: Int J Electr Power Energy Syst
– volume: 80
  start-page: 1552
  issue: 12
  year: 2010
  end-page: 1561
  article-title: Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm
  publication-title: Electr Power Syst Res
– volume: 19
  start-page: 1154
  issue: 3
  year: 2004
  end-page: 1166
  article-title: A dependency model‐based approach for identifying and evaluating power quality problems
  publication-title: IEEE Trans Power Deliv
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J Mach Learn Res
– volume: 35
  start-page: 143
  issue: 1–2
  year: 2008
  end-page: 149
  article-title: Power quality disturbance identification using wavelet packet energy entropy and weighted support vector machines
  publication-title: Expert Syst Appl
– volume: 4
  start-page: 27
  issue: 1
  year: 2019
  article-title: Power quality disturbance classification based on time‐frequency domain multi‐feature and decision tree
  publication-title: Prot Control Mod Power Syst
– volume: 30
  start-page: 254
  issue: 4
  year: 2008
  end-page: 260
  article-title: Recognition of power quality events by using multiwavelet‐based neural networks
  publication-title: Int J Electr Power Energy Syst
– start-page: 1
  year: 2018
  end-page: 6
– volume: 51
  start-page: 1650
  year: 2015
  end-page: 1663
  article-title: A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances
  publication-title: Renew Sust Energ Rev
– volume: 15
  start-page: 247
  issue: 4
  year: 2000
  end-page: 254
  article-title: Characterization of distribution power quality events with Fourier and wavelet transforms
  publication-title: IEEE Trans Power Deliv
– volume: 235
  start-page: 1126
  year: 2019
  end-page: 1140
  article-title: A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network
  publication-title: Appl Energy
– volume: 77
  start-page: 36
  issue: 1
  year: 2012
  end-page: 47
  article-title: Optimization techniques for improving power quality data mining using wavelet packet based support vector machine
  publication-title: Neurocomputing
– volume: 272
  start-page: 505
  year: 2018
  end-page: 512
  article-title: Noise robust sound event classification with convolutional neural network
  publication-title: Neurocomputing
– volume: 128
  start-page: 276
  year: 2018
  end-page: 283
  article-title: Real‐time system for automatic detection and classification of single and multiple power quality disturbances
  publication-title: Meas J Int Meas Confed
– volume: 103
  start-page: 75
  year: 2013
  end-page: 86
  article-title: Power quality event characterization using support vector machine and optimization using advanced immune algorithm
  publication-title: Neurocomputing
– volume: 24
  start-page: 2159
  issue: 4
  year: 2009
  end-page: 2165
  article-title: Empirical‐mode decomposition with hilbert transform for power‐quality assessment
  publication-title: IEEE Trans Power Deliv
– volume: 31
  start-page: 206
  issue: 5
  year: 2009
  end-page: 212
  article-title: Power quality analysis applying a hybrid methodology with wavelet transforms and neural networks
  publication-title: Int J Electr Power Energy Syst
– volume: 78
  start-page: 1747
  issue: 10
  year: 2008
  end-page: 1755
  article-title: An effective wavelet‐based feature extraction method for classification of power quality disturbance signals
  publication-title: Electr Power Syst Res
– volume: 10
  start-page: 945
  issue: 3
  year: 2010
  end-page: 955
  article-title: Power quality time series data mining using S‐transform and fuzzy expert system
  publication-title: Appl Soft Comput J
– volume: 7
  year: 2019
  article-title: An independent component analysis classification for complex power quality disturbances with sparse auto encoder features
  publication-title: IEEE Access
– volume: 43
  start-page: 688
  issue: 1
  year: 2012
  end-page: 695
  article-title: Classification of power system disturbances using linear Kalman filter and fuzzy‐expert system
  publication-title: Int J Electr Power Energy Syst
– volume: 2020
  start-page: 2303
  year: 2020
  end-page: 2307
– volume: 2019
  start-page: 5
  year: 2019
  end-page: 10
– volume: 33
  start-page: 402
  issue: 3
  year: 2011
  end-page: 410
  article-title: Study of a new method for power system transients classification based on wavelet entropy and neural network
  publication-title: Int J Electr Power Energy Syst
– volume: 29
  start-page: 1
  issue: 8
  year: 2019
  end-page: 42
  article-title: Power quality disturbance detection and classification using signal processing and soft computing techniques: a comprehensive review
  publication-title: Int Trans Electr Energy Syst
– volume: 163
  start-page: 1
  year: 2018
  end-page: 9
  article-title: Complex power quality disturbances classification via curvelet transform and deep learning
  publication-title: Electr Power Syst Res
– volume: 60
  start-page: 3807
  issue: 4
  year: 2021
  end-page: 3818
  article-title: A combined deep learning application for short term load forecasting
  publication-title: Alex Eng J
– volume: 17
  start-page: 668
  issue: 2
  year: 2002
  end-page: 673
  article-title: Artificial intelligence and advanced mathematical tools for power quality applications: a survey
  publication-title: IEEE Trans Power Deliv
– volume: 10
  start-page: 1
  issue: 1
  year: 2017
  end-page: 19
  article-title: Power quality disturbance classification using the S‐transform and probabilistic neural network
  publication-title: Energies
– volume: 95
  start-page: 192
  year: 2013
  end-page: 199
  article-title: A new classification for power quality events in distribution systems
  publication-title: Electr Power Syst Res
– start-page: 1
  year: 2016
  end-page: 6
– volume: 125
  start-page: 95
  year: 2014
  end-page: 101
  article-title: A new classification method for transient power quality combining spectral kurtosis with neural network
  publication-title: Neurocomputing
– volume: 12
  start-page: 1
  issue: 7
  year: 2019
  end-page: 26
  article-title: Power quality disturbance monitoring and classification based on improved PCA and convolution neural network for wind‐grid distribution systems
  publication-title: Energies
– volume: 11
  start-page: 4490
  issue: 5
  year: 2020
  end-page: 4501
  article-title: Deep learning‐based real‐time building occupancy detection using AMI data
  publication-title: IEEE Trans Smart Grid
– ident: e_1_2_9_28_1
  doi: 10.1109/SPEC.2016.7846169
– ident: e_1_2_9_38_1
  doi: 10.1016/j.apenergy.2018.09.160
– volume: 12
  start-page: 1
  issue: 7
  year: 2019
  ident: e_1_2_9_21_1
  article-title: Power quality disturbance monitoring and classification based on improved PCA and convolution neural network for wind‐grid distribution systems
  publication-title: Energies
  doi: 10.3390/en12071280
– ident: e_1_2_9_27_1
  doi: 10.1016/j.epsr.2018.05.018
– ident: e_1_2_9_10_1
  doi: 10.1080/15325008.2019.1666178
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ijepes.2012.05.052
– ident: e_1_2_9_29_1
  doi: 10.1109/TPWRD.2003.822537
– volume: 9
  start-page: 249
  year: 2010
  ident: e_1_2_9_37_1
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J Mach Learn Res
– ident: e_1_2_9_45_1
  doi: 10.3390/en10010107
– ident: e_1_2_9_7_1
  doi: 10.1016/j.rser.2014.08.070
– ident: e_1_2_9_20_1
  doi: 10.1016/j.measurement.2016.10.013
– ident: e_1_2_9_16_1
  doi: 10.1016/j.epsr.2012.09.007
– volume: 34
  start-page: 408
  issue: 4
  year: 2017
  ident: e_1_2_9_19_1
  article-title: Classification of power quality disturbances via deep learning
  publication-title: IETE Tech Rev (Institution Electron Telecommun Eng India)
– ident: e_1_2_9_17_1
  doi: 10.1109/APEC39645.2020.9124252
– ident: e_1_2_9_23_1
  doi: 10.1016/j.rser.2015.07.068
– volume: 11
  start-page: 1
  issue: 3
  year: 2018
  ident: e_1_2_9_8_1
  article-title: A dual monitoring technique to detect power quality transients based on the fourth‐order spectrogram
  publication-title: Energies
– ident: e_1_2_9_41_1
  doi: 10.1016/j.asoc.2009.10.013
– ident: e_1_2_9_35_1
  doi: 10.1109/ICHQP.2018.8378902
– volume: 17
  start-page: 668
  issue: 2
  year: 2002
  ident: e_1_2_9_12_1
  article-title: Artificial intelligence and advanced mathematical tools for power quality applications: a survey
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/61.997958
– ident: e_1_2_9_22_1
  doi: 10.1109/IJCNN.2019.8852287
– volume: 272
  start-page: 505
  year: 2018
  ident: e_1_2_9_31_1
  article-title: Noise robust sound event classification with convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.021
– volume: 15
  start-page: 247
  issue: 4
  year: 2000
  ident: e_1_2_9_26_1
  article-title: Characterization of distribution power quality events with Fourier and wavelet transforms
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/61.847259
– volume: 11
  start-page: 4490
  issue: 5
  year: 2020
  ident: e_1_2_9_36_1
  article-title: Deep learning‐based real‐time building occupancy detection using AMI data
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2982351
– volume: 4
  start-page: 27
  issue: 1
  year: 2019
  ident: e_1_2_9_6_1
  article-title: Power quality disturbance classification based on time‐frequency domain multi‐feature and decision tree
  publication-title: Prot Control Mod Power Syst
  doi: 10.1186/s41601-019-0139-z
– volume: 29
  start-page: 78
  issue: 1
  year: 2021
  ident: e_1_2_9_33_1
  article-title: Effects of COVID‐19 on electric energy consumption in Turkey and ANN‐based short‐term forecasting
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-2006-29
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ijepes.2009.01.012
– ident: e_1_2_9_32_1
  doi: 10.3906/elk-1112-51
– ident: e_1_2_9_43_1
  doi: 10.1109/TPWRD.2009.2028792
– ident: e_1_2_9_47_1
  doi: 10.1109/TIE.2008.928111
– ident: e_1_2_9_4_1
  doi: 10.1002/2050-7038.12008
– ident: e_1_2_9_39_1
  doi: 10.1016/j.neucom.2012.09.037
– ident: e_1_2_9_48_1
  doi: 10.1016/j.ijepes.2007.07.003
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ijepes.2010.10.001
– ident: e_1_2_9_40_1
  doi: 10.1016/j.ijepes.2014.04.015
– volume: 81
  start-page: 660
  issue: 2
  year: 2011
  ident: e_1_2_9_2_1
  article-title: A real‐time classification method of power quality disturbances
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2010.10.032
– ident: e_1_2_9_14_1
  doi: 10.1016/j.epsr.2009.08.014
– ident: e_1_2_9_30_1
– volume: 7
  start-page: 20961–20966
  year: 2019
  ident: e_1_2_9_5_1
  article-title: An independent component analysis classification for complex power quality disturbances with sparse auto encoder features
  publication-title: IEEE Access
– ident: e_1_2_9_18_1
  doi: 10.1016/j.measurement.2018.06.059
– ident: e_1_2_9_42_1
  doi: 10.1016/j.epsr.2010.07.001
– ident: e_1_2_9_3_1
  doi: 10.1016/j.aej.2021.02.050
– ident: e_1_2_9_25_1
  doi: 10.1016/j.epsr.2012.02.009
– ident: e_1_2_9_49_1
  doi: 10.1016/j.eswa.2007.06.005
– volume: 1
  year: 2020
  ident: e_1_2_9_9_1
  article-title: Power quality event classification using optimized Bayesian convolutional neural networks
  publication-title: Electr Eng
– ident: e_1_2_9_34_1
  doi: 10.1109/TAPENERGY.2017.8397249
– ident: e_1_2_9_46_1
  doi: 10.1016/j.epsr.2008.03.002
– ident: e_1_2_9_44_1
  doi: 10.1016/j.neucom.2011.08.010
– ident: e_1_2_9_15_1
  doi: 10.1016/j.neucom.2012.08.031
SSID ssj0000941178
Score 2.4174523
Snippet This paper, using an inverse signal approach, presents a novel deep learning algorithm based on a convolutional neural network (CNN) and bidirectional long...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
bi‐LSTM
Classification
convolutional neural network
Deep learning
Disturbances
energy quality
Image classification
Image quality
Machine learning
power system analysis
Sine waves
spectrogram
Spectrograms
Title CNN/Bi‐LSTM‐based deep learning algorithm for classification of power quality disturbances by using spectrogram images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2050-7038.13204
https://www.proquest.com/docview/2615526461
Volume 31
WOSCitedRecordID wos000718204800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-7038
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000941178
  issn: 2050-7038
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 2050-7038
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000941178
  issn: 2050-7038
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BYYCBN6K85IGBJTSxQ5yMPFoxQIWgSGyR7XNLpdJWTYtUJn4Cv5Ffgu2k5SEhhMSURIqt-O5sf-fcfQdwwIXwNUXh8cTXnvUQvBh102N4LKSfaE595YpN8Ho9vr9ProtoQpsLk_NDTA_c7Mxw67Wd4EJmlQ_SUOof-56x1_jIZgGHszBHzVNYgrnzm9rd5fSgxfgvQeBW5GmLCcWPTyvfevm6O31Azs_A1e08teV_-OYVWCpgJznJ7WQVZnR3DRY_kRGuw_NZvV45bb-9vF7eNq7MxW5wSFDrPilqS7SI6LR6g_bw4ZEYsEuUhd421sipl_SapG-LrpE8U3NM0NjQaCCtYWVEjokNsm8Rl9yZh4WR9qNZz7INaNSqjbMLr6jM4Clm_CsPQ8l5LKJAogoURaZjrSJfs1BTbUYmE8Fk7MjnkauIhVImisaIwiAOiWwTSt1eV28B4TIwPhVGTRaykGsUoWCm10DGAUdEXoajiUJSVbCW2-IZnTTnW6aplWlqZZo6mZbhcNqgnxN2_Pzq7kTDaTFzs5TaH7UGJUZBGSpOl791k1Yb1Wt3t_3nFjuwQG2QjIuP2YXScDDSezCvnobtbLBfmPI7MCnzOw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swED6xMonxABtjogyYH_awl9DETuPkcYNWIEqEWJB4s2yfWypBW7UFCZ72E_Yb-SWznbSUSWhC2lPyEJ8S3539nXP3HcBXLmVoKMqAZ6EJXIQQpGi6AcOmVGFmOA21bzbB8zy9vMwWa2FKfoj5gZvzDL9eOwd3B9KNJ9ZQGjbDwBpsuu_KgOM3sBxbY2rWYPnwvH3RmZ-02AAmivySPB8x4_gJaeMvKc-3pyfMuYhc_dbTXv8fL_0e1irgSb6XlvIBlsxgA1YX6Ag_wsNBnjd-9B9__e78LE7txW1xSNCYEam6S_SIvO4Nx_3p1Q2xcJdoB75dtpFXMBl2yci1XSNlreY9QWtFt2PlTGtC1D1xafY94ss7y8Qw0r-xK9pkE4p2qzg4CqreDIFmNsIKMFacpzKJFOpIU2QmNToJDYsNNfbLVCaZSj39PHKdsFipTNMUUVrMoZB9gtpgODBbQLiKbFSFSZfFLOYGZSyZlRqpNOKIyOuwP9OI0BVvuWufcS1KxmUq3JwKN6fCz2kdvs0HjErKjpcf3ZmpWFS-OxHU_aq1ODGJ6tDwyvyXGNEqWmf-bvvVI77AylFx2hGd4_zkM7yjLmXGZ8vsQG06vjW78FbfTfuT8V5l138Azfr3Kw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NThsxEB6VHyF6gPIn0kLxgQOXJbv2Zr17pJCoFekKQSpxs2yPEyKFJEoCEj31EfqMfRJs7yaESgghcdo97Fi7nhn7G-_MNwCHXMrQUJQBz0ITuAghSNG0A4Y1qcLMcBpq32yC53l6fZ3N18IU_BCzAzfnGX69dg5uhtiuPrGG0rAWBtZg02NXBhwvwFJcyxLrnEtnl41fzdlJiw1gosgvyTOJKcdPSKv_jfJ8e3rCnPPI1W89jfX3eOlPsFYCT3JSWMoGfDD9Tfg4R0e4Bb9P87z6rfvvz9_mVeunvbgtDgkaMyRld4kOkb3OYNSd3NwSC3eJduDbZRt5BZNBmwxd2zVS1Go-ELRWdDdSzrTGRD0Ql2bfIb68s0gMI91bu6KNt6HVqLdOvwdlb4ZAMxthBRgrzlOZRAp1pCkykxqdhIbFhhr7ZSqTTKWefh65TlisVKZpiigt5lDIdmCxP-ibXSBcRTaqwqTNYhZzgzKWzI4aqTTiiMgrcDzViNAlb7lrn9ETBeMyFW5OhZtT4ee0AkczgWFB2fHyo3tTFYvSd8eCul-1FicmUQWqXpmvDSPqrfqFv_v8ZokDWLk4a4jmj_z8C6xSlzHjk2X2YHEyujP7sKzvJ93x6Gtp1o9kOfam
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN%2FBi%E2%80%90LSTM%E2%80%90based+deep+learning+algorithm+for+classification+of+power+quality+disturbances+by+using+spectrogram+images&rft.jtitle=International+transactions+on+electrical+energy+systems&rft.au=%C3%96zer%2C+%C4%B0lyas&rft.au=Efe%2C+Serhat+Berat&rft.au=%C3%96zbay%2C+Harun&rft.date=2021-12-01&rft.issn=2050-7038&rft.eissn=2050-7038&rft.volume=31&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2F2050-7038.13204&rft.externalDBID=10.1002%252F2050-7038.13204&rft.externalDocID=ETEP13204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7038&client=summon