A parallel algorithm for unilateral contact problems

•This contact algorithm is designed for High-Performance Computing.•The multicode approach allows using different time integration schemes for each body.•The size of the linear system of equations remains fixed.•The mesh partitioning is performed once at the beginning of the simulation.•The contact...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & structures Ročník 271; s. 106862
Hlavní autori: Guillamet, G., Rivero, M., Zavala-Aké, M., Vázquez, M., Houzeaux, G., Oller, S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.10.2022
Predmet:
ISSN:0045-7949
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •This contact algorithm is designed for High-Performance Computing.•The multicode approach allows using different time integration schemes for each body.•The size of the linear system of equations remains fixed.•The mesh partitioning is performed once at the beginning of the simulation.•The contact algorithm is simple and flexible for large-scale problems. In this paper, we introduce a novel parallel contact algorithm designed to run efficiently in High Performance Computing based supercomputers. Particular emphasis is put on its computational implementation in a multiphysics finite element code. The algorithm is based on the method of partial Dirichlet–Neumann boundary conditions and is capable to solve numerically a nonlinear contact problem between rigid and deformable bodies in a whole parallel framework. Its distinctive characteristic is that the contact is tackled as a coupled problem, in which the contacting bodies are treated separately, in a staggered way. Then, the coupling is performed through the exchange of boundary conditions at the contact interface following a Gauss–Seidel strategy. To validate this algorithm we conducted several benchmark tests by comparing the proposed solution against theoretical and other numerical solutions. Finally, we evaluated the parallel performance of the proposed algorithm in a real impact test to show its capabilities for large-scale applications.
AbstractList •This contact algorithm is designed for High-Performance Computing.•The multicode approach allows using different time integration schemes for each body.•The size of the linear system of equations remains fixed.•The mesh partitioning is performed once at the beginning of the simulation.•The contact algorithm is simple and flexible for large-scale problems. In this paper, we introduce a novel parallel contact algorithm designed to run efficiently in High Performance Computing based supercomputers. Particular emphasis is put on its computational implementation in a multiphysics finite element code. The algorithm is based on the method of partial Dirichlet–Neumann boundary conditions and is capable to solve numerically a nonlinear contact problem between rigid and deformable bodies in a whole parallel framework. Its distinctive characteristic is that the contact is tackled as a coupled problem, in which the contacting bodies are treated separately, in a staggered way. Then, the coupling is performed through the exchange of boundary conditions at the contact interface following a Gauss–Seidel strategy. To validate this algorithm we conducted several benchmark tests by comparing the proposed solution against theoretical and other numerical solutions. Finally, we evaluated the parallel performance of the proposed algorithm in a real impact test to show its capabilities for large-scale applications.
ArticleNumber 106862
Author Guillamet, G.
Rivero, M.
Houzeaux, G.
Oller, S.
Zavala-Aké, M.
Vázquez, M.
Author_xml – sequence: 1
  givenname: G.
  surname: Guillamet
  fullname: Guillamet, G.
  email: gerard.guillamet@bsc.es
  organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
– sequence: 2
  givenname: M.
  surname: Rivero
  fullname: Rivero, M.
  organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
– sequence: 3
  givenname: M.
  surname: Zavala-Aké
  fullname: Zavala-Aké, M.
  organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
– sequence: 4
  givenname: M.
  surname: Vázquez
  fullname: Vázquez, M.
  organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
– sequence: 5
  givenname: G.
  surname: Houzeaux
  fullname: Houzeaux, G.
  organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
– sequence: 6
  givenname: S.
  surname: Oller
  fullname: Oller, S.
  organization: Universitat Politècnica de Catalunya (UPC), Campus Nord UPC, 08034 Barcelona, Spain
BookMark eNqNj71qwzAUhTWk0CTtM9Qv4FSyLTkaOoTQn0CgS3ZxLV23CrJlJKXQt69CSocu7XThXL7D-RZkNvoRCbljdMUoE_fHlfbDFFM46VVFqyqnYi2qGZlT2vCylY28JosYj5RS0VA6J82mmCCAc-gKcG8-2PQ-FL0PxWm0DhLmX6H9mECnYgq-czjEG3LVg4t4-32X5PD0eNi-lPvX5912sy91zXgqe9NyIToDvIGKc6wYX69r2TGZA9N2OdASGNNY97KVomNCyg56bgzU0tRL8nCp1cHHGLBX2iZINq8JYJ1iVJ2t1VH9WKuztbpYZ779xU_BDhA-_0FuLiRmuw-LQUVtcdRobECdlPH2z44vfq98jQ
CitedBy_id crossref_primary_10_1016_j_compositesa_2022_107424
crossref_primary_10_1002_nme_70039
crossref_primary_10_1016_j_apm_2023_04_019
crossref_primary_10_1016_j_compstruc_2024_107567
Cites_doi 10.1002/nme.1620370403
10.1142/S0218202503002830
10.1016/S1631-073X(02)02488-3
10.1051/mmnp/20094106
10.1002/nme.1620090410
10.1016/0045-7949(90)90324-U
10.1007/s00791-002-0096-2
10.1002/nme.1620280603
10.1007/s004660050348
10.1016/j.compositesb.2014.09.009
10.1016/0045-7825(76)90018-9
10.1007/978-3-662-04864-1
10.1007/s00366-003-0252-4
10.1016/0045-7825(85)90030-1
10.1051/m2an:2008003
10.1002/9781118647974
10.1016/0045-7825(85)90088-X
10.1007/978-3-642-22167-5_13
10.1016/S0045-7825(98)00388-0
10.1007/978-3-540-32609-0
10.1002/nme.1620210107
10.1016/j.jocs.2015.12.007
10.1080/10618562.2020.1783440
10.1016/0045-7949(92)90540-G
10.1007/s10444-013-9299-y
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruc.2022.106862
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compstruc_2022_106862
S0045794922001225
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSH
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29F
6TJ
9DU
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
OHT
R2-
SBC
SET
SEW
T9H
TAE
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c315t-fd7566bda54a255e2158839b1954ad7be21c9a11ce3f9796b1699baf5dda39d3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888235800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Tue Nov 18 21:27:31 EST 2025
Sat Nov 29 07:27:38 EST 2025
Sun Apr 06 06:53:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Dirichlet–Neumann boundary conditions
High performance computing
Domain decomposition approach
Contact mechanics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-fd7566bda54a255e2158839b1954ad7be21c9a11ce3f9796b1699baf5dda39d3
ParticipantIDs crossref_citationtrail_10_1016_j_compstruc_2022_106862
crossref_primary_10_1016_j_compstruc_2022_106862
elsevier_sciencedirect_doi_10_1016_j_compstruc_2022_106862
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Computers & structures
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References D7136M-20, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event (2020). URL http://www.astm.org/cgi-bin/resolver.cgi?D7136D7136M
Attaway, Hendrickson, Plimpton, Gardner, Vaughan, Brown, Heinstein (b0120) 1998; 22
Haslinger, Kučera, Sassi (b0085) 2009; 4
Malone, Johnsok (b0115) 1994; 37
Haslinger, Kučera, Riton, Sassi (b0100) 2014; 40
Yastrebov (b0090) 2011
Wriggers, Zavarise (b0020) 2006
K. Bathe, A. Chaudhary, A solution method for planar and axisymmetric contact problems, International Journal for Numerical Methods in Engineering 21 (November 1983) (1985) 65–85. doi:10.1016/b978-1-85617-802-0.00007-4.
Griffiths, Smith (b0150) 2006
Rivero (b0145) 2018
Houzeaux, Garcia-Gasulla, Cajas, Borrell, Santiago, Moulinec, Vázquez (b0190) 2020; 34
Simo, Wriggers, Taylor (b0035) 1985; 50
Hughes, Taylor, Sackman, Curnier, Kanoknukulchai (b0010) 1976; 8
Kikuchi, Oden (b0055) 1988
Simo, Laursen (b0070) 1992; 42
V.A. Yastrebov, G. Cailletaud, F. Feyel, A local contact detection technique for very large contact and self-contact problems: Sequential and parallel implementations, Lecture Notes in Applied and Computational Mechanics 58 LNACM (2011) 227–251. doi:10.1007/978-3-642-22167-5-13.
G. Karypis, V. Kumar, METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering.
Bayada, Sabil, Sassi (b0080) 2002; 335
Caputo, De Luca, Lamanna, Lopresto, Riccio (b0175) 2015; 68
Belytschko, Kam Liu, Moran, Elkhodary (b0155) 2014; no. 1
Pietrzak, Curnier (b0065) 1999; 177
Har, Fulton (b0125) 2003; 19
Finite element Code_Aster, Analysis of Structures and Thermomechanics for Studies and Research. URL http://www.code-aster.org
Eck, Wohlmuth (b0095) 2003; 13
Wriggers, Vu Van, Stein (b0040) 1990; 37
Gallego, Anza (b0050) 1989; 28
A. International, ASTM
Francavilla, Zienkiewicz (b0005) 1975; 9
HPCToolkit performance tools. URL http://hpctoolkit.org/index.html.
Vázquez, Houzeaux, Koric, Artigues, Aguado-Sierra, Arís, Mira, Calmet, Cucchietti, Owen, Taha, Burness, Cela, Valero (b0160) 2016; 14
Y. Fournier, Parallel location and exchange, Tech. rep., Électricite de France (EDF) (2014).
Zavala-Aké (b0140) 2018
Yastrebov, Breitkopf (b0025) 2013
Laursen T. Computational contact and impact mechanics, Vol. 38; 2003. doi:10.1023/A:1023337230713.
Glowinski, Le Tallec (b0060) 1989
Ansys Mechanical APDL, 2020 R1, Help system, Theory Reference Chapter 4: Structures with Material Nonlinearities, ANSYS Inc.
Bayada, Sabil, Sassi (b0105) 2008; 42
R.H. Krause, B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction, Computing and Visualization in Sciencedoi:10.1007/s00791-002-0096-2.
Hallquist, Goudreau, Benson (b0030) 1985; 51
Griffiths (10.1016/j.compstruc.2022.106862_b0150) 2006
10.1016/j.compstruc.2022.106862_b0180
Simo (10.1016/j.compstruc.2022.106862_b0035) 1985; 50
Caputo (10.1016/j.compstruc.2022.106862_b0175) 2015; 68
Eck (10.1016/j.compstruc.2022.106862_b0095) 2003; 13
Bayada (10.1016/j.compstruc.2022.106862_b0080) 2002; 335
Kikuchi (10.1016/j.compstruc.2022.106862_b0055) 1988
Zavala-Aké (10.1016/j.compstruc.2022.106862_b0140) 2018
Francavilla (10.1016/j.compstruc.2022.106862_b0005) 1975; 9
Bayada (10.1016/j.compstruc.2022.106862_b0105) 2008; 42
Attaway (10.1016/j.compstruc.2022.106862_b0120) 1998; 22
Rivero (10.1016/j.compstruc.2022.106862_b0145) 2018
Vázquez (10.1016/j.compstruc.2022.106862_b0160) 2016; 14
Belytschko (10.1016/j.compstruc.2022.106862_b0155) 2014; no. 1
10.1016/j.compstruc.2022.106862_b0165
Wriggers (10.1016/j.compstruc.2022.106862_b0040) 1990; 37
10.1016/j.compstruc.2022.106862_b0045
Haslinger (10.1016/j.compstruc.2022.106862_b0100) 2014; 40
Glowinski (10.1016/j.compstruc.2022.106862_b0060) 1989
10.1016/j.compstruc.2022.106862_b0185
Yastrebov (10.1016/j.compstruc.2022.106862_b0025) 2013
Hughes (10.1016/j.compstruc.2022.106862_b0010) 1976; 8
Yastrebov (10.1016/j.compstruc.2022.106862_b0090) 2011
Houzeaux (10.1016/j.compstruc.2022.106862_b0190) 2020; 34
Wriggers (10.1016/j.compstruc.2022.106862_b0020) 2006
10.1016/j.compstruc.2022.106862_b0170
Simo (10.1016/j.compstruc.2022.106862_b0070) 1992; 42
Pietrzak (10.1016/j.compstruc.2022.106862_b0065) 1999; 177
Gallego (10.1016/j.compstruc.2022.106862_b0050) 1989; 28
Har (10.1016/j.compstruc.2022.106862_b0125) 2003; 19
Hallquist (10.1016/j.compstruc.2022.106862_b0030) 1985; 51
10.1016/j.compstruc.2022.106862_b0110
Haslinger (10.1016/j.compstruc.2022.106862_b0085) 2009; 4
10.1016/j.compstruc.2022.106862_b0075
10.1016/j.compstruc.2022.106862_b0130
10.1016/j.compstruc.2022.106862_b0015
Malone (10.1016/j.compstruc.2022.106862_b0115) 1994; 37
10.1016/j.compstruc.2022.106862_b0135
References_xml – volume: 335
  start-page: 381
  year: 2002
  end-page: 386
  ident: b0080
  article-title: Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: Résultat de convergence
  publication-title: C.R. Math
– reference: HPCToolkit performance tools. URL http://hpctoolkit.org/index.html.
– reference: Laursen T. Computational contact and impact mechanics, Vol. 38; 2003. doi:10.1023/A:1023337230713.
– year: 2013
  ident: b0025
  publication-title: Numerical Methods in Contact Mechanics
– reference: Finite element Code_Aster, Analysis of Structures and Thermomechanics for Studies and Research. URL http://www.code-aster.org
– reference: Y. Fournier, Parallel location and exchange, Tech. rep., Électricite de France (EDF) (2014).
– volume: 42
  start-page: 243
  year: 2008
  end-page: 262
  ident: b0105
  article-title: Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb’s friction law, ESAIM
  publication-title: Math Model Numer Anal
– reference: V.A. Yastrebov, G. Cailletaud, F. Feyel, A local contact detection technique for very large contact and self-contact problems: Sequential and parallel implementations, Lecture Notes in Applied and Computational Mechanics 58 LNACM (2011) 227–251. doi:10.1007/978-3-642-22167-5-13.
– volume: no. 1
  year: 2014
  ident: b0155
  publication-title: Nonlinear Finite Elements for Continua and Structures
– volume: 14
  start-page: 15
  year: 2016
  end-page: 27
  ident: b0160
  article-title: Alya: Multiphysics engineering simulation toward exascale
  publication-title: J Comput Sci
– reference: G. Karypis, V. Kumar, METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering.
– volume: 8
  start-page: 249
  year: 1976
  end-page: 276
  ident: b0010
  article-title: A finite element method for a class of contact-impact problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 37
  start-page: 559
  year: 1994
  end-page: 590
  ident: b0115
  article-title: A parallel finite element contact/impact algorithm for non-linear explicit transient analysis: Part I - The search algorithm and contact mechanics
  publication-title: Int J Numer Meth Eng
– reference: A. International, ASTM
– year: 1988
  ident: b0055
  article-title: Contact problems in elasticity: A study of Variational Inequalities and Finite Element methods
– volume: 34
  start-page: 486
  year: 2020
  end-page: 507
  ident: b0190
  article-title: Parallel multiphysics coupling: Algorithmic and computational performances
  publication-title: Int J Comput Fluid Dynam
– volume: 28
  start-page: 1249
  year: 1989
  end-page: 1264
  ident: b0050
  article-title: A mixed finite element model for the elastic contact problem
  publication-title: Int J Numer Meth Eng
– year: 2018
  ident: b0140
  article-title: A high-performance computing coupling tool for partitioned multi-physics applications
  publication-title: Ph.D. thesis, Universitat Politecnica de Catalunya
– volume: 9
  start-page: 913
  year: 1975
  end-page: 924
  ident: b0005
  article-title: A note on numerical computation of elastic contact problems
  publication-title: Int J Numer Meth Eng
– reference: K. Bathe, A. Chaudhary, A solution method for planar and axisymmetric contact problems, International Journal for Numerical Methods in Engineering 21 (November 1983) (1985) 65–85. doi:10.1016/b978-1-85617-802-0.00007-4.
– reference: /D7136M-20, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event (2020). URL http://www.astm.org/cgi-bin/resolver.cgi?D7136D7136M
– year: 2006
  ident: b0020
  publication-title: Computational Contact Mechanics
– year: 2011
  ident: b0090
  article-title: Computational Contact Mechanics, Phd thesis
  publication-title: MINES ParisTech
– reference: Ansys Mechanical APDL, 2020 R1, Help system, Theory Reference Chapter 4: Structures with Material Nonlinearities, ANSYS Inc.
– volume: 42
  start-page: 97
  year: 1992
  end-page: 116
  ident: b0070
  article-title: An augmented lagrangian treatment of contact problems involving friction
  publication-title: Comput Struct
– volume: 19
  start-page: 67
  year: 2003
  end-page: 84
  ident: b0125
  article-title: A parallel finite element procedure for contact-impact problems
  publication-title: Eng Comput
– volume: 40
  start-page: 65
  year: 2014
  end-page: 90
  ident: b0100
  article-title: A domain decomposition method for two-body contact problems with Tresca friction
  publication-title: Adv Comput Math
– volume: 177
  start-page: 351
  year: 1999
  end-page: 381
  ident: b0065
  article-title: Large deformation frictional contact mechanics: Continuum formulation and augmented Lagrangian treatment
  publication-title: Comput Methods Appl Mech Eng
– volume: 13
  start-page: 1103
  year: 2003
  end-page: 1118
  ident: b0095
  article-title: Convergence of a contact-Neumann iteration for the solution of two-body contact problems
  publication-title: Math Models Methods Appl Sci
– volume: 50
  start-page: 163
  year: 1985
  end-page: 180
  ident: b0035
  article-title: A perturbed Lagrangian formulation for the finite element solution of contact problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 51
  start-page: 107
  year: 1985
  end-page: 137
  ident: b0030
  article-title: Sliding interfaces with contact-impact in large-scale Lagrangian computations
  publication-title: Comput Methods Appl Mech Eng
– volume: 4
  start-page: 123
  year: 2009
  end-page: 146
  ident: b0085
  article-title: A domain decomposition algorithm for contact problems: Analysis and implementation
  publication-title: Math Model Nat Phenom
– volume: 68
  start-page: 385
  year: 2015
  end-page: 391
  ident: b0175
  article-title: Numerical investigation of onset and evolution of LVI damages in Carbon-Epoxy plates
  publication-title: Compos Part B: Eng
– year: 2018
  ident: b0145
  article-title: A Parallel Algorithm for Deformable Contact Problems
– volume: 22
  start-page: 143
  year: 1998
  end-page: 159
  ident: b0120
  article-title: A parallel contact detection algorithm for transient solid dynamics simulations using PRONT03D
  publication-title: Comput Mech
– year: 1989
  ident: b0060
  article-title: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics
  publication-title: Soc Industr Appl Math
– volume: 37
  start-page: 319
  year: 1990
  end-page: 331
  ident: b0040
  article-title: Finite element formulation of large deformation impact-contact problems with friction
  publication-title: Comput Struct
– year: 2006
  ident: b0150
  article-title: Numerical Methods for Engineers
– reference: R.H. Krause, B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction, Computing and Visualization in Sciencedoi:10.1007/s00791-002-0096-2.
– volume: 37
  start-page: 559
  year: 1994
  ident: 10.1016/j.compstruc.2022.106862_b0115
  article-title: A parallel finite element contact/impact algorithm for non-linear explicit transient analysis: Part I - The search algorithm and contact mechanics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620370403
– year: 2018
  ident: 10.1016/j.compstruc.2022.106862_b0145
– volume: 13
  start-page: 1103
  issue: 8
  year: 2003
  ident: 10.1016/j.compstruc.2022.106862_b0095
  article-title: Convergence of a contact-Neumann iteration for the solution of two-body contact problems
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S0218202503002830
– volume: 335
  start-page: 381
  issue: 4
  year: 2002
  ident: 10.1016/j.compstruc.2022.106862_b0080
  article-title: Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: Résultat de convergence
  publication-title: C.R. Math
  doi: 10.1016/S1631-073X(02)02488-3
– ident: 10.1016/j.compstruc.2022.106862_b0185
– volume: 4
  start-page: 123
  issue: 1
  year: 2009
  ident: 10.1016/j.compstruc.2022.106862_b0085
  article-title: A domain decomposition algorithm for contact problems: Analysis and implementation
  publication-title: Math Model Nat Phenom
  doi: 10.1051/mmnp/20094106
– volume: 9
  start-page: 913
  issue: 4
  year: 1975
  ident: 10.1016/j.compstruc.2022.106862_b0005
  article-title: A note on numerical computation of elastic contact problems
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620090410
– volume: 37
  start-page: 319
  issue: 3
  year: 1990
  ident: 10.1016/j.compstruc.2022.106862_b0040
  article-title: Finite element formulation of large deformation impact-contact problems with friction
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(90)90324-U
– year: 1989
  ident: 10.1016/j.compstruc.2022.106862_b0060
  article-title: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics
  publication-title: Soc Industr Appl Math
– ident: 10.1016/j.compstruc.2022.106862_b0075
  doi: 10.1007/s00791-002-0096-2
– volume: 28
  start-page: 1249
  issue: 6
  year: 1989
  ident: 10.1016/j.compstruc.2022.106862_b0050
  article-title: A mixed finite element model for the elastic contact problem
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620280603
– volume: 22
  start-page: 143
  issue: 2
  year: 1998
  ident: 10.1016/j.compstruc.2022.106862_b0120
  article-title: A parallel contact detection algorithm for transient solid dynamics simulations using PRONT03D
  publication-title: Comput Mech
  doi: 10.1007/s004660050348
– volume: 68
  start-page: 385
  year: 2015
  ident: 10.1016/j.compstruc.2022.106862_b0175
  article-title: Numerical investigation of onset and evolution of LVI damages in Carbon-Epoxy plates
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2014.09.009
– year: 2006
  ident: 10.1016/j.compstruc.2022.106862_b0150
– volume: 8
  start-page: 249
  issue: 3
  year: 1976
  ident: 10.1016/j.compstruc.2022.106862_b0010
  article-title: A finite element method for a class of contact-impact problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(76)90018-9
– ident: 10.1016/j.compstruc.2022.106862_b0015
  doi: 10.1007/978-3-662-04864-1
– ident: 10.1016/j.compstruc.2022.106862_b0170
– year: 2011
  ident: 10.1016/j.compstruc.2022.106862_b0090
  article-title: Computational Contact Mechanics, Phd thesis
  publication-title: MINES ParisTech
– year: 2018
  ident: 10.1016/j.compstruc.2022.106862_b0140
  article-title: A high-performance computing coupling tool for partitioned multi-physics applications
  publication-title: Ph.D. thesis, Universitat Politecnica de Catalunya
– volume: 19
  start-page: 67
  issue: 2–3
  year: 2003
  ident: 10.1016/j.compstruc.2022.106862_b0125
  article-title: A parallel finite element procedure for contact-impact problems
  publication-title: Eng Comput
  doi: 10.1007/s00366-003-0252-4
– ident: 10.1016/j.compstruc.2022.106862_b0130
– year: 1988
  ident: 10.1016/j.compstruc.2022.106862_b0055
– volume: 51
  start-page: 107
  issue: 1–3
  year: 1985
  ident: 10.1016/j.compstruc.2022.106862_b0030
  article-title: Sliding interfaces with contact-impact in large-scale Lagrangian computations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(85)90030-1
– volume: 42
  start-page: 243
  year: 2008
  ident: 10.1016/j.compstruc.2022.106862_b0105
  article-title: Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb’s friction law, ESAIM
  publication-title: Math Model Numer Anal
  doi: 10.1051/m2an:2008003
– year: 2013
  ident: 10.1016/j.compstruc.2022.106862_b0025
  publication-title: Numerical Methods in Contact Mechanics
  doi: 10.1002/9781118647974
– ident: 10.1016/j.compstruc.2022.106862_b0165
– volume: 50
  start-page: 163
  issue: 2
  year: 1985
  ident: 10.1016/j.compstruc.2022.106862_b0035
  article-title: A perturbed Lagrangian formulation for the finite element solution of contact problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(85)90088-X
– ident: 10.1016/j.compstruc.2022.106862_b0110
  doi: 10.1007/978-3-642-22167-5_13
– volume: 177
  start-page: 351
  issue: 3–4
  year: 1999
  ident: 10.1016/j.compstruc.2022.106862_b0065
  article-title: Large deformation frictional contact mechanics: Continuum formulation and augmented Lagrangian treatment
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(98)00388-0
– ident: 10.1016/j.compstruc.2022.106862_b0180
– year: 2006
  ident: 10.1016/j.compstruc.2022.106862_b0020
  publication-title: Computational Contact Mechanics
  doi: 10.1007/978-3-540-32609-0
– volume: no. 1
  year: 2014
  ident: 10.1016/j.compstruc.2022.106862_b0155
– ident: 10.1016/j.compstruc.2022.106862_b0045
  doi: 10.1002/nme.1620210107
– volume: 14
  start-page: 15
  year: 2016
  ident: 10.1016/j.compstruc.2022.106862_b0160
  article-title: Alya: Multiphysics engineering simulation toward exascale
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2015.12.007
– volume: 34
  start-page: 486
  issue: 7–8
  year: 2020
  ident: 10.1016/j.compstruc.2022.106862_b0190
  article-title: Parallel multiphysics coupling: Algorithmic and computational performances
  publication-title: Int J Comput Fluid Dynam
  doi: 10.1080/10618562.2020.1783440
– ident: 10.1016/j.compstruc.2022.106862_b0135
– volume: 42
  start-page: 97
  issue: 1
  year: 1992
  ident: 10.1016/j.compstruc.2022.106862_b0070
  article-title: An augmented lagrangian treatment of contact problems involving friction
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(92)90540-G
– volume: 40
  start-page: 65
  issue: 1
  year: 2014
  ident: 10.1016/j.compstruc.2022.106862_b0100
  article-title: A domain decomposition method for two-body contact problems with Tresca friction
  publication-title: Adv Comput Math
  doi: 10.1007/s10444-013-9299-y
SSID ssj0006400
Score 2.404721
Snippet •This contact algorithm is designed for High-Performance Computing.•The multicode approach allows using different time integration schemes for each body.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106862
SubjectTerms Contact mechanics
Dirichlet–Neumann boundary conditions
Domain decomposition approach
Finite element method
High performance computing
Title A parallel algorithm for unilateral contact problems
URI https://dx.doi.org/10.1016/j.compstruc.2022.106862
Volume 271
WOSCitedRecordID wos000888235800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006400
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA7r6kEP4hPf9OBNKttH2saLFPGJiuAii5eSpqmu1rrsQ8Rf70zTtCsKKuKllAlJm3whmUm-mSFkG00Oj7nUjAFx05XUNpkEw1V4wpWgMsuWCpl_7l9eBp0Ou2o09rUvzEvm53nw-sp6_wo1yABsdJ39BdxVoyCAdwAdngA7PH8EfLiD4byzTCL3-O4ZjP_7p4JMOMq7GUeH46wgqKNzZJlOZjCuouo8D4NiVqj4sqN-TTU8HmGioid1iXG8W93YIMGjOHe9qGS3HDrGzfBRXcd_LLwphNYbbExvYyXlCQQYr0jooPWxmHaNqXlIxVLrYixMFY9UL7W2SrfyadlWJwgPOOq9ol-7-B2Qo_9KvVNV_MFrbB0bt-3ibpBOkEnbpyxoksnw9LBzVm3Gnqu9kNTffKD4ffm5rxWUMaWjPUdmS2vBCBXK86Qh8wUyMxZDcpG4oaHxNiq8DcDbqPE2SrwNjfcSaR8dtg9OzDIVhikciw7NNPFB744TTl0ORqAERS0A1TbGeH088WMQCMYtS0gnZT7zYstjLOYpTRLusMRZJs38OZcrxPBtL2WBEwfCCVwaS546MmApFcJOWnbirBJPdz8SZZh4zFaSRZoP-BBV4xbhuEVq3FZJq6rYU5FSvq-yp8c3KhU-pchFMDG-q7z2l8rrZLqeyRukCeVyk0yJl2F30N8qJ9E7lgR8rw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+algorithm+for+unilateral+contact+problems&rft.jtitle=Computers+%26+structures&rft.au=Guillamet%2C+G.&rft.au=Rivero%2C+M.&rft.au=Zavala-Ak%C3%A9%2C+M.&rft.au=V%C3%A1zquez%2C+M.&rft.date=2022-10-15&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.volume=271&rft_id=info:doi/10.1016%2Fj.compstruc.2022.106862&rft.externalDocID=S0045794922001225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon