A parallel algorithm for unilateral contact problems
•This contact algorithm is designed for High-Performance Computing.•The multicode approach allows using different time integration schemes for each body.•The size of the linear system of equations remains fixed.•The mesh partitioning is performed once at the beginning of the simulation.•The contact...
Uložené v:
| Vydané v: | Computers & structures Ročník 271; s. 106862 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.10.2022
|
| Predmet: | |
| ISSN: | 0045-7949 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •This contact algorithm is designed for High-Performance Computing.•The multicode approach allows using different time integration schemes for each body.•The size of the linear system of equations remains fixed.•The mesh partitioning is performed once at the beginning of the simulation.•The contact algorithm is simple and flexible for large-scale problems.
In this paper, we introduce a novel parallel contact algorithm designed to run efficiently in High Performance Computing based supercomputers. Particular emphasis is put on its computational implementation in a multiphysics finite element code. The algorithm is based on the method of partial Dirichlet–Neumann boundary conditions and is capable to solve numerically a nonlinear contact problem between rigid and deformable bodies in a whole parallel framework. Its distinctive characteristic is that the contact is tackled as a coupled problem, in which the contacting bodies are treated separately, in a staggered way. Then, the coupling is performed through the exchange of boundary conditions at the contact interface following a Gauss–Seidel strategy. To validate this algorithm we conducted several benchmark tests by comparing the proposed solution against theoretical and other numerical solutions. Finally, we evaluated the parallel performance of the proposed algorithm in a real impact test to show its capabilities for large-scale applications. |
|---|---|
| AbstractList | •This contact algorithm is designed for High-Performance Computing.•The multicode approach allows using different time integration schemes for each body.•The size of the linear system of equations remains fixed.•The mesh partitioning is performed once at the beginning of the simulation.•The contact algorithm is simple and flexible for large-scale problems.
In this paper, we introduce a novel parallel contact algorithm designed to run efficiently in High Performance Computing based supercomputers. Particular emphasis is put on its computational implementation in a multiphysics finite element code. The algorithm is based on the method of partial Dirichlet–Neumann boundary conditions and is capable to solve numerically a nonlinear contact problem between rigid and deformable bodies in a whole parallel framework. Its distinctive characteristic is that the contact is tackled as a coupled problem, in which the contacting bodies are treated separately, in a staggered way. Then, the coupling is performed through the exchange of boundary conditions at the contact interface following a Gauss–Seidel strategy. To validate this algorithm we conducted several benchmark tests by comparing the proposed solution against theoretical and other numerical solutions. Finally, we evaluated the parallel performance of the proposed algorithm in a real impact test to show its capabilities for large-scale applications. |
| ArticleNumber | 106862 |
| Author | Guillamet, G. Rivero, M. Houzeaux, G. Oller, S. Zavala-Aké, M. Vázquez, M. |
| Author_xml | – sequence: 1 givenname: G. surname: Guillamet fullname: Guillamet, G. email: gerard.guillamet@bsc.es organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain – sequence: 2 givenname: M. surname: Rivero fullname: Rivero, M. organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain – sequence: 3 givenname: M. surname: Zavala-Aké fullname: Zavala-Aké, M. organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain – sequence: 4 givenname: M. surname: Vázquez fullname: Vázquez, M. organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain – sequence: 5 givenname: G. surname: Houzeaux fullname: Houzeaux, G. organization: Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain – sequence: 6 givenname: S. surname: Oller fullname: Oller, S. organization: Universitat Politècnica de Catalunya (UPC), Campus Nord UPC, 08034 Barcelona, Spain |
| BookMark | eNqNj71qwzAUhTWk0CTtM9Qv4FSyLTkaOoTQn0CgS3ZxLV23CrJlJKXQt69CSocu7XThXL7D-RZkNvoRCbljdMUoE_fHlfbDFFM46VVFqyqnYi2qGZlT2vCylY28JosYj5RS0VA6J82mmCCAc-gKcG8-2PQ-FL0PxWm0DhLmX6H9mECnYgq-czjEG3LVg4t4-32X5PD0eNi-lPvX5912sy91zXgqe9NyIToDvIGKc6wYX69r2TGZA9N2OdASGNNY97KVomNCyg56bgzU0tRL8nCp1cHHGLBX2iZINq8JYJ1iVJ2t1VH9WKuztbpYZ779xU_BDhA-_0FuLiRmuw-LQUVtcdRobECdlPH2z44vfq98jQ |
| CitedBy_id | crossref_primary_10_1016_j_compositesa_2022_107424 crossref_primary_10_1002_nme_70039 crossref_primary_10_1016_j_apm_2023_04_019 crossref_primary_10_1016_j_compstruc_2024_107567 |
| Cites_doi | 10.1002/nme.1620370403 10.1142/S0218202503002830 10.1016/S1631-073X(02)02488-3 10.1051/mmnp/20094106 10.1002/nme.1620090410 10.1016/0045-7949(90)90324-U 10.1007/s00791-002-0096-2 10.1002/nme.1620280603 10.1007/s004660050348 10.1016/j.compositesb.2014.09.009 10.1016/0045-7825(76)90018-9 10.1007/978-3-662-04864-1 10.1007/s00366-003-0252-4 10.1016/0045-7825(85)90030-1 10.1051/m2an:2008003 10.1002/9781118647974 10.1016/0045-7825(85)90088-X 10.1007/978-3-642-22167-5_13 10.1016/S0045-7825(98)00388-0 10.1007/978-3-540-32609-0 10.1002/nme.1620210107 10.1016/j.jocs.2015.12.007 10.1080/10618562.2020.1783440 10.1016/0045-7949(92)90540-G 10.1007/s10444-013-9299-y |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compstruc.2022.106862 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compstruc_2022_106862 S0045794922001225 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SPD SSH SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29F 6TJ 9DU AAQXK AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ OHT R2- SBC SET SEW T9H TAE VH1 WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c315t-fd7566bda54a255e2158839b1954ad7be21c9a11ce3f9796b1699baf5dda39d3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888235800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7949 |
| IngestDate | Tue Nov 18 21:27:31 EST 2025 Sat Nov 29 07:27:38 EST 2025 Sun Apr 06 06:53:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite element method Dirichlet–Neumann boundary conditions High performance computing Domain decomposition approach Contact mechanics |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c315t-fd7566bda54a255e2158839b1954ad7be21c9a11ce3f9796b1699baf5dda39d3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compstruc_2022_106862 crossref_primary_10_1016_j_compstruc_2022_106862 elsevier_sciencedirect_doi_10_1016_j_compstruc_2022_106862 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-15 |
| PublicationDateYYYYMMDD | 2022-10-15 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & structures |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | D7136M-20, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event (2020). URL http://www.astm.org/cgi-bin/resolver.cgi?D7136D7136M Attaway, Hendrickson, Plimpton, Gardner, Vaughan, Brown, Heinstein (b0120) 1998; 22 Haslinger, Kučera, Sassi (b0085) 2009; 4 Malone, Johnsok (b0115) 1994; 37 Haslinger, Kučera, Riton, Sassi (b0100) 2014; 40 Yastrebov (b0090) 2011 Wriggers, Zavarise (b0020) 2006 K. Bathe, A. Chaudhary, A solution method for planar and axisymmetric contact problems, International Journal for Numerical Methods in Engineering 21 (November 1983) (1985) 65–85. doi:10.1016/b978-1-85617-802-0.00007-4. Griffiths, Smith (b0150) 2006 Rivero (b0145) 2018 Houzeaux, Garcia-Gasulla, Cajas, Borrell, Santiago, Moulinec, Vázquez (b0190) 2020; 34 Simo, Wriggers, Taylor (b0035) 1985; 50 Hughes, Taylor, Sackman, Curnier, Kanoknukulchai (b0010) 1976; 8 Kikuchi, Oden (b0055) 1988 Simo, Laursen (b0070) 1992; 42 V.A. Yastrebov, G. Cailletaud, F. Feyel, A local contact detection technique for very large contact and self-contact problems: Sequential and parallel implementations, Lecture Notes in Applied and Computational Mechanics 58 LNACM (2011) 227–251. doi:10.1007/978-3-642-22167-5-13. G. Karypis, V. Kumar, METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering. Bayada, Sabil, Sassi (b0080) 2002; 335 Caputo, De Luca, Lamanna, Lopresto, Riccio (b0175) 2015; 68 Belytschko, Kam Liu, Moran, Elkhodary (b0155) 2014; no. 1 Pietrzak, Curnier (b0065) 1999; 177 Har, Fulton (b0125) 2003; 19 Finite element Code_Aster, Analysis of Structures and Thermomechanics for Studies and Research. URL http://www.code-aster.org Eck, Wohlmuth (b0095) 2003; 13 Wriggers, Vu Van, Stein (b0040) 1990; 37 Gallego, Anza (b0050) 1989; 28 A. International, ASTM Francavilla, Zienkiewicz (b0005) 1975; 9 HPCToolkit performance tools. URL http://hpctoolkit.org/index.html. Vázquez, Houzeaux, Koric, Artigues, Aguado-Sierra, Arís, Mira, Calmet, Cucchietti, Owen, Taha, Burness, Cela, Valero (b0160) 2016; 14 Y. Fournier, Parallel location and exchange, Tech. rep., Électricite de France (EDF) (2014). Zavala-Aké (b0140) 2018 Yastrebov, Breitkopf (b0025) 2013 Laursen T. Computational contact and impact mechanics, Vol. 38; 2003. doi:10.1023/A:1023337230713. Glowinski, Le Tallec (b0060) 1989 Ansys Mechanical APDL, 2020 R1, Help system, Theory Reference Chapter 4: Structures with Material Nonlinearities, ANSYS Inc. Bayada, Sabil, Sassi (b0105) 2008; 42 R.H. Krause, B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction, Computing and Visualization in Sciencedoi:10.1007/s00791-002-0096-2. Hallquist, Goudreau, Benson (b0030) 1985; 51 Griffiths (10.1016/j.compstruc.2022.106862_b0150) 2006 10.1016/j.compstruc.2022.106862_b0180 Simo (10.1016/j.compstruc.2022.106862_b0035) 1985; 50 Caputo (10.1016/j.compstruc.2022.106862_b0175) 2015; 68 Eck (10.1016/j.compstruc.2022.106862_b0095) 2003; 13 Bayada (10.1016/j.compstruc.2022.106862_b0080) 2002; 335 Kikuchi (10.1016/j.compstruc.2022.106862_b0055) 1988 Zavala-Aké (10.1016/j.compstruc.2022.106862_b0140) 2018 Francavilla (10.1016/j.compstruc.2022.106862_b0005) 1975; 9 Bayada (10.1016/j.compstruc.2022.106862_b0105) 2008; 42 Attaway (10.1016/j.compstruc.2022.106862_b0120) 1998; 22 Rivero (10.1016/j.compstruc.2022.106862_b0145) 2018 Vázquez (10.1016/j.compstruc.2022.106862_b0160) 2016; 14 Belytschko (10.1016/j.compstruc.2022.106862_b0155) 2014; no. 1 10.1016/j.compstruc.2022.106862_b0165 Wriggers (10.1016/j.compstruc.2022.106862_b0040) 1990; 37 10.1016/j.compstruc.2022.106862_b0045 Haslinger (10.1016/j.compstruc.2022.106862_b0100) 2014; 40 Glowinski (10.1016/j.compstruc.2022.106862_b0060) 1989 10.1016/j.compstruc.2022.106862_b0185 Yastrebov (10.1016/j.compstruc.2022.106862_b0025) 2013 Hughes (10.1016/j.compstruc.2022.106862_b0010) 1976; 8 Yastrebov (10.1016/j.compstruc.2022.106862_b0090) 2011 Houzeaux (10.1016/j.compstruc.2022.106862_b0190) 2020; 34 Wriggers (10.1016/j.compstruc.2022.106862_b0020) 2006 10.1016/j.compstruc.2022.106862_b0170 Simo (10.1016/j.compstruc.2022.106862_b0070) 1992; 42 Pietrzak (10.1016/j.compstruc.2022.106862_b0065) 1999; 177 Gallego (10.1016/j.compstruc.2022.106862_b0050) 1989; 28 Har (10.1016/j.compstruc.2022.106862_b0125) 2003; 19 Hallquist (10.1016/j.compstruc.2022.106862_b0030) 1985; 51 10.1016/j.compstruc.2022.106862_b0110 Haslinger (10.1016/j.compstruc.2022.106862_b0085) 2009; 4 10.1016/j.compstruc.2022.106862_b0075 10.1016/j.compstruc.2022.106862_b0130 10.1016/j.compstruc.2022.106862_b0015 Malone (10.1016/j.compstruc.2022.106862_b0115) 1994; 37 10.1016/j.compstruc.2022.106862_b0135 |
| References_xml | – volume: 335 start-page: 381 year: 2002 end-page: 386 ident: b0080 article-title: Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: Résultat de convergence publication-title: C.R. Math – reference: HPCToolkit performance tools. URL http://hpctoolkit.org/index.html. – reference: Laursen T. Computational contact and impact mechanics, Vol. 38; 2003. doi:10.1023/A:1023337230713. – year: 2013 ident: b0025 publication-title: Numerical Methods in Contact Mechanics – reference: Finite element Code_Aster, Analysis of Structures and Thermomechanics for Studies and Research. URL http://www.code-aster.org – reference: Y. Fournier, Parallel location and exchange, Tech. rep., Électricite de France (EDF) (2014). – volume: 42 start-page: 243 year: 2008 end-page: 262 ident: b0105 article-title: Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb’s friction law, ESAIM publication-title: Math Model Numer Anal – reference: V.A. Yastrebov, G. Cailletaud, F. Feyel, A local contact detection technique for very large contact and self-contact problems: Sequential and parallel implementations, Lecture Notes in Applied and Computational Mechanics 58 LNACM (2011) 227–251. doi:10.1007/978-3-642-22167-5-13. – volume: no. 1 year: 2014 ident: b0155 publication-title: Nonlinear Finite Elements for Continua and Structures – volume: 14 start-page: 15 year: 2016 end-page: 27 ident: b0160 article-title: Alya: Multiphysics engineering simulation toward exascale publication-title: J Comput Sci – reference: G. Karypis, V. Kumar, METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering. – volume: 8 start-page: 249 year: 1976 end-page: 276 ident: b0010 article-title: A finite element method for a class of contact-impact problems publication-title: Comput Methods Appl Mech Eng – volume: 37 start-page: 559 year: 1994 end-page: 590 ident: b0115 article-title: A parallel finite element contact/impact algorithm for non-linear explicit transient analysis: Part I - The search algorithm and contact mechanics publication-title: Int J Numer Meth Eng – reference: A. International, ASTM – year: 1988 ident: b0055 article-title: Contact problems in elasticity: A study of Variational Inequalities and Finite Element methods – volume: 34 start-page: 486 year: 2020 end-page: 507 ident: b0190 article-title: Parallel multiphysics coupling: Algorithmic and computational performances publication-title: Int J Comput Fluid Dynam – volume: 28 start-page: 1249 year: 1989 end-page: 1264 ident: b0050 article-title: A mixed finite element model for the elastic contact problem publication-title: Int J Numer Meth Eng – year: 2018 ident: b0140 article-title: A high-performance computing coupling tool for partitioned multi-physics applications publication-title: Ph.D. thesis, Universitat Politecnica de Catalunya – volume: 9 start-page: 913 year: 1975 end-page: 924 ident: b0005 article-title: A note on numerical computation of elastic contact problems publication-title: Int J Numer Meth Eng – reference: K. Bathe, A. Chaudhary, A solution method for planar and axisymmetric contact problems, International Journal for Numerical Methods in Engineering 21 (November 1983) (1985) 65–85. doi:10.1016/b978-1-85617-802-0.00007-4. – reference: /D7136M-20, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event (2020). URL http://www.astm.org/cgi-bin/resolver.cgi?D7136D7136M – year: 2006 ident: b0020 publication-title: Computational Contact Mechanics – year: 2011 ident: b0090 article-title: Computational Contact Mechanics, Phd thesis publication-title: MINES ParisTech – reference: Ansys Mechanical APDL, 2020 R1, Help system, Theory Reference Chapter 4: Structures with Material Nonlinearities, ANSYS Inc. – volume: 42 start-page: 97 year: 1992 end-page: 116 ident: b0070 article-title: An augmented lagrangian treatment of contact problems involving friction publication-title: Comput Struct – volume: 19 start-page: 67 year: 2003 end-page: 84 ident: b0125 article-title: A parallel finite element procedure for contact-impact problems publication-title: Eng Comput – volume: 40 start-page: 65 year: 2014 end-page: 90 ident: b0100 article-title: A domain decomposition method for two-body contact problems with Tresca friction publication-title: Adv Comput Math – volume: 177 start-page: 351 year: 1999 end-page: 381 ident: b0065 article-title: Large deformation frictional contact mechanics: Continuum formulation and augmented Lagrangian treatment publication-title: Comput Methods Appl Mech Eng – volume: 13 start-page: 1103 year: 2003 end-page: 1118 ident: b0095 article-title: Convergence of a contact-Neumann iteration for the solution of two-body contact problems publication-title: Math Models Methods Appl Sci – volume: 50 start-page: 163 year: 1985 end-page: 180 ident: b0035 article-title: A perturbed Lagrangian formulation for the finite element solution of contact problems publication-title: Comput Methods Appl Mech Eng – volume: 51 start-page: 107 year: 1985 end-page: 137 ident: b0030 article-title: Sliding interfaces with contact-impact in large-scale Lagrangian computations publication-title: Comput Methods Appl Mech Eng – volume: 4 start-page: 123 year: 2009 end-page: 146 ident: b0085 article-title: A domain decomposition algorithm for contact problems: Analysis and implementation publication-title: Math Model Nat Phenom – volume: 68 start-page: 385 year: 2015 end-page: 391 ident: b0175 article-title: Numerical investigation of onset and evolution of LVI damages in Carbon-Epoxy plates publication-title: Compos Part B: Eng – year: 2018 ident: b0145 article-title: A Parallel Algorithm for Deformable Contact Problems – volume: 22 start-page: 143 year: 1998 end-page: 159 ident: b0120 article-title: A parallel contact detection algorithm for transient solid dynamics simulations using PRONT03D publication-title: Comput Mech – year: 1989 ident: b0060 article-title: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics publication-title: Soc Industr Appl Math – volume: 37 start-page: 319 year: 1990 end-page: 331 ident: b0040 article-title: Finite element formulation of large deformation impact-contact problems with friction publication-title: Comput Struct – year: 2006 ident: b0150 article-title: Numerical Methods for Engineers – reference: R.H. Krause, B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction, Computing and Visualization in Sciencedoi:10.1007/s00791-002-0096-2. – volume: 37 start-page: 559 year: 1994 ident: 10.1016/j.compstruc.2022.106862_b0115 article-title: A parallel finite element contact/impact algorithm for non-linear explicit transient analysis: Part I - The search algorithm and contact mechanics publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1620370403 – year: 2018 ident: 10.1016/j.compstruc.2022.106862_b0145 – volume: 13 start-page: 1103 issue: 8 year: 2003 ident: 10.1016/j.compstruc.2022.106862_b0095 article-title: Convergence of a contact-Neumann iteration for the solution of two-body contact problems publication-title: Math Models Methods Appl Sci doi: 10.1142/S0218202503002830 – volume: 335 start-page: 381 issue: 4 year: 2002 ident: 10.1016/j.compstruc.2022.106862_b0080 article-title: Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: Résultat de convergence publication-title: C.R. Math doi: 10.1016/S1631-073X(02)02488-3 – ident: 10.1016/j.compstruc.2022.106862_b0185 – volume: 4 start-page: 123 issue: 1 year: 2009 ident: 10.1016/j.compstruc.2022.106862_b0085 article-title: A domain decomposition algorithm for contact problems: Analysis and implementation publication-title: Math Model Nat Phenom doi: 10.1051/mmnp/20094106 – volume: 9 start-page: 913 issue: 4 year: 1975 ident: 10.1016/j.compstruc.2022.106862_b0005 article-title: A note on numerical computation of elastic contact problems publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1620090410 – volume: 37 start-page: 319 issue: 3 year: 1990 ident: 10.1016/j.compstruc.2022.106862_b0040 article-title: Finite element formulation of large deformation impact-contact problems with friction publication-title: Comput Struct doi: 10.1016/0045-7949(90)90324-U – year: 1989 ident: 10.1016/j.compstruc.2022.106862_b0060 article-title: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics publication-title: Soc Industr Appl Math – ident: 10.1016/j.compstruc.2022.106862_b0075 doi: 10.1007/s00791-002-0096-2 – volume: 28 start-page: 1249 issue: 6 year: 1989 ident: 10.1016/j.compstruc.2022.106862_b0050 article-title: A mixed finite element model for the elastic contact problem publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1620280603 – volume: 22 start-page: 143 issue: 2 year: 1998 ident: 10.1016/j.compstruc.2022.106862_b0120 article-title: A parallel contact detection algorithm for transient solid dynamics simulations using PRONT03D publication-title: Comput Mech doi: 10.1007/s004660050348 – volume: 68 start-page: 385 year: 2015 ident: 10.1016/j.compstruc.2022.106862_b0175 article-title: Numerical investigation of onset and evolution of LVI damages in Carbon-Epoxy plates publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2014.09.009 – year: 2006 ident: 10.1016/j.compstruc.2022.106862_b0150 – volume: 8 start-page: 249 issue: 3 year: 1976 ident: 10.1016/j.compstruc.2022.106862_b0010 article-title: A finite element method for a class of contact-impact problems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(76)90018-9 – ident: 10.1016/j.compstruc.2022.106862_b0015 doi: 10.1007/978-3-662-04864-1 – ident: 10.1016/j.compstruc.2022.106862_b0170 – year: 2011 ident: 10.1016/j.compstruc.2022.106862_b0090 article-title: Computational Contact Mechanics, Phd thesis publication-title: MINES ParisTech – year: 2018 ident: 10.1016/j.compstruc.2022.106862_b0140 article-title: A high-performance computing coupling tool for partitioned multi-physics applications publication-title: Ph.D. thesis, Universitat Politecnica de Catalunya – volume: 19 start-page: 67 issue: 2–3 year: 2003 ident: 10.1016/j.compstruc.2022.106862_b0125 article-title: A parallel finite element procedure for contact-impact problems publication-title: Eng Comput doi: 10.1007/s00366-003-0252-4 – ident: 10.1016/j.compstruc.2022.106862_b0130 – year: 1988 ident: 10.1016/j.compstruc.2022.106862_b0055 – volume: 51 start-page: 107 issue: 1–3 year: 1985 ident: 10.1016/j.compstruc.2022.106862_b0030 article-title: Sliding interfaces with contact-impact in large-scale Lagrangian computations publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(85)90030-1 – volume: 42 start-page: 243 year: 2008 ident: 10.1016/j.compstruc.2022.106862_b0105 article-title: Convergence of a Neumann-Dirichlet algorithm for two-body contact problems with non local Coulomb’s friction law, ESAIM publication-title: Math Model Numer Anal doi: 10.1051/m2an:2008003 – year: 2013 ident: 10.1016/j.compstruc.2022.106862_b0025 publication-title: Numerical Methods in Contact Mechanics doi: 10.1002/9781118647974 – ident: 10.1016/j.compstruc.2022.106862_b0165 – volume: 50 start-page: 163 issue: 2 year: 1985 ident: 10.1016/j.compstruc.2022.106862_b0035 article-title: A perturbed Lagrangian formulation for the finite element solution of contact problems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(85)90088-X – ident: 10.1016/j.compstruc.2022.106862_b0110 doi: 10.1007/978-3-642-22167-5_13 – volume: 177 start-page: 351 issue: 3–4 year: 1999 ident: 10.1016/j.compstruc.2022.106862_b0065 article-title: Large deformation frictional contact mechanics: Continuum formulation and augmented Lagrangian treatment publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(98)00388-0 – ident: 10.1016/j.compstruc.2022.106862_b0180 – year: 2006 ident: 10.1016/j.compstruc.2022.106862_b0020 publication-title: Computational Contact Mechanics doi: 10.1007/978-3-540-32609-0 – volume: no. 1 year: 2014 ident: 10.1016/j.compstruc.2022.106862_b0155 – ident: 10.1016/j.compstruc.2022.106862_b0045 doi: 10.1002/nme.1620210107 – volume: 14 start-page: 15 year: 2016 ident: 10.1016/j.compstruc.2022.106862_b0160 article-title: Alya: Multiphysics engineering simulation toward exascale publication-title: J Comput Sci doi: 10.1016/j.jocs.2015.12.007 – volume: 34 start-page: 486 issue: 7–8 year: 2020 ident: 10.1016/j.compstruc.2022.106862_b0190 article-title: Parallel multiphysics coupling: Algorithmic and computational performances publication-title: Int J Comput Fluid Dynam doi: 10.1080/10618562.2020.1783440 – ident: 10.1016/j.compstruc.2022.106862_b0135 – volume: 42 start-page: 97 issue: 1 year: 1992 ident: 10.1016/j.compstruc.2022.106862_b0070 article-title: An augmented lagrangian treatment of contact problems involving friction publication-title: Comput Struct doi: 10.1016/0045-7949(92)90540-G – volume: 40 start-page: 65 issue: 1 year: 2014 ident: 10.1016/j.compstruc.2022.106862_b0100 article-title: A domain decomposition method for two-body contact problems with Tresca friction publication-title: Adv Comput Math doi: 10.1007/s10444-013-9299-y |
| SSID | ssj0006400 |
| Score | 2.404721 |
| Snippet | •This contact algorithm is designed for High-Performance Computing.•The multicode approach allows using different time integration schemes for each body.•The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106862 |
| SubjectTerms | Contact mechanics Dirichlet–Neumann boundary conditions Domain decomposition approach Finite element method High performance computing |
| Title | A parallel algorithm for unilateral contact problems |
| URI | https://dx.doi.org/10.1016/j.compstruc.2022.106862 |
| Volume | 271 |
| WOSCitedRecordID | wos000888235800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0045-7949 databaseCode: AIEXJ dateStart: 19950103 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006400 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA7r6kEP4hPf9OBNKttH2saLFPGJiuAii5eSpqmu1rrsQ8Rf70zTtCsKKuKllAlJm3whmUm-mSFkG00Oj7nUjAFx05XUNpkEw1V4wpWgMsuWCpl_7l9eBp0Ou2o09rUvzEvm53nw-sp6_wo1yABsdJ39BdxVoyCAdwAdngA7PH8EfLiD4byzTCL3-O4ZjP_7p4JMOMq7GUeH46wgqKNzZJlOZjCuouo8D4NiVqj4sqN-TTU8HmGioid1iXG8W93YIMGjOHe9qGS3HDrGzfBRXcd_LLwphNYbbExvYyXlCQQYr0jooPWxmHaNqXlIxVLrYixMFY9UL7W2SrfyadlWJwgPOOq9ol-7-B2Qo_9KvVNV_MFrbB0bt-3ibpBOkEnbpyxoksnw9LBzVm3Gnqu9kNTffKD4ffm5rxWUMaWjPUdmS2vBCBXK86Qh8wUyMxZDcpG4oaHxNiq8DcDbqPE2SrwNjfcSaR8dtg9OzDIVhikciw7NNPFB744TTl0ORqAERS0A1TbGeH088WMQCMYtS0gnZT7zYstjLOYpTRLusMRZJs38OZcrxPBtL2WBEwfCCVwaS546MmApFcJOWnbirBJPdz8SZZh4zFaSRZoP-BBV4xbhuEVq3FZJq6rYU5FSvq-yp8c3KhU-pchFMDG-q7z2l8rrZLqeyRukCeVyk0yJl2F30N8qJ9E7lgR8rw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+algorithm+for+unilateral+contact+problems&rft.jtitle=Computers+%26+structures&rft.au=Guillamet%2C+G.&rft.au=Rivero%2C+M.&rft.au=Zavala-Ak%C3%A9%2C+M.&rft.au=V%C3%A1zquez%2C+M.&rft.date=2022-10-15&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.volume=271&rft_id=info:doi/10.1016%2Fj.compstruc.2022.106862&rft.externalDocID=S0045794922001225 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon |