Surface defect classification of steels with a new semi-supervised learning method
•A semi-supervised learning method named CAE-SGAN is proposed to classify surface defects of steels.•CAE-SGAN improves the performance of SGAN with limited training samples.•When training the discriminator of SGAN, the decoder network of CAE is not truncated.•CAE-SGAN is tested with sample images co...
Gespeichert in:
| Veröffentlicht in: | Optics and lasers in engineering Jg. 117; S. 40 - 48 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.06.2019
|
| Schlagworte: | |
| ISSN: | 0143-8166, 1873-0302 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A semi-supervised learning method named CAE-SGAN is proposed to classify surface defects of steels.•CAE-SGAN improves the performance of SGAN with limited training samples.•When training the discriminator of SGAN, the decoder network of CAE is not truncated.•CAE-SGAN is tested with sample images collected from three different steel production lines.•CAE-SGAN provides a better way to apply deep learning methods to some industrial scenes.
Defect inspection is extremely crucial to ensure the quality of steel surface. It affects not only the subsequent production, but also the quality of the end-products. However, due to the rare occurrence and appearance variations of defects, surface defect identification of steels has always been a challenging task. Recently, deep learning methods have shown outstanding performance in image classification, especially when there are enough training samples. Since most sample images of steel surface are unlabeled, a new semi-supervised learning method is proposed to classify surface defects of steels. The new method is named CAE-SGAN, as it is based on Convolutional Autoencoder (CAE) and semi-supervised Generative Adversarial Networks (SGAN). CAE-SGAN first trains a stacked CAE through massive unlabeled data. Considering the appearance variations of defects, the passthrough layer is used to help CAE extract fine-grained features. After CAE is trained, the encoder network of CAE is reserved as the feature extractor and fed into a softmax layer to form a new classifier. SGAN is introduced for semi-supervised learning to further improve the generalization ability of the new method. The classifier is trained with images collected from real production lines and images randomly generated by SGAN. Extensive experiments are carried out with samples captured from different steel production lines, and the results indicate that CAE-SGAN had yielded best performances compared with traditional methods. Especially for hot rolled plates, the classification rate is improved by around 16%. |
|---|---|
| AbstractList | •A semi-supervised learning method named CAE-SGAN is proposed to classify surface defects of steels.•CAE-SGAN improves the performance of SGAN with limited training samples.•When training the discriminator of SGAN, the decoder network of CAE is not truncated.•CAE-SGAN is tested with sample images collected from three different steel production lines.•CAE-SGAN provides a better way to apply deep learning methods to some industrial scenes.
Defect inspection is extremely crucial to ensure the quality of steel surface. It affects not only the subsequent production, but also the quality of the end-products. However, due to the rare occurrence and appearance variations of defects, surface defect identification of steels has always been a challenging task. Recently, deep learning methods have shown outstanding performance in image classification, especially when there are enough training samples. Since most sample images of steel surface are unlabeled, a new semi-supervised learning method is proposed to classify surface defects of steels. The new method is named CAE-SGAN, as it is based on Convolutional Autoencoder (CAE) and semi-supervised Generative Adversarial Networks (SGAN). CAE-SGAN first trains a stacked CAE through massive unlabeled data. Considering the appearance variations of defects, the passthrough layer is used to help CAE extract fine-grained features. After CAE is trained, the encoder network of CAE is reserved as the feature extractor and fed into a softmax layer to form a new classifier. SGAN is introduced for semi-supervised learning to further improve the generalization ability of the new method. The classifier is trained with images collected from real production lines and images randomly generated by SGAN. Extensive experiments are carried out with samples captured from different steel production lines, and the results indicate that CAE-SGAN had yielded best performances compared with traditional methods. Especially for hot rolled plates, the classification rate is improved by around 16%. |
| Author | Di, He Ke, Xu Dongdong, Zhou Peng, Zhou |
| Author_xml | – sequence: 1 givenname: He surname: Di fullname: Di, He – sequence: 2 givenname: Xu surname: Ke fullname: Ke, Xu email: xuke@ustb.edu.cn – sequence: 3 givenname: Zhou surname: Peng fullname: Peng, Zhou – sequence: 4 givenname: Zhou surname: Dongdong fullname: Dongdong, Zhou |
| BookMark | eNqNkMtKAzEUhoNUsK0-g3mBGXMmc8vCRSneoCB4WYdMctKmTGdKkrb49k6tuHCj8MNZfR-cb0JGXd8hIdfAUmBQ3qzTfhtbFbBbphkDkTIYBmdkDHXFE8ZZNiJjBjlPaijLCzIJYc0GMgcYk5fXnbdKIzVoUUeqB1Nw1mkVXd_R3tIQEdtADy6uqKIdHmjAjUvCbot-7wIa2qLyneuWdINx1ZtLcm5VG_Dq-07J-_3d2_wxWTw_PM1ni0RzKGJi87IsyqYyVWYVF40xvBCVYHkjGlFWkJm6QFbouuaIQmlWKJVZgxmIWrFM8ympTl7t-xA8Wrn1bqP8hwQmj2nkWv6kkcc0ksEwGMjbX6R28evh6JVr_8HPTvwQBvcOvQzaYafROD9ElKZ3fzo-AX7Biac |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2022_105553 crossref_primary_10_3390_app9204222 crossref_primary_10_1109_ACCESS_2023_3251988 crossref_primary_10_1016_j_compeleceng_2024_109916 crossref_primary_10_1016_j_measurement_2023_112446 crossref_primary_10_1109_ACCESS_2020_3042874 crossref_primary_10_1111_mice_12632 crossref_primary_10_1016_j_rcim_2020_102083 crossref_primary_10_3390_app11073086 crossref_primary_10_1371_journal_pone_0279035 crossref_primary_10_1049_ipr2_12608 crossref_primary_10_1016_j_procir_2024_10_162 crossref_primary_10_3390_math10060963 crossref_primary_10_1049_ipr2_12983 crossref_primary_10_1109_ACCESS_2023_3326843 crossref_primary_10_3390_app10134598 crossref_primary_10_3390_machines9100221 crossref_primary_10_1007_s11003_021_00495_5 crossref_primary_10_1109_TASE_2022_3140784 crossref_primary_10_3390_s21206773 crossref_primary_10_1016_j_aei_2022_101672 crossref_primary_10_1109_TAI_2024_3372474 crossref_primary_10_3390_app11062606 crossref_primary_10_1016_j_eswa_2023_120758 crossref_primary_10_1016_j_petrol_2021_109901 crossref_primary_10_1089_3dp_2021_0191 crossref_primary_10_1371_journal_pone_0280363 crossref_primary_10_1016_j_isatra_2023_09_027 crossref_primary_10_1007_s43069_024_00337_5 crossref_primary_10_1016_j_matlet_2021_129707 crossref_primary_10_1002_srin_202200505 crossref_primary_10_1016_j_optlaseng_2023_107862 crossref_primary_10_1016_j_jmsy_2021_05_008 crossref_primary_10_1007_s10845_023_02115_2 crossref_primary_10_1016_j_eswa_2024_125413 crossref_primary_10_1109_TIM_2023_3271723 crossref_primary_10_1109_ACCESS_2021_3082690 crossref_primary_10_3390_app12126049 crossref_primary_10_1109_ACCESS_2024_3406438 crossref_primary_10_1007_s42243_023_01068_3 crossref_primary_10_1111_mice_12851 crossref_primary_10_32604_jai_2022_038875 crossref_primary_10_3390_s20040980 crossref_primary_10_1016_j_optlaseng_2022_107294 crossref_primary_10_4018_IJeC_316874 crossref_primary_10_1016_j_optlaseng_2020_106324 crossref_primary_10_1109_TIM_2021_3127648 crossref_primary_10_3390_sym14081563 crossref_primary_10_3390_s20185136 crossref_primary_10_1007_s10845_025_02604_6 crossref_primary_10_1155_2022_2549683 crossref_primary_10_1038_s41598_022_14971_8 crossref_primary_10_1007_s10845_022_02064_2 crossref_primary_10_3390_s20051459 crossref_primary_10_1038_s41598_022_15855_7 crossref_primary_10_1109_JSEN_2023_3303012 crossref_primary_10_1007_s00521_022_07990_z crossref_primary_10_3390_s23198243 crossref_primary_10_1007_s11042_021_11716_z crossref_primary_10_1109_ACCESS_2020_3003588 crossref_primary_10_1007_s00521_025_11007_w crossref_primary_10_1007_s40747_021_00477_9 crossref_primary_10_1016_j_procir_2020_04_106 crossref_primary_10_1007_s10489_021_02917_y crossref_primary_10_1145_3730576 crossref_primary_10_1007_s10845_023_02286_y crossref_primary_10_1109_ACCESS_2020_2984539 crossref_primary_10_1371_journal_pone_0292082 crossref_primary_10_1007_s42243_023_00937_1 crossref_primary_10_1109_ACCESS_2020_2979755 crossref_primary_10_1155_2021_6637252 crossref_primary_10_1177_1063293X251363430 crossref_primary_10_1007_s10845_021_01758_3 crossref_primary_10_3390_app11167657 crossref_primary_10_1002_srin_202100554 crossref_primary_10_1109_ACCESS_2024_3380618 crossref_primary_10_1007_s11227_025_07036_w crossref_primary_10_1109_ACCESS_2022_3193676 crossref_primary_10_1016_j_cie_2023_109766 crossref_primary_10_3390_coatings13010017 crossref_primary_10_1002_srin_202200284 crossref_primary_10_1109_TIM_2020_3030167 crossref_primary_10_1016_j_eswa_2022_117372 crossref_primary_10_1016_j_aei_2025_103138 crossref_primary_10_1109_TIM_2025_3548193 crossref_primary_10_1109_TIM_2019_2963555 crossref_primary_10_3390_electronics12112440 crossref_primary_10_1016_j_engappai_2024_109683 crossref_primary_10_1016_j_matpr_2022_08_489 crossref_primary_10_1108_EC_11_2019_0502 crossref_primary_10_1016_j_dsp_2022_103718 crossref_primary_10_1049_ipr2_12647 crossref_primary_10_1109_ACCESS_2021_3050484 crossref_primary_10_3390_met11030388 crossref_primary_10_1109_ACCESS_2024_3408718 crossref_primary_10_1007_s00170_025_16431_9 crossref_primary_10_1109_ACCESS_2023_3339780 crossref_primary_10_3390_a16020095 crossref_primary_10_3233_JIFS_230170 crossref_primary_10_1016_j_matpr_2022_06_474 crossref_primary_10_1016_j_optlaseng_2023_107674 crossref_primary_10_3233_JIFS_213031 crossref_primary_10_1109_TIM_2024_3492728 crossref_primary_10_3390_electronics11152304 crossref_primary_10_1109_TIM_2023_3249221 crossref_primary_10_1038_s41598_025_89558_0 crossref_primary_10_3390_ma17235873 crossref_primary_10_1016_j_neucom_2021_12_093 crossref_primary_10_1007_s00371_024_03289_3 crossref_primary_10_1109_TIM_2022_3204091 crossref_primary_10_1007_s10845_022_02000_4 crossref_primary_10_1109_JSEN_2021_3132460 crossref_primary_10_3390_app12168239 crossref_primary_10_3390_s22207846 crossref_primary_10_3390_electronics12173617 crossref_primary_10_1016_j_optlaseng_2019_105986 crossref_primary_10_1007_s00138_022_01286_x crossref_primary_10_1109_ACCESS_2025_3544578 crossref_primary_10_1007_s00170_024_13407_z crossref_primary_10_3390_electronics12234863 crossref_primary_10_1016_j_optlaseng_2019_105936 crossref_primary_10_1007_s10462_023_10475_7 crossref_primary_10_1016_j_jmapro_2024_02_006 crossref_primary_10_3390_su15043733 crossref_primary_10_1007_s00170_023_11963_4 crossref_primary_10_1016_j_optlaseng_2019_06_020 crossref_primary_10_1016_j_jii_2025_100958 crossref_primary_10_1080_03019233_2022_2078262 crossref_primary_10_3390_met10060846 crossref_primary_10_1016_j_mfglet_2022_10_001 crossref_primary_10_1007_s11633_025_1560_6 crossref_primary_10_1007_s13042_024_02433_8 crossref_primary_10_1080_0951192X_2021_1901319 crossref_primary_10_1109_ACCESS_2023_3271748 crossref_primary_10_3390_s23010544 crossref_primary_10_1016_j_autcon_2019_102989 crossref_primary_10_1007_s00170_021_06592_8 crossref_primary_10_1016_j_heliyon_2025_e42433 crossref_primary_10_3390_ma13204629 crossref_primary_10_1007_s11227_024_06662_0 crossref_primary_10_1080_24725854_2024_2425292 crossref_primary_10_3390_app132111708 crossref_primary_10_3390_coatings12111707 crossref_primary_10_3390_s22218194 crossref_primary_10_3390_coatings13122011 crossref_primary_10_1007_s13369_023_08240_7 crossref_primary_10_1109_ACCESS_2024_3349628 crossref_primary_10_1016_j_jii_2023_100463 crossref_primary_10_1088_1361_6501_ac4597 crossref_primary_10_3390_informatics11020025 crossref_primary_10_1016_j_measurement_2023_113091 crossref_primary_10_3390_app9153159 crossref_primary_10_1016_j_knosys_2024_112751 crossref_primary_10_1109_TIM_2023_3279422 crossref_primary_10_1109_TGRS_2021_3095922 |
| Cites_doi | 10.1109/TMI.2016.2528162 10.3390/met7080311 10.1109/ICCV.2015.169 10.1109/TPAMI.2012.231 10.1016/j.optlaseng.2018.01.010 10.1016/j.eswa.2010.09.012 10.1016/j.imavis.2015.01.001 10.1016/j.ndteint.2009.01.007 10.1117/1.JMI.3.3.034501 10.1109/JSTSP.2012.2212416 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optlaseng.2019.01.011 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-0302 |
| EndPage | 48 |
| ExternalDocumentID | 10_1016_j_optlaseng_2019_01_011 S0143816618313393 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c315t-f46656b7d72fa39bdd3597904b9b96712d85e05c883ee9ac05aa2fde2198a02c3 |
| ISICitedReferencesCount | 181 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462106500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-8166 |
| IngestDate | Sat Nov 29 01:41:12 EST 2025 Tue Nov 18 21:38:16 EST 2025 Fri Feb 23 02:26:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Generative adversarial networks Surface inspection Semi-supervised learning Convolutional autoencoder Defect detection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c315t-f46656b7d72fa39bdd3597904b9b96712d85e05c883ee9ac05aa2fde2198a02c3 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_optlaseng_2019_01_011 crossref_citationtrail_10_1016_j_optlaseng_2019_01_011 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2019_01_011 |
| PublicationCentury | 2000 |
| PublicationDate | June 2019 2019-06-00 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Optics and lasers in engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lin M, Chen Q, Yan S, 2013. Network in network. arXiv Masci (bib0026) 2011 Ng (bib0022) 2015 Li (bib0025) 2014 Huynh, Li, Giger (bib0023) 2016 Ren (bib0018) 2015 Paulraj, Shukry, Yaacob, Adom, Krishnan (bib0006) 2010, May Farabet, Couprie, Najman, LeCun (bib0028) 2013; 35 Ravikumar, Ramachandran, Sugumaran (bib0001) 2011; 38 LeCun (bib0009) 1998 He (bib0016) 2014 Suvdaa, Ahn, Ko (bib0004) 2012; 6 Simonyan K, Zisserman A, 2014. Very deep convolutional networks for large-scale image recognition. arXiv Huang, Liu, Van Der Maaten, Weinberger (bib0015) 2017; 1 Odena, A. “Semi-supervised learning with generative adversarial networks.” arXiv Badrinarayanan, V., A. Kendall, and R. Cipolla. “Segnet: a deep convolutional encoder-decoder architecture for image segmentation.” arXiv Goodfellow (bib0029) 2014 Landstrom, Thurley (bib0008) 2012; 6 Krizhevsky, Sutskever, Hinton (bib0010) 2012 Hoo-Chang (bib0024) 2016; 35 (2015). . Szegedy (bib0014) 2017 Tian, Xu (bib0002) 2017; 7 Xu, Xu, Zhou, Wang (bib0003) 2018; 105 Yun, Choi, Kim, Kim (bib0007) 2009; 42 Girshick, R. “Fast r-cnn.” arXiv Szegedy (bib0013) 2015 Liu (bib0021) 2016 (2016). Redmon, J., and A. Farhadi. “YOLO9000: better, faster, stronger.” arXiv preprint (2017). Redmon (bib0019) 2016 Xu, Liu, Ai (bib0005) 2015; 35 LeCun (10.1016/j.optlaseng.2019.01.011_bib0009) 1998 Goodfellow (10.1016/j.optlaseng.2019.01.011_bib0029) 2014 Huynh (10.1016/j.optlaseng.2019.01.011_bib0023) 2016 Ren (10.1016/j.optlaseng.2019.01.011_bib0018) 2015 Ng (10.1016/j.optlaseng.2019.01.011_bib0022) 2015 Redmon (10.1016/j.optlaseng.2019.01.011_bib0019) 2016 Suvdaa (10.1016/j.optlaseng.2019.01.011_bib0004) 2012; 6 10.1016/j.optlaseng.2019.01.011_bib0027 Szegedy (10.1016/j.optlaseng.2019.01.011_bib0013) 2015 Xu (10.1016/j.optlaseng.2019.01.011_bib0003) 2018; 105 Liu (10.1016/j.optlaseng.2019.01.011_bib0021) 2016 He (10.1016/j.optlaseng.2019.01.011_bib0016) 2014 Szegedy (10.1016/j.optlaseng.2019.01.011_bib0014) 2017 10.1016/j.optlaseng.2019.01.011_bib0020 Ravikumar (10.1016/j.optlaseng.2019.01.011_bib0001) 2011; 38 Yun (10.1016/j.optlaseng.2019.01.011_bib0007) 2009; 42 Masci (10.1016/j.optlaseng.2019.01.011_bib0026) 2011 Krizhevsky (10.1016/j.optlaseng.2019.01.011_bib0010) 2012 Xu (10.1016/j.optlaseng.2019.01.011_bib0005) 2015; 35 Paulraj (10.1016/j.optlaseng.2019.01.011_bib0006) 2010 10.1016/j.optlaseng.2019.01.011_bib0017 10.1016/j.optlaseng.2019.01.011_bib0012 Tian (10.1016/j.optlaseng.2019.01.011_bib0002) 2017; 7 10.1016/j.optlaseng.2019.01.011_bib0011 Hoo-Chang (10.1016/j.optlaseng.2019.01.011_bib0024) 2016; 35 10.1016/j.optlaseng.2019.01.011_bib0030 Huang (10.1016/j.optlaseng.2019.01.011_bib0015) 2017; 1 Farabet (10.1016/j.optlaseng.2019.01.011_bib0028) 2013; 35 Landstrom (10.1016/j.optlaseng.2019.01.011_bib0008) 2012; 6 Li (10.1016/j.optlaseng.2019.01.011_bib0025) 2014 |
| References_xml | – volume: 105 start-page: 110 year: 2018 end-page: 117 ident: bib0003 article-title: Application of RNAMlet to surface defect identification of steels publication-title: Opt Lasers Eng – year: 2017 ident: bib0014 article-title: Inception-v4, Inception-ResNet and the impact of residual connections on learning publication-title: AAAI – reference: Redmon, J., and A. Farhadi. “YOLO9000: better, faster, stronger.” arXiv preprint (2017). – year: 2014 ident: bib0025 article-title: Medical image classification with convolutional neural network publication-title: Control Automation Robotics & Vision (ICARCV), 2014 13th International Conference on – reference: Lin M, Chen Q, Yan S, 2013. Network in network. arXiv: – reference: Simonyan K, Zisserman A, 2014. Very deep convolutional networks for large-scale image recognition. arXiv: – year: 2016 ident: bib0021 article-title: Ssd: single shot multibox detector publication-title: European conference on computer vision – volume: 7 start-page: 311 year: 2017 ident: bib0002 article-title: An algorithm for surface defect identification of steel plates based on genetic algorithm and extreme learning machine publication-title: Metals – volume: 1 start-page: 3 year: 2017 ident: bib0015 article-title: Densely connected convolutional networks publication-title: CVPR – start-page: 2278 year: 1998 end-page: 2324 ident: bib0009 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE 86.11 – year: 2015 ident: bib0018 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Adv Neural Inf Process Syst – reference: (2016). – year: 2015 ident: bib0022 article-title: Deep learning for emotion recognition on small datasets using transfer learning publication-title: Proceedings of the 2015 ACM on international conference on multimodal interaction – volume: 6 start-page: 866 year: 2012 end-page: 875 ident: bib0008 article-title: Morphology-based crack detection for steel slabs publication-title: IEEE J Sel Top Signal Process – volume: 35 start-page: 1915 year: 2013 end-page: 1929 ident: bib0028 article-title: Learning hierarchical features for scene labeling publication-title: IEEE PAMI – year: 2016 ident: bib0023 article-title: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks publication-title: J Med Imaging 3.3 – start-page: 1 year: 2010, May end-page: 6 ident: bib0006 article-title: Structural steel plate damage detection using DFT spectral energy and artificial neural network publication-title: Signal Processing and Its Applications (CSPA), 2010 6th International Colloquium on – reference: (2015). – year: 2014 ident: bib0016 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: European conference on computer vision – reference: Girshick, R. “Fast r-cnn.” arXiv: – reference: Badrinarayanan, V., A. Kendall, and R. Cipolla. “Segnet: a deep convolutional encoder-decoder architecture for image segmentation.” arXiv: – year: 2015 ident: bib0013 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 42 start-page: 389 year: 2009 end-page: 397 ident: bib0007 article-title: Automatic detection of cracks in raw steel block using Gabor filter optimized by univariate dynamic encoding algorithm for searches (uDEAS) publication-title: NDT & E Int – reference: . – volume: 6 start-page: 161 year: 2012 end-page: 165 ident: bib0004 article-title: Steel surface defects detection and classification using SIFT and voting strategy publication-title: Int J Softw Eng Appl – start-page: 1097 year: 2012 end-page: 1105 ident: bib0010 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – year: 2014 ident: bib0029 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Sys – volume: 35 start-page: 1285 year: 2016 ident: bib0024 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging – year: 2016 ident: bib0019 article-title: You only look once: unified, real-time object detection publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – year: 2011 ident: bib0026 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: International conference on artificial neural networks – volume: 38 start-page: 3260 year: 2011 end-page: 3266 ident: bib0001 article-title: Machine learning approach for automated visual inspection of machine components publication-title: Expert Syst Appl – volume: 35 start-page: 23 year: 2015 end-page: 30 ident: bib0005 article-title: Application of shearlet transform to classification of surface defects for metals publication-title: Image Vis Comput – reference: Odena, A. “Semi-supervised learning with generative adversarial networks.” arXiv: – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 10.1016/j.optlaseng.2019.01.011_bib0024 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2528162 – volume: 7 start-page: 311 issue: 8 year: 2017 ident: 10.1016/j.optlaseng.2019.01.011_bib0002 article-title: An algorithm for surface defect identification of steel plates based on genetic algorithm and extreme learning machine publication-title: Metals doi: 10.3390/met7080311 – start-page: 2278 year: 1998 ident: 10.1016/j.optlaseng.2019.01.011_bib0009 article-title: Gradient-based learning applied to document recognition – ident: 10.1016/j.optlaseng.2019.01.011_bib0027 – ident: 10.1016/j.optlaseng.2019.01.011_bib0017 doi: 10.1109/ICCV.2015.169 – year: 2016 ident: 10.1016/j.optlaseng.2019.01.011_bib0021 article-title: Ssd: single shot multibox detector – volume: 35 start-page: 1915 issue: 8 year: 2013 ident: 10.1016/j.optlaseng.2019.01.011_bib0028 article-title: Learning hierarchical features for scene labeling publication-title: IEEE PAMI doi: 10.1109/TPAMI.2012.231 – volume: 105 start-page: 110 year: 2018 ident: 10.1016/j.optlaseng.2019.01.011_bib0003 article-title: Application of RNAMlet to surface defect identification of steels publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2018.01.010 – volume: 38 start-page: 3260 issue: 4 year: 2011 ident: 10.1016/j.optlaseng.2019.01.011_bib0001 article-title: Machine learning approach for automated visual inspection of machine components publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.09.012 – year: 2015 ident: 10.1016/j.optlaseng.2019.01.011_bib0013 article-title: Going deeper with convolutions – year: 2017 ident: 10.1016/j.optlaseng.2019.01.011_bib0014 article-title: Inception-v4, Inception-ResNet and the impact of residual connections on learning – ident: 10.1016/j.optlaseng.2019.01.011_bib0020 – year: 2015 ident: 10.1016/j.optlaseng.2019.01.011_bib0022 article-title: Deep learning for emotion recognition on small datasets using transfer learning – ident: 10.1016/j.optlaseng.2019.01.011_bib0012 – year: 2014 ident: 10.1016/j.optlaseng.2019.01.011_bib0029 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Sys – ident: 10.1016/j.optlaseng.2019.01.011_bib0030 – year: 2015 ident: 10.1016/j.optlaseng.2019.01.011_bib0018 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Adv Neural Inf Process Syst – start-page: 1097 year: 2012 ident: 10.1016/j.optlaseng.2019.01.011_bib0010 article-title: Imagenet classification with deep convolutional neural networks – year: 2016 ident: 10.1016/j.optlaseng.2019.01.011_bib0019 article-title: You only look once: unified, real-time object detection – volume: 1 start-page: 3 year: 2017 ident: 10.1016/j.optlaseng.2019.01.011_bib0015 article-title: Densely connected convolutional networks – volume: 35 start-page: 23 year: 2015 ident: 10.1016/j.optlaseng.2019.01.011_bib0005 article-title: Application of shearlet transform to classification of surface defects for metals publication-title: Image Vis Comput doi: 10.1016/j.imavis.2015.01.001 – start-page: 1 year: 2010 ident: 10.1016/j.optlaseng.2019.01.011_bib0006 article-title: Structural steel plate damage detection using DFT spectral energy and artificial neural network – volume: 42 start-page: 389 issue: 5 year: 2009 ident: 10.1016/j.optlaseng.2019.01.011_bib0007 article-title: Automatic detection of cracks in raw steel block using Gabor filter optimized by univariate dynamic encoding algorithm for searches (uDEAS) publication-title: NDT & E Int doi: 10.1016/j.ndteint.2009.01.007 – ident: 10.1016/j.optlaseng.2019.01.011_bib0011 – year: 2016 ident: 10.1016/j.optlaseng.2019.01.011_bib0023 article-title: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks publication-title: J Med Imaging 3.3 doi: 10.1117/1.JMI.3.3.034501 – year: 2014 ident: 10.1016/j.optlaseng.2019.01.011_bib0025 article-title: Medical image classification with convolutional neural network – volume: 6 start-page: 161 issue: 2 year: 2012 ident: 10.1016/j.optlaseng.2019.01.011_bib0004 article-title: Steel surface defects detection and classification using SIFT and voting strategy publication-title: Int J Softw Eng Appl – year: 2011 ident: 10.1016/j.optlaseng.2019.01.011_bib0026 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction – volume: 6 start-page: 866 issue: 7 year: 2012 ident: 10.1016/j.optlaseng.2019.01.011_bib0008 article-title: Morphology-based crack detection for steel slabs publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2012.2212416 – year: 2014 ident: 10.1016/j.optlaseng.2019.01.011_bib0016 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition |
| SSID | ssj0016411 |
| Score | 2.5936644 |
| Snippet | •A semi-supervised learning method named CAE-SGAN is proposed to classify surface defects of steels.•CAE-SGAN improves the performance of SGAN with limited... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 40 |
| SubjectTerms | Convolutional autoencoder Defect detection Generative adversarial networks Semi-supervised learning Surface inspection |
| Title | Surface defect classification of steels with a new semi-supervised learning method |
| URI | https://dx.doi.org/10.1016/j.optlaseng.2019.01.011 |
| Volume | 117 |
| WOSCitedRecordID | wos000462106500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKBtI4TDBADBjygRsKSuLEP7hNsGlwGAiGVHGJnNgZm0oSNe20y_533oudpB2TBkJIVdRactL6ff38bL_3PUJe5UiMkS0DyTgPklzHgTJwSURik1SnieZlV2xCHB_L6VR9nkyu-lyYi5moKnl5qZr_ampoA2Nj6uxfmHu4KTTAezA6XMHscP0jw39dzktdYDpUp0tcoHuM8UCDbwh2hQnRZ7VhSfHXrf15FrTLBnmjBQ901u-XuPrSqw7sp2bQdYYbY_Yvao6MooaDY-yqYduR0PHzdDlSsSOZ7z_qoe19XZ2a-lq735HAJCi-uiMxpMqMcUlu55IFeEjpJh7HtlKwAFhmnY5dLqcnVKfl5Kdmp8n5G-m7_YfzN3WzwF9enWLEnurUWD2RrytqY0Bbd14KdAZLdMXukM1YpApIcXP_w8H043AMxZPIFbT0330tQPDGx93s3qy4LCcPyLZfa9B9h5GHZGKrHXJ_RYFyh9zrIoCL9hH54nFDHW7oOm5oXVKHG4q4oZoCbug13NAeN9Th5jH5dnhw8u4o8AU3goJF6SIoEw7ufS6MiEvNVG4Mg_WmCpNc5YqLKDYytWFaSMmsVboIU63j0liY9aQO44I9IRtVXdmnhJo8hcHjIrYpS4ywuiwjK2XOjMGDZbFLeD9OWeHV6LEoyizrww7Ps2GAMxzgLIzgFe2ScOjYOEGW27u87Q2Reb_S-YsZIOi2zs_-pfNzsjX-QV6QjcV8affI3eJicdbOX3q0_QK4S6Mw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+defect+classification+of+steels+with+a+new+semi-supervised+learning+method&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Di%2C+He&rft.au=Ke%2C+Xu&rft.au=Peng%2C+Zhou&rft.au=Dongdong%2C+Zhou&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=117&rft.spage=40&rft.epage=48&rft_id=info:doi/10.1016%2Fj.optlaseng.2019.01.011&rft.externalDocID=S0143816618313393 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |