Some recent advances in digital volume correlation
•This paper summarizes our recent advances made on DVC.•Accuracy and efficiency-enhanced subvoxel registration algorithm and self-adaptive selection DVC algorithm are described.•Simple and effective strategies for DVC analyses of high-resolution, large deformed volumetric images are reported.•Analys...
Saved in:
| Published in: | Optics and lasers in engineering Vol. 135; p. 106189 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.12.2020
|
| Subjects: | |
| ISSN: | 0143-8166, 1873-0302 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •This paper summarizes our recent advances made on DVC.•Accuracy and efficiency-enhanced subvoxel registration algorithm and self-adaptive selection DVC algorithm are described.•Simple and effective strategies for DVC analyses of high-resolution, large deformed volumetric images are reported.•Analysis and correction of thermal errors in DVC measurements are discussed.
Over the past years, we have been developing new algorithms and approaches for robust, efficient and accurate internal displacement and strain field measurements using digital volume correlation (DVC). This paper will summarize our recent work on the following four major aspects: (a) advanced three-dimensional inverse-compositional Gauss-Newton (3D IC-GN) algorithm for subvoxel registration with enhanced accuracy and efficiency; (b) self-adaptive DVC algorithm with optimal calculation parameters; (c) practical and effective strategies for DVC analyses of high-resolution volumetric images and deformed volumetric images encoded with large deformation; (d) quantitative analysis and correction of thermal errors in DVC measurements due to self-heating effect of X-ray CT scanners. We hope that this paper can guide the readers to know the state-of-art DVC method. |
|---|---|
| AbstractList | •This paper summarizes our recent advances made on DVC.•Accuracy and efficiency-enhanced subvoxel registration algorithm and self-adaptive selection DVC algorithm are described.•Simple and effective strategies for DVC analyses of high-resolution, large deformed volumetric images are reported.•Analysis and correction of thermal errors in DVC measurements are discussed.
Over the past years, we have been developing new algorithms and approaches for robust, efficient and accurate internal displacement and strain field measurements using digital volume correlation (DVC). This paper will summarize our recent work on the following four major aspects: (a) advanced three-dimensional inverse-compositional Gauss-Newton (3D IC-GN) algorithm for subvoxel registration with enhanced accuracy and efficiency; (b) self-adaptive DVC algorithm with optimal calculation parameters; (c) practical and effective strategies for DVC analyses of high-resolution volumetric images and deformed volumetric images encoded with large deformation; (d) quantitative analysis and correction of thermal errors in DVC measurements due to self-heating effect of X-ray CT scanners. We hope that this paper can guide the readers to know the state-of-art DVC method. |
| ArticleNumber | 106189 |
| Author | Pan, Bing Wang, Bo |
| Author_xml | – sequence: 1 givenname: Bing surname: Pan fullname: Pan, Bing email: panb@buaa.edu.cn organization: Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Bo surname: Wang fullname: Wang, Bo organization: Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China |
| BookMark | eNqNkE1LAzEQhoNUsK3-BvcPbE02H7t78FCKXyB4UM8hH7MlZZuUJBb892apePCip2GGeV5mngWa-eABoWuCVwQTcbNbhUMeVQK_XTW4maaCdP0ZmpOupTWmuJmhOSaM1h0R4gItUtrhQjJC5qh5DXuoIhjwuVL2qLyBVDlfWbd1WY3VMYwfZcOEGGFU2QV_ic4HNSa4-q5L9H5_97Z5rJ9fHp426-faUMJzDaApHQbOh5ZoTbkWFBtqOWWs1cCobkvbY4sZ1xr6MrKGM90NQjW90A1dottTrokhpQiDNOWi6YIclRslwXISIHfyR4CcBMiTgMK3v_hDdHsVP_9Brk8klPeODqJMxkExY10xlaUN7s-ML95Efaw |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_114842 crossref_primary_10_1002_jbio_202300094 crossref_primary_10_1016_j_compositesb_2023_110860 crossref_primary_10_3390_ma17040919 crossref_primary_10_1007_s11629_023_8159_6 crossref_primary_10_1080_10589759_2025_2523470 crossref_primary_10_1111_boc_70003 crossref_primary_10_1016_j_compstruct_2021_114775 crossref_primary_10_1016_j_compstruct_2023_117207 crossref_primary_10_1016_j_jmbbm_2022_105579 crossref_primary_10_1016_j_actbio_2022_02_021 crossref_primary_10_1007_s11340_025_01145_6 crossref_primary_10_1007_s10035_022_01292_w crossref_primary_10_1016_j_enggeo_2024_107505 crossref_primary_10_1680_jgeot_24_00036 crossref_primary_10_1016_j_tafmec_2025_105127 crossref_primary_10_1007_s43939_025_00208_8 crossref_primary_10_1007_s11340_025_01182_1 crossref_primary_10_1016_j_rockmb_2025_100225 crossref_primary_10_1111_str_12469 crossref_primary_10_1364_AO_435830 crossref_primary_10_3390_app13063842 crossref_primary_10_1016_j_engfracmech_2022_108430 crossref_primary_10_1016_j_optlaseng_2023_107719 crossref_primary_10_1016_j_compositesa_2025_109123 crossref_primary_10_1016_j_optlaseng_2023_107566 crossref_primary_10_2478_msr_2020_0025 crossref_primary_10_1016_j_compstruct_2023_116994 crossref_primary_10_1016_j_eml_2022_101710 crossref_primary_10_1016_j_ijfatigue_2025_109106 crossref_primary_10_1016_j_mechmat_2025_105394 crossref_primary_10_1016_j_optlaseng_2025_109247 crossref_primary_10_1016_j_bpj_2022_04_028 crossref_primary_10_1016_j_optlaseng_2025_109107 crossref_primary_10_1016_j_conbuildmat_2024_138371 |
| Cites_doi | 10.1016/j.jbiomech.2009.06.034 10.1117/1.JBO.18.12.121512 10.1098/rsif.2013.0459 10.1142/S1758825111001019 10.1007/s11340-013-9717-6 10.1007/BF02326485 10.3233/FI-2014-1117 10.1016/j.optlaseng.2015.03.005 10.3390/app9071418 10.1063/1.4972814 10.1117/1.1314593 10.1016/j.optlaseng.2011.05.005 10.1007/s11340-018-0390-7 10.1007/s11340-014-9881-3 10.1088/0957-0233/23/8/085404 10.1016/j.optlaseng.2008.10.014 10.1016/j.optlaseng.2014.02.003 10.1360/N972016-00606 10.1007/s11340-015-0080-7 10.1007/s11340-020-00588-3 10.1177/0309324711409999 10.1007/s11340-010-9333-7 10.1088/0957-0233/20/6/062001 10.1007/s11340-010-9397-4 10.2478/msr-2020-0025 10.1088/1361-6501/ab2f82 10.1243/03093247JSA436 10.1016/j.optlaseng.2013.10.014 10.1088/0957-0233/27/8/085004 10.1007/s11340-015-0091-4 10.1088/1361-6501/aa7e8a 10.1016/j.optlaseng.2017.09.015 10.1007/BF02323555 10.1179/1743280413Y.0000000023 10.2217/iim.12.13 10.1088/0957-0233/23/4/045002 10.1016/j.jbiomech.2014.01.001 10.1016/j.advengsoft.2017.12.004 10.1007/s11340-016-0180-z 10.1007/s11340-007-9037-9 10.1007/s11340-017-0356-1 10.1179/174328406X114117 10.1007/s11340-014-9915-x 10.1007/s11340-010-9445-0 10.1088/1361-6501/aa60ad 10.1088/1361-6501/aac55b 10.1016/j.optlaseng.2009.08.010 10.1364/AO.49.005501 10.1007/s11340-018-00455-2 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optlaseng.2020.106189 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-0302 |
| ExternalDocumentID | 10_1016_j_optlaseng_2020_106189 S0143816619315982 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c315t-eeb33ff55f71bb35b630c3d53447be43b70c390d045bbe9be4dc54b8f6a296b23 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591017400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-8166 |
| IngestDate | Sat Nov 29 07:24:27 EST 2025 Tue Nov 18 21:51:48 EST 2025 Fri Feb 23 02:45:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Digital volume correlation Internal deformation measurement Subvoxel registration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c315t-eeb33ff55f71bb35b630c3d53447be43b70c390d045bbe9be4dc54b8f6a296b23 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_optlaseng_2020_106189 crossref_primary_10_1016_j_optlaseng_2020_106189 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2020_106189 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics and lasers in engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bay (bib0004) 2008; 43 Shao, Dai, He (bib0013) 2015; 71 Wang, Pan (bib0041) 2019; 59 Schreier, Braasch, Sutton (bib0022) 2000; 39 Yu, Pan (bib0017) 2015; 26 Sun, Brown, Flay (bib0025) 2016; 27 B, Ma, L (bib0040) 2017; 10 Pan, Qian, Xie (bib0001) 2009; 20 Hiller, Maisl, Reindl (bib0024) 2012; 23 Pan B., Zou X.Quasi-Gauss point digital image/volume correlation: a simple approach for reducing systematic errors due to undermatched shape functions[J]. Experimental Mechanics. 2020(In press). Pan, Wang (bib0014) 2016; 56 Benoit, Guérard, Gillet (bib0033) 2009; 42 Girard, Strouthidis, Desjardins (bib0032) 2013; 10 Wang, Jiang, Kemao (bib0034) 2016; 56 Pan, Xie, Wang (bib0008) 2010; 49 Fu, Pierron, Ruiz (bib0031) 2013; 18 Pan, Wang, Wu (bib0038) 2014; 58 Boas, Fleischmann (bib0049) 2012; 2 Huang, Pan, Li (bib0010) 2011; 3 Pan, Wang (bib0009) 2017; 62 Pan, Lu, Xie (bib0043) 2010; 48 Roberts, Perilli, Reynolds (bib0005) 2014; 47 Zhou, Sun, Chen (bib0023) 2014; 55 Rethore, Limodin, Buffiere (bib0029) 2011; 46 Pan, Li, Tong (bib0012) 2013; 53 Wang, Pan (bib0018) 2015; 55 Pan (bib0002) 2018; 29 Gates, Gonzalez, Lambros (bib0015) 2015; 55 Hu, Du, Luo (bib0020) 2014; 54 Pan, Wu, Xia (bib0021) 2012; 50 Buljac, Jailin, Mendoza (bib0007) 2018; 58 Davis, Elliott (bib0048) 2006; 22 Wang, Pan (bib0047) 2018; 116 Buffiere, Maire, Adrien (bib0027) 2010; 50 Pan, Wang (bib0046) 2017; 28 Limodin, Réthoré, Adrien (bib0026) 2011; 51 Pan (bib0051) 2018; 101 Wang, Pan, Ran, Lubineau (bib0050) 2017; 28 Lu, Cary P (bib0016) 2000; 40 Wang, Pan, Lubineau (bib0052) 2018; 58 Ren, Liang, Wei (bib0036) 2016; 87 Pan, Wu, Wang (bib0011) 2012; 23 Mao, Liu, Zhu (bib0035) 2019; 9 Zou X., Pan B.The effect of low-pass pre-filtering on subvoxel registration algorithms in digital volume correlation [J]. Strain. 2020(Submitted). Tai, Yang (bib0044) 2008 Maire, Withers (bib0028) 2013; 59 Wang, Pan (bib0042) 2019; 30 Pan, Asundi, Xie (bib0037) 2009; 47 Bay, Smith, Fyhrie (bib0003) 1999; 39 Fedele, Ciani, Fiori (bib0006) 2014; 135 Franck, Hong, Maskarinec (bib0030) 2007; 47 Gates, Lambros, Heath (bib0019) 2011; 51 Gates (10.1016/j.optlaseng.2020.106189_bib0015) 2015; 55 Huang (10.1016/j.optlaseng.2020.106189_bib0010) 2011; 3 Limodin (10.1016/j.optlaseng.2020.106189_bib0026) 2011; 51 Fu (10.1016/j.optlaseng.2020.106189_bib0031) 2013; 18 Hu (10.1016/j.optlaseng.2020.106189_bib0020) 2014; 54 Pan (10.1016/j.optlaseng.2020.106189_bib0002) 2018; 29 Roberts (10.1016/j.optlaseng.2020.106189_bib0005) 2014; 47 Yu (10.1016/j.optlaseng.2020.106189_bib0017) 2015; 26 Rethore (10.1016/j.optlaseng.2020.106189_bib0029) 2011; 46 Buffiere (10.1016/j.optlaseng.2020.106189_bib0027) 2010; 50 Bay (10.1016/j.optlaseng.2020.106189_bib0003) 1999; 39 Wang (10.1016/j.optlaseng.2020.106189_bib0018) 2015; 55 Maire (10.1016/j.optlaseng.2020.106189_bib0028) 2013; 59 Davis (10.1016/j.optlaseng.2020.106189_bib0048) 2006; 22 Ren (10.1016/j.optlaseng.2020.106189_bib0036) 2016; 87 B (10.1016/j.optlaseng.2020.106189_bib0040) 2017; 10 Pan (10.1016/j.optlaseng.2020.106189_bib0008) 2010; 49 Wang (10.1016/j.optlaseng.2020.106189_bib0042) 2019; 30 Gates (10.1016/j.optlaseng.2020.106189_bib0019) 2011; 51 Pan (10.1016/j.optlaseng.2020.106189_bib0012) 2013; 53 Wang (10.1016/j.optlaseng.2020.106189_bib0050) 2017; 28 Pan (10.1016/j.optlaseng.2020.106189_bib0014) 2016; 56 Shao (10.1016/j.optlaseng.2020.106189_bib0013) 2015; 71 Mao (10.1016/j.optlaseng.2020.106189_bib0035) 2019; 9 Pan (10.1016/j.optlaseng.2020.106189_bib0038) 2014; 58 Pan (10.1016/j.optlaseng.2020.106189_bib0043) 2010; 48 Wang (10.1016/j.optlaseng.2020.106189_bib0041) 2019; 59 Zhou (10.1016/j.optlaseng.2020.106189_bib0023) 2014; 55 Schreier (10.1016/j.optlaseng.2020.106189_bib0022) 2000; 39 Franck (10.1016/j.optlaseng.2020.106189_bib0030) 2007; 47 10.1016/j.optlaseng.2020.106189_bib0039 Benoit (10.1016/j.optlaseng.2020.106189_bib0033) 2009; 42 Tai (10.1016/j.optlaseng.2020.106189_bib0044) 2008 Buljac (10.1016/j.optlaseng.2020.106189_bib0007) 2018; 58 Boas (10.1016/j.optlaseng.2020.106189_bib0049) 2012; 2 Pan (10.1016/j.optlaseng.2020.106189_bib0001) 2009; 20 Pan (10.1016/j.optlaseng.2020.106189_bib0011) 2012; 23 Pan (10.1016/j.optlaseng.2020.106189_bib0046) 2017; 28 Sun (10.1016/j.optlaseng.2020.106189_bib0025) 2016; 27 Wang (10.1016/j.optlaseng.2020.106189_bib0052) 2018; 58 Girard (10.1016/j.optlaseng.2020.106189_bib0032) 2013; 10 Fedele (10.1016/j.optlaseng.2020.106189_bib0006) 2014; 135 Pan (10.1016/j.optlaseng.2020.106189_bib0021) 2012; 50 Wang (10.1016/j.optlaseng.2020.106189_bib0034) 2016; 56 Bay (10.1016/j.optlaseng.2020.106189_bib0004) 2008; 43 10.1016/j.optlaseng.2020.106189_bib0045 Pan (10.1016/j.optlaseng.2020.106189_bib0009) 2017; 62 Pan (10.1016/j.optlaseng.2020.106189_bib0037) 2009; 47 Wang (10.1016/j.optlaseng.2020.106189_bib0047) 2018; 116 Lu (10.1016/j.optlaseng.2020.106189_bib0016) 2000; 40 Pan (10.1016/j.optlaseng.2020.106189_bib0051) 2018; 101 Hiller (10.1016/j.optlaseng.2020.106189_bib0024) 2012; 23 |
| References_xml | – volume: 26 year: 2015 ident: bib0017 article-title: The errors in digital image correlation due to overmatched shape functions[J] publication-title: Measurement Science and Technology – volume: 46 start-page: 683 year: 2011 end-page: 695 ident: bib0029 article-title: Digital volume correlation analyses of synchrotron tomographic images[J] publication-title: JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN – volume: 87 year: 2016 ident: bib0036 article-title: Accurate B-spline-based 3-D interpolation scheme for digital volume correlation[J] publication-title: Review of Scientific Instruments – volume: 40 start-page: 393 year: 2000 end-page: 400 ident: bib0016 article-title: Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient[J] publication-title: Experimental Mechanics – volume: 62 start-page: 1671 year: 2017 end-page: 1681 ident: bib0009 article-title: Research progress in digital volume correlation method[J] publication-title: Chinese Science Bulletin – volume: 54 start-page: 1575 year: 2014 end-page: 1586 ident: bib0020 article-title: Internal Deformation Measurement and Force Chain Characterization of Mason Sand under Confined Compression using Incremental Digital Volume Correlation[J] publication-title: Experimental Mechanics – volume: 29 start-page: 82001 year: 2018 ident: bib0002 article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals[J] publication-title: Measurement Science and Technology – volume: 27 start-page: 85004 year: 2016 ident: bib0025 article-title: A reference sample for investigating the stability of the imaging system of x-ray computed tomography[J] publication-title: Measurement Science and Technology – reference: Zou X., Pan B.The effect of low-pass pre-filtering on subvoxel registration algorithms in digital volume correlation [J]. Strain. 2020(Submitted). – volume: 9 start-page: 1418 year: 2019 ident: bib0035 article-title: 3D strain mapping of opaque materials using an improved digital volumetric speckle photography technique with X-ray microtomography[J] publication-title: Applied Sciences – volume: 28 year: 2017 ident: bib0050 article-title: Systematic errors in digital volume correlation due to the self-heating effect of a laboratory X-ray CT scanner publication-title: Measurement Science and Technology – volume: 101 start-page: 1 year: 2018 end-page: 15 ident: bib0051 article-title: Thermal error analysis and compensation for digital image/volume correlation[J] publication-title: Optics and Lasers in Engineering – volume: 59 start-page: 1 year: 2013 end-page: 43 ident: bib0028 article-title: Quantitative X-ray tomography[J] publication-title: International Materials Reviews – volume: 23 start-page: 85404 year: 2012 ident: bib0024 article-title: Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications[J] publication-title: Measurement Science and Technology – volume: 56 start-page: 297 year: 2016 end-page: 309 ident: bib0034 article-title: GPU Accelerated Digital Volume Correlation[J] publication-title: Experimental Mechanics – volume: 51 start-page: 959 year: 2011 end-page: 970 ident: bib0026 article-title: Analysis and Artifact Correction for Volume Correlation Measurements Using Tomographic Images from a Laboratory X-ray Source[J] publication-title: Experimental Mechanics – reference: Pan B., Zou X.Quasi-Gauss point digital image/volume correlation: a simple approach for reducing systematic errors due to undermatched shape functions[J]. Experimental Mechanics. 2020(In press). – volume: 22 start-page: 1011 year: 2006 end-page: 1018 ident: bib0048 article-title: Artefacts in X-ray microtomography of materials[J] publication-title: Materials Science and Technology – volume: 39 start-page: 2915 year: 2000 end-page: 2921 ident: bib0022 article-title: Systematic errors in digital image correlation caused by intensity interpolation[J] publication-title: Optical Engineering – volume: 28 year: 2017 ident: bib0046 article-title: A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images[J] publication-title: Measurement Science and Technology – volume: 48 start-page: 469 year: 2010 end-page: 477 ident: bib0043 article-title: Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation[J] publication-title: Optics and Lasers in Engineering – volume: 20 start-page: 62001 year: 2009 ident: bib0001 article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J] publication-title: Measurement Science and Technology – volume: 135 start-page: 171 year: 2014 end-page: 197 ident: bib0006 article-title: X-ray microtomography under loading and 3D-volume digital image correlation. a review[J] publication-title: Fundamenta Informaticae – volume: 59 start-page: 149 year: 2019 end-page: 162 ident: bib0041 article-title: Self-Adaptive Digital Volume Correlation for Unknown Deformation Fields[J] publication-title: Experimental Mechanics – volume: 58 start-page: 661 year: 2018 end-page: 708 ident: bib0007 article-title: Digital Volume Correlation: Review of Progress and Challenges[J] publication-title: Experimental Mechanics – volume: 51 start-page: 491 year: 2011 end-page: 507 ident: bib0019 article-title: Towards High Performance Digital Volume Correlation[J] publication-title: Experimental Mechanics – volume: 53 start-page: 1277 year: 2013 end-page: 1289 ident: bib0012 article-title: Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations[J] publication-title: Experimental Mechanics – volume: 55 start-page: 245 year: 2015 end-page: 259 ident: bib0015 article-title: Subset Refinement for Digital Volume Correlation: Numerical and Experimental Applications[J] publication-title: Experimental Mechanics – year: 2008 ident: bib0044 article-title: A fast method for image noise estimation using Laplacian operator and adaptive edge detection: In 2008 3rd publication-title: Control and Signal Processing [M] – volume: 30 year: 2019 ident: bib0042 article-title: Anisotropic self-adaptive digital volume correlation with optimal cuboid subvolumes[J] publication-title: Measurement Science and Technology – volume: 10 year: 2013 ident: bib0032 article-title: In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm[J] publication-title: Journal of The Royal Society Interface – volume: 43 start-page: 745 year: 2008 end-page: 760 ident: bib0004 article-title: Methods and applications of digital volume correlation[J] publication-title: The Journal of Strain Analysis for Engineering Design – volume: 3 start-page: 335 year: 2011 end-page: 354 ident: bib0010 article-title: A digital volume correlation technique for 3D deformation measurements of soft gels[J] publication-title: International Journal of Applied Mechanics – volume: 49 start-page: 5501 year: 2010 end-page: 5509 ident: bib0008 article-title: Equivalence of Digital Image Correlation Criteria for Pattern Matching[J] publication-title: Applied Optics – volume: 58 start-page: 427 year: 2018 end-page: 436 ident: bib0052 article-title: In-Situ Systematic Error Correction for Digital Volume Correlation Using a Reference Sample[J] publication-title: Experimental Mechanics – volume: 23 start-page: 45002 year: 2012 ident: bib0011 article-title: Internal displacement and strain measurement using digital volume correlation: a least-squares framework[J] publication-title: Measurement Science and Technology – volume: 2 start-page: 229 year: 2012 end-page: 240 ident: bib0049 article-title: CT artifacts: Causes and reduction techniques[J] publication-title: Imaging in Medicine – volume: 50 start-page: 289 year: 2010 end-page: 305 ident: bib0027 article-title: In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics[J] publication-title: Experimental Mechanics – volume: 47 start-page: 865 year: 2009 end-page: 874 ident: bib0037 article-title: Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements[J] publication-title: Optics and Lasers in Engineering – volume: 58 start-page: 126 year: 2014 end-page: 135 ident: bib0038 article-title: An efficient and accurate 3D displacements tracking strategy for digital volume correlation[J] publication-title: Optics and Lasers in Engineering – volume: 42 start-page: 2381 year: 2009 end-page: 2386 ident: bib0033 article-title: 3D analysis from micro-MRI during in situ compression on cancellous bone[J] publication-title: Journal of biomechanics – volume: 71 start-page: 9 year: 2015 end-page: 19 ident: bib0013 article-title: Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation[J] publication-title: Optics and Lasers in Engineering – volume: 50 start-page: 586 year: 2012 end-page: 592 ident: bib0021 article-title: Incremental Calculation for Large Deformation Measurement Using Reliability-guided Digital Image Correlation[J] publication-title: Optics and Lasers in Engineering – volume: 55 start-page: 5 year: 2014 end-page: 11 ident: bib0023 article-title: Adaptive subset offset for systematic error reduction in incremental digital image correlation[J] publication-title: Optics and Lasers in Engineering – volume: 56 start-page: 1395 year: 2016 end-page: 1409 ident: bib0014 article-title: Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms[J] publication-title: Experimental Mechanics – volume: 47 start-page: 427 year: 2007 end-page: 438 ident: bib0030 article-title: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation[J] publication-title: Experimental Mechanics – volume: 39 start-page: 217 year: 1999 end-page: 226 ident: bib0003 article-title: Digital volume correlation: Three-dimensional strain mapping using X-ray tomography[J] publication-title: Experimental Mechanics – volume: 55 start-page: 1717 year: 2015 end-page: 1727 ident: bib0018 article-title: Random Errors in Digital Image Correlation Due to Matched or Overmatched Shape Functions[J] publication-title: Experimental Mechanics – volume: 47 start-page: 923 year: 2014 end-page: 934 ident: bib0005 article-title: Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: A literature review[J] publication-title: Journal of Biomechanics – volume: 10 start-page: 4900 year: 2017 end-page: 4910 ident: bib0040 article-title: Volumetric image registration from invariant keypoints[J] publication-title: IEEE Transactions on Image Processing – volume: 116 start-page: 80 year: 2018 end-page: 88 ident: bib0047 article-title: Incremental digital volume correlation method with nearest subvolume offset: An accurate and simple approach for large deformation measurement[J] publication-title: Advances in Engineering Software – volume: 18 year: 2013 ident: bib0031 article-title: Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation[J] publication-title: Journal of biomedical optics – volume: 42 start-page: 2381 issue: 14 year: 2009 ident: 10.1016/j.optlaseng.2020.106189_bib0033 article-title: 3D analysis from micro-MRI during in situ compression on cancellous bone[J] publication-title: Journal of biomechanics doi: 10.1016/j.jbiomech.2009.06.034 – volume: 18 issue: 12 year: 2013 ident: 10.1016/j.optlaseng.2020.106189_bib0031 article-title: Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation[J] publication-title: Journal of biomedical optics doi: 10.1117/1.JBO.18.12.121512 – volume: 10 issue: 87 year: 2013 ident: 10.1016/j.optlaseng.2020.106189_bib0032 article-title: In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm[J] publication-title: Journal of The Royal Society Interface doi: 10.1098/rsif.2013.0459 – volume: 3 start-page: 335 issue: 2 year: 2011 ident: 10.1016/j.optlaseng.2020.106189_bib0010 article-title: A digital volume correlation technique for 3D deformation measurements of soft gels[J] publication-title: International Journal of Applied Mechanics doi: 10.1142/S1758825111001019 – volume: 53 start-page: 1277 issue: 7 year: 2013 ident: 10.1016/j.optlaseng.2020.106189_bib0012 article-title: Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-013-9717-6 – volume: 40 start-page: 393 issue: 4 year: 2000 ident: 10.1016/j.optlaseng.2020.106189_bib0016 article-title: Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient[J] publication-title: Experimental Mechanics doi: 10.1007/BF02326485 – volume: 135 start-page: 171 issue: 1-2 year: 2014 ident: 10.1016/j.optlaseng.2020.106189_bib0006 article-title: X-ray microtomography under loading and 3D-volume digital image correlation. a review[J] publication-title: Fundamenta Informaticae doi: 10.3233/FI-2014-1117 – volume: 71 start-page: 9 year: 2015 ident: 10.1016/j.optlaseng.2020.106189_bib0013 article-title: Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation[J] publication-title: Optics and Lasers in Engineering doi: 10.1016/j.optlaseng.2015.03.005 – volume: 9 start-page: 1418 issue: 7 year: 2019 ident: 10.1016/j.optlaseng.2020.106189_bib0035 article-title: 3D strain mapping of opaque materials using an improved digital volumetric speckle photography technique with X-ray microtomography[J] publication-title: Applied Sciences doi: 10.3390/app9071418 – volume: 87 issue: 12 year: 2016 ident: 10.1016/j.optlaseng.2020.106189_bib0036 article-title: Accurate B-spline-based 3-D interpolation scheme for digital volume correlation[J] publication-title: Review of Scientific Instruments doi: 10.1063/1.4972814 – volume: 39 start-page: 2915 issue: 11 year: 2000 ident: 10.1016/j.optlaseng.2020.106189_bib0022 article-title: Systematic errors in digital image correlation caused by intensity interpolation[J] publication-title: Optical Engineering doi: 10.1117/1.1314593 – volume: 50 start-page: 586 issue: 4 year: 2012 ident: 10.1016/j.optlaseng.2020.106189_bib0021 article-title: Incremental Calculation for Large Deformation Measurement Using Reliability-guided Digital Image Correlation[J] publication-title: Optics and Lasers in Engineering doi: 10.1016/j.optlaseng.2011.05.005 – volume: 58 start-page: 661 issue: 5 year: 2018 ident: 10.1016/j.optlaseng.2020.106189_bib0007 article-title: Digital Volume Correlation: Review of Progress and Challenges[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-018-0390-7 – volume: 55 start-page: 245 issue: 1 year: 2015 ident: 10.1016/j.optlaseng.2020.106189_bib0015 article-title: Subset Refinement for Digital Volume Correlation: Numerical and Experimental Applications[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-014-9881-3 – volume: 23 start-page: 85404 issue: 8 year: 2012 ident: 10.1016/j.optlaseng.2020.106189_bib0024 article-title: Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications[J] publication-title: Measurement Science and Technology doi: 10.1088/0957-0233/23/8/085404 – volume: 47 start-page: 865 issue: 7-8 year: 2009 ident: 10.1016/j.optlaseng.2020.106189_bib0037 article-title: Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements[J] publication-title: Optics and Lasers in Engineering doi: 10.1016/j.optlaseng.2008.10.014 – year: 2008 ident: 10.1016/j.optlaseng.2020.106189_bib0044 article-title: A fast method for image noise estimation using Laplacian operator and adaptive edge detection: In 2008 3rd International Symposium on Communications publication-title: Control and Signal Processing [M] – volume: 58 start-page: 126 year: 2014 ident: 10.1016/j.optlaseng.2020.106189_bib0038 article-title: An efficient and accurate 3D displacements tracking strategy for digital volume correlation[J] publication-title: Optics and Lasers in Engineering doi: 10.1016/j.optlaseng.2014.02.003 – volume: 62 start-page: 1671 issue: 16 year: 2017 ident: 10.1016/j.optlaseng.2020.106189_bib0009 article-title: Research progress in digital volume correlation method[J] publication-title: Chinese Science Bulletin doi: 10.1360/N972016-00606 – volume: 10 start-page: 4900 issue: 26 year: 2017 ident: 10.1016/j.optlaseng.2020.106189_bib0040 article-title: Volumetric image registration from invariant keypoints[J] publication-title: IEEE Transactions on Image Processing – volume: 55 start-page: 1717 issue: 9 year: 2015 ident: 10.1016/j.optlaseng.2020.106189_bib0018 article-title: Random Errors in Digital Image Correlation Due to Matched or Overmatched Shape Functions[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-015-0080-7 – ident: 10.1016/j.optlaseng.2020.106189_bib0045 doi: 10.1007/s11340-020-00588-3 – volume: 46 start-page: 683 issue: 7SI year: 2011 ident: 10.1016/j.optlaseng.2020.106189_bib0029 article-title: Digital volume correlation analyses of synchrotron tomographic images[J] publication-title: JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN doi: 10.1177/0309324711409999 – volume: 50 start-page: 289 issue: 3 year: 2010 ident: 10.1016/j.optlaseng.2020.106189_bib0027 article-title: In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-010-9333-7 – volume: 26 issue: 0452024 year: 2015 ident: 10.1016/j.optlaseng.2020.106189_bib0017 article-title: The errors in digital image correlation due to overmatched shape functions[J] publication-title: Measurement Science and Technology – volume: 20 start-page: 62001 issue: 6 year: 2009 ident: 10.1016/j.optlaseng.2020.106189_bib0001 article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J] publication-title: Measurement Science and Technology doi: 10.1088/0957-0233/20/6/062001 – volume: 51 start-page: 959 issue: 6 year: 2011 ident: 10.1016/j.optlaseng.2020.106189_bib0026 article-title: Analysis and Artifact Correction for Volume Correlation Measurements Using Tomographic Images from a Laboratory X-ray Source[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-010-9397-4 – ident: 10.1016/j.optlaseng.2020.106189_bib0039 doi: 10.2478/msr-2020-0025 – volume: 30 issue: 11 year: 2019 ident: 10.1016/j.optlaseng.2020.106189_bib0042 article-title: Anisotropic self-adaptive digital volume correlation with optimal cuboid subvolumes[J] publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/ab2f82 – volume: 43 start-page: 745 issue: 8 year: 2008 ident: 10.1016/j.optlaseng.2020.106189_bib0004 article-title: Methods and applications of digital volume correlation[J] publication-title: The Journal of Strain Analysis for Engineering Design doi: 10.1243/03093247JSA436 – volume: 55 start-page: 5 year: 2014 ident: 10.1016/j.optlaseng.2020.106189_bib0023 article-title: Adaptive subset offset for systematic error reduction in incremental digital image correlation[J] publication-title: Optics and Lasers in Engineering doi: 10.1016/j.optlaseng.2013.10.014 – volume: 27 start-page: 85004 issue: 8 year: 2016 ident: 10.1016/j.optlaseng.2020.106189_bib0025 article-title: A reference sample for investigating the stability of the imaging system of x-ray computed tomography[J] publication-title: Measurement Science and Technology doi: 10.1088/0957-0233/27/8/085004 – volume: 56 start-page: 297 issue: 2 year: 2016 ident: 10.1016/j.optlaseng.2020.106189_bib0034 article-title: GPU Accelerated Digital Volume Correlation[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-015-0091-4 – volume: 28 issue: 10 year: 2017 ident: 10.1016/j.optlaseng.2020.106189_bib0046 article-title: A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images[J] publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/aa7e8a – volume: 101 start-page: 1 year: 2018 ident: 10.1016/j.optlaseng.2020.106189_bib0051 article-title: Thermal error analysis and compensation for digital image/volume correlation[J] publication-title: Optics and Lasers in Engineering doi: 10.1016/j.optlaseng.2017.09.015 – volume: 39 start-page: 217 issue: 3 year: 1999 ident: 10.1016/j.optlaseng.2020.106189_bib0003 article-title: Digital volume correlation: Three-dimensional strain mapping using X-ray tomography[J] publication-title: Experimental Mechanics doi: 10.1007/BF02323555 – volume: 59 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.optlaseng.2020.106189_bib0028 article-title: Quantitative X-ray tomography[J] publication-title: International Materials Reviews doi: 10.1179/1743280413Y.0000000023 – volume: 2 start-page: 229 issue: 4 year: 2012 ident: 10.1016/j.optlaseng.2020.106189_bib0049 article-title: CT artifacts: Causes and reduction techniques[J] publication-title: Imaging in Medicine doi: 10.2217/iim.12.13 – volume: 23 start-page: 45002 issue: 4 year: 2012 ident: 10.1016/j.optlaseng.2020.106189_bib0011 article-title: Internal displacement and strain measurement using digital volume correlation: a least-squares framework[J] publication-title: Measurement Science and Technology doi: 10.1088/0957-0233/23/4/045002 – volume: 47 start-page: 923 issue: 5 year: 2014 ident: 10.1016/j.optlaseng.2020.106189_bib0005 article-title: Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: A literature review[J] publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2014.01.001 – volume: 116 start-page: 80 year: 2018 ident: 10.1016/j.optlaseng.2020.106189_bib0047 article-title: Incremental digital volume correlation method with nearest subvolume offset: An accurate and simple approach for large deformation measurement[J] publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.12.004 – volume: 56 start-page: 1395 issue: 8 year: 2016 ident: 10.1016/j.optlaseng.2020.106189_bib0014 article-title: Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-016-0180-z – volume: 47 start-page: 427 issue: 3 year: 2007 ident: 10.1016/j.optlaseng.2020.106189_bib0030 article-title: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-007-9037-9 – volume: 58 start-page: 427 issue: 3 year: 2018 ident: 10.1016/j.optlaseng.2020.106189_bib0052 article-title: In-Situ Systematic Error Correction for Digital Volume Correlation Using a Reference Sample[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-017-0356-1 – volume: 22 start-page: 1011 issue: 9 year: 2006 ident: 10.1016/j.optlaseng.2020.106189_bib0048 article-title: Artefacts in X-ray microtomography of materials[J] publication-title: Materials Science and Technology doi: 10.1179/174328406X114117 – volume: 54 start-page: 1575 issue: 9 year: 2014 ident: 10.1016/j.optlaseng.2020.106189_bib0020 article-title: Internal Deformation Measurement and Force Chain Characterization of Mason Sand under Confined Compression using Incremental Digital Volume Correlation[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-014-9915-x – volume: 51 start-page: 491 issue: 4 year: 2011 ident: 10.1016/j.optlaseng.2020.106189_bib0019 article-title: Towards High Performance Digital Volume Correlation[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-010-9445-0 – volume: 28 issue: 5 year: 2017 ident: 10.1016/j.optlaseng.2020.106189_bib0050 article-title: Systematic errors in digital volume correlation due to the self-heating effect of a laboratory X-ray CT scanner publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/aa60ad – volume: 29 start-page: 82001 issue: 8 year: 2018 ident: 10.1016/j.optlaseng.2020.106189_bib0002 article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals[J] publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/aac55b – volume: 48 start-page: 469 issue: 4 year: 2010 ident: 10.1016/j.optlaseng.2020.106189_bib0043 article-title: Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation[J] publication-title: Optics and Lasers in Engineering doi: 10.1016/j.optlaseng.2009.08.010 – volume: 49 start-page: 5501 issue: 28 year: 2010 ident: 10.1016/j.optlaseng.2020.106189_bib0008 article-title: Equivalence of Digital Image Correlation Criteria for Pattern Matching[J] publication-title: Applied Optics doi: 10.1364/AO.49.005501 – volume: 59 start-page: 149 issue: 2 year: 2019 ident: 10.1016/j.optlaseng.2020.106189_bib0041 article-title: Self-Adaptive Digital Volume Correlation for Unknown Deformation Fields[J] publication-title: Experimental Mechanics doi: 10.1007/s11340-018-00455-2 |
| SSID | ssj0016411 |
| Score | 2.4706378 |
| SecondaryResourceType | review_article |
| Snippet | •This paper summarizes our recent advances made on DVC.•Accuracy and efficiency-enhanced subvoxel registration algorithm and self-adaptive selection DVC... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106189 |
| SubjectTerms | Digital volume correlation Internal deformation measurement Subvoxel registration |
| Title | Some recent advances in digital volume correlation |
| URI | https://dx.doi.org/10.1016/j.optlaseng.2020.106189 |
| Volume | 135 |
| WOSCitedRecordID | wos000591017400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ7goYk8EESNoJI--EZ6abu37dY3NBAhBE1Evbemu90lR7B34U7Dn-9MZ68tSILE8NL0Ntn-mG87N7sz-30A72xkEq2pKCx3JU5QpAlLm5WhszK2Zapk1Mi3fT_OTk7UeJx_8Sp880ZOIKtrdXWVzx4UamxDsGnr7D3gbi-KDXiOoOMRYcfjPwH_dfqTpFBMUzzOGX6ueZ2ckUDILvujXUOyHBcdLj5A_TxreZsxrqbdvcQp0pEWdikn1nnvNf3wS88fpv2lhORmWUa7x6UrKOIlRxFSdpH_MdhNqkyE6B6u-1HmHfnLJ_PywPlwOlvQg9dnQ7r3kOairB50g_Ca6s2adCbGljHxCz6C1STDkwGs7h3uj4_aLFE6illv0j_htfq9W293e_TRiyhON2DdTwWCPYbwGazYehPWegSRm_CkKdA18-eQEKwBwxosYQ0mdeBhDdg8QQ_WF_DtYP_046fQ612EBl90EVqrhXBOSpfFWgupUxEZUUkiZdR2JHSGP_Oowihca5tjU2XkSCuXlkme6kS8hEE9re0rCJyrbCoSpazC8MPg1-jyWMRCZEompjJbkC7tUBhPBk-aJBfFsurvvGgNWJABCzbgFkRtxxnzodzd5f3S0IUP6zhcK3CE3NV5-386v4an3TB_A4PF5S_7Fh6b34vJ_HLHj6Y_ukB1hA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+recent+advances+in+digital+volume+correlation&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Pan%2C+Bing&rft.au=Wang%2C+Bo&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=135&rft_id=info:doi/10.1016%2Fj.optlaseng.2020.106189&rft.externalDocID=S0143816619315982 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |