Some recent advances in digital volume correlation

•This paper summarizes our recent advances made on DVC.•Accuracy and efficiency-enhanced subvoxel registration algorithm and self-adaptive selection DVC algorithm are described.•Simple and effective strategies for DVC analyses of high-resolution, large deformed volumetric images are reported.•Analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and lasers in engineering Jg. 135; S. 106189
Hauptverfasser: Pan, Bing, Wang, Bo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2020
Schlagworte:
ISSN:0143-8166, 1873-0302
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •This paper summarizes our recent advances made on DVC.•Accuracy and efficiency-enhanced subvoxel registration algorithm and self-adaptive selection DVC algorithm are described.•Simple and effective strategies for DVC analyses of high-resolution, large deformed volumetric images are reported.•Analysis and correction of thermal errors in DVC measurements are discussed. Over the past years, we have been developing new algorithms and approaches for robust, efficient and accurate internal displacement and strain field measurements using digital volume correlation (DVC). This paper will summarize our recent work on the following four major aspects: (a) advanced three-dimensional inverse-compositional Gauss-Newton (3D IC-GN) algorithm for subvoxel registration with enhanced accuracy and efficiency; (b) self-adaptive DVC algorithm with optimal calculation parameters; (c) practical and effective strategies for DVC analyses of high-resolution volumetric images and deformed volumetric images encoded with large deformation; (d) quantitative analysis and correction of thermal errors in DVC measurements due to self-heating effect of X-ray CT scanners. We hope that this paper can guide the readers to know the state-of-art DVC method.
AbstractList •This paper summarizes our recent advances made on DVC.•Accuracy and efficiency-enhanced subvoxel registration algorithm and self-adaptive selection DVC algorithm are described.•Simple and effective strategies for DVC analyses of high-resolution, large deformed volumetric images are reported.•Analysis and correction of thermal errors in DVC measurements are discussed. Over the past years, we have been developing new algorithms and approaches for robust, efficient and accurate internal displacement and strain field measurements using digital volume correlation (DVC). This paper will summarize our recent work on the following four major aspects: (a) advanced three-dimensional inverse-compositional Gauss-Newton (3D IC-GN) algorithm for subvoxel registration with enhanced accuracy and efficiency; (b) self-adaptive DVC algorithm with optimal calculation parameters; (c) practical and effective strategies for DVC analyses of high-resolution volumetric images and deformed volumetric images encoded with large deformation; (d) quantitative analysis and correction of thermal errors in DVC measurements due to self-heating effect of X-ray CT scanners. We hope that this paper can guide the readers to know the state-of-art DVC method.
ArticleNumber 106189
Author Pan, Bing
Wang, Bo
Author_xml – sequence: 1
  givenname: Bing
  surname: Pan
  fullname: Pan, Bing
  email: panb@buaa.edu.cn
  organization: Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
BookMark eNqNkE1LAzEQhoNUsK3-BvcPbE02H7t78FCKXyB4UM8hH7MlZZuUJBb892apePCip2GGeV5mngWa-eABoWuCVwQTcbNbhUMeVQK_XTW4maaCdP0ZmpOupTWmuJmhOSaM1h0R4gItUtrhQjJC5qh5DXuoIhjwuVL2qLyBVDlfWbd1WY3VMYwfZcOEGGFU2QV_ic4HNSa4-q5L9H5_97Z5rJ9fHp426-faUMJzDaApHQbOh5ZoTbkWFBtqOWWs1cCobkvbY4sZ1xr6MrKGM90NQjW90A1dottTrokhpQiDNOWi6YIclRslwXISIHfyR4CcBMiTgMK3v_hDdHsVP_9Brk8klPeODqJMxkExY10xlaUN7s-ML95Efaw
CitedBy_id crossref_primary_10_1016_j_measurement_2024_114842
crossref_primary_10_1002_jbio_202300094
crossref_primary_10_1016_j_compositesb_2023_110860
crossref_primary_10_3390_ma17040919
crossref_primary_10_1007_s11629_023_8159_6
crossref_primary_10_1080_10589759_2025_2523470
crossref_primary_10_1111_boc_70003
crossref_primary_10_1016_j_compstruct_2021_114775
crossref_primary_10_1016_j_compstruct_2023_117207
crossref_primary_10_1016_j_jmbbm_2022_105579
crossref_primary_10_1016_j_actbio_2022_02_021
crossref_primary_10_1007_s11340_025_01145_6
crossref_primary_10_1007_s10035_022_01292_w
crossref_primary_10_1016_j_enggeo_2024_107505
crossref_primary_10_1680_jgeot_24_00036
crossref_primary_10_1016_j_tafmec_2025_105127
crossref_primary_10_1007_s43939_025_00208_8
crossref_primary_10_1007_s11340_025_01182_1
crossref_primary_10_1016_j_rockmb_2025_100225
crossref_primary_10_1111_str_12469
crossref_primary_10_1364_AO_435830
crossref_primary_10_3390_app13063842
crossref_primary_10_1016_j_engfracmech_2022_108430
crossref_primary_10_1016_j_optlaseng_2023_107719
crossref_primary_10_1016_j_compositesa_2025_109123
crossref_primary_10_1016_j_optlaseng_2023_107566
crossref_primary_10_2478_msr_2020_0025
crossref_primary_10_1016_j_compstruct_2023_116994
crossref_primary_10_1016_j_eml_2022_101710
crossref_primary_10_1016_j_ijfatigue_2025_109106
crossref_primary_10_1016_j_mechmat_2025_105394
crossref_primary_10_1016_j_optlaseng_2025_109247
crossref_primary_10_1016_j_bpj_2022_04_028
crossref_primary_10_1016_j_optlaseng_2025_109107
crossref_primary_10_1016_j_conbuildmat_2024_138371
Cites_doi 10.1016/j.jbiomech.2009.06.034
10.1117/1.JBO.18.12.121512
10.1098/rsif.2013.0459
10.1142/S1758825111001019
10.1007/s11340-013-9717-6
10.1007/BF02326485
10.3233/FI-2014-1117
10.1016/j.optlaseng.2015.03.005
10.3390/app9071418
10.1063/1.4972814
10.1117/1.1314593
10.1016/j.optlaseng.2011.05.005
10.1007/s11340-018-0390-7
10.1007/s11340-014-9881-3
10.1088/0957-0233/23/8/085404
10.1016/j.optlaseng.2008.10.014
10.1016/j.optlaseng.2014.02.003
10.1360/N972016-00606
10.1007/s11340-015-0080-7
10.1007/s11340-020-00588-3
10.1177/0309324711409999
10.1007/s11340-010-9333-7
10.1088/0957-0233/20/6/062001
10.1007/s11340-010-9397-4
10.2478/msr-2020-0025
10.1088/1361-6501/ab2f82
10.1243/03093247JSA436
10.1016/j.optlaseng.2013.10.014
10.1088/0957-0233/27/8/085004
10.1007/s11340-015-0091-4
10.1088/1361-6501/aa7e8a
10.1016/j.optlaseng.2017.09.015
10.1007/BF02323555
10.1179/1743280413Y.0000000023
10.2217/iim.12.13
10.1088/0957-0233/23/4/045002
10.1016/j.jbiomech.2014.01.001
10.1016/j.advengsoft.2017.12.004
10.1007/s11340-016-0180-z
10.1007/s11340-007-9037-9
10.1007/s11340-017-0356-1
10.1179/174328406X114117
10.1007/s11340-014-9915-x
10.1007/s11340-010-9445-0
10.1088/1361-6501/aa60ad
10.1088/1361-6501/aac55b
10.1016/j.optlaseng.2009.08.010
10.1364/AO.49.005501
10.1007/s11340-018-00455-2
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlaseng.2020.106189
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
ExternalDocumentID 10_1016_j_optlaseng_2020_106189
S0143816619315982
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c315t-eeb33ff55f71bb35b630c3d53447be43b70c390d045bbe9be4dc54b8f6a296b23
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591017400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Sat Nov 29 07:24:27 EST 2025
Tue Nov 18 21:51:48 EST 2025
Fri Feb 23 02:45:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Digital volume correlation
Internal deformation measurement
Subvoxel registration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-eeb33ff55f71bb35b630c3d53447be43b70c390d045bbe9be4dc54b8f6a296b23
ParticipantIDs crossref_citationtrail_10_1016_j_optlaseng_2020_106189
crossref_primary_10_1016_j_optlaseng_2020_106189
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2020_106189
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Optics and lasers in engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bay (bib0004) 2008; 43
Shao, Dai, He (bib0013) 2015; 71
Wang, Pan (bib0041) 2019; 59
Schreier, Braasch, Sutton (bib0022) 2000; 39
Yu, Pan (bib0017) 2015; 26
Sun, Brown, Flay (bib0025) 2016; 27
B, Ma, L (bib0040) 2017; 10
Pan, Qian, Xie (bib0001) 2009; 20
Hiller, Maisl, Reindl (bib0024) 2012; 23
Pan B., Zou X.Quasi-Gauss point digital image/volume correlation: a simple approach for reducing systematic errors due to undermatched shape functions[J]. Experimental Mechanics. 2020(In press).
Pan, Wang (bib0014) 2016; 56
Benoit, Guérard, Gillet (bib0033) 2009; 42
Girard, Strouthidis, Desjardins (bib0032) 2013; 10
Wang, Jiang, Kemao (bib0034) 2016; 56
Pan, Xie, Wang (bib0008) 2010; 49
Fu, Pierron, Ruiz (bib0031) 2013; 18
Pan, Wang, Wu (bib0038) 2014; 58
Boas, Fleischmann (bib0049) 2012; 2
Huang, Pan, Li (bib0010) 2011; 3
Pan, Wang (bib0009) 2017; 62
Pan, Lu, Xie (bib0043) 2010; 48
Roberts, Perilli, Reynolds (bib0005) 2014; 47
Zhou, Sun, Chen (bib0023) 2014; 55
Rethore, Limodin, Buffiere (bib0029) 2011; 46
Pan, Li, Tong (bib0012) 2013; 53
Wang, Pan (bib0018) 2015; 55
Pan (bib0002) 2018; 29
Gates, Gonzalez, Lambros (bib0015) 2015; 55
Hu, Du, Luo (bib0020) 2014; 54
Pan, Wu, Xia (bib0021) 2012; 50
Buljac, Jailin, Mendoza (bib0007) 2018; 58
Davis, Elliott (bib0048) 2006; 22
Wang, Pan (bib0047) 2018; 116
Buffiere, Maire, Adrien (bib0027) 2010; 50
Pan, Wang (bib0046) 2017; 28
Limodin, Réthoré, Adrien (bib0026) 2011; 51
Pan (bib0051) 2018; 101
Wang, Pan, Ran, Lubineau (bib0050) 2017; 28
Lu, Cary P (bib0016) 2000; 40
Wang, Pan, Lubineau (bib0052) 2018; 58
Ren, Liang, Wei (bib0036) 2016; 87
Pan, Wu, Wang (bib0011) 2012; 23
Mao, Liu, Zhu (bib0035) 2019; 9
Zou X., Pan B.The effect of low-pass pre-filtering on subvoxel registration algorithms in digital volume correlation [J]. Strain. 2020(Submitted).
Tai, Yang (bib0044) 2008
Maire, Withers (bib0028) 2013; 59
Wang, Pan (bib0042) 2019; 30
Pan, Asundi, Xie (bib0037) 2009; 47
Bay, Smith, Fyhrie (bib0003) 1999; 39
Fedele, Ciani, Fiori (bib0006) 2014; 135
Franck, Hong, Maskarinec (bib0030) 2007; 47
Gates, Lambros, Heath (bib0019) 2011; 51
Gates (10.1016/j.optlaseng.2020.106189_bib0015) 2015; 55
Huang (10.1016/j.optlaseng.2020.106189_bib0010) 2011; 3
Limodin (10.1016/j.optlaseng.2020.106189_bib0026) 2011; 51
Fu (10.1016/j.optlaseng.2020.106189_bib0031) 2013; 18
Hu (10.1016/j.optlaseng.2020.106189_bib0020) 2014; 54
Pan (10.1016/j.optlaseng.2020.106189_bib0002) 2018; 29
Roberts (10.1016/j.optlaseng.2020.106189_bib0005) 2014; 47
Yu (10.1016/j.optlaseng.2020.106189_bib0017) 2015; 26
Rethore (10.1016/j.optlaseng.2020.106189_bib0029) 2011; 46
Buffiere (10.1016/j.optlaseng.2020.106189_bib0027) 2010; 50
Bay (10.1016/j.optlaseng.2020.106189_bib0003) 1999; 39
Wang (10.1016/j.optlaseng.2020.106189_bib0018) 2015; 55
Maire (10.1016/j.optlaseng.2020.106189_bib0028) 2013; 59
Davis (10.1016/j.optlaseng.2020.106189_bib0048) 2006; 22
Ren (10.1016/j.optlaseng.2020.106189_bib0036) 2016; 87
B (10.1016/j.optlaseng.2020.106189_bib0040) 2017; 10
Pan (10.1016/j.optlaseng.2020.106189_bib0008) 2010; 49
Wang (10.1016/j.optlaseng.2020.106189_bib0042) 2019; 30
Gates (10.1016/j.optlaseng.2020.106189_bib0019) 2011; 51
Pan (10.1016/j.optlaseng.2020.106189_bib0012) 2013; 53
Wang (10.1016/j.optlaseng.2020.106189_bib0050) 2017; 28
Pan (10.1016/j.optlaseng.2020.106189_bib0014) 2016; 56
Shao (10.1016/j.optlaseng.2020.106189_bib0013) 2015; 71
Mao (10.1016/j.optlaseng.2020.106189_bib0035) 2019; 9
Pan (10.1016/j.optlaseng.2020.106189_bib0038) 2014; 58
Pan (10.1016/j.optlaseng.2020.106189_bib0043) 2010; 48
Wang (10.1016/j.optlaseng.2020.106189_bib0041) 2019; 59
Zhou (10.1016/j.optlaseng.2020.106189_bib0023) 2014; 55
Schreier (10.1016/j.optlaseng.2020.106189_bib0022) 2000; 39
Franck (10.1016/j.optlaseng.2020.106189_bib0030) 2007; 47
10.1016/j.optlaseng.2020.106189_bib0039
Benoit (10.1016/j.optlaseng.2020.106189_bib0033) 2009; 42
Tai (10.1016/j.optlaseng.2020.106189_bib0044) 2008
Buljac (10.1016/j.optlaseng.2020.106189_bib0007) 2018; 58
Boas (10.1016/j.optlaseng.2020.106189_bib0049) 2012; 2
Pan (10.1016/j.optlaseng.2020.106189_bib0001) 2009; 20
Pan (10.1016/j.optlaseng.2020.106189_bib0011) 2012; 23
Pan (10.1016/j.optlaseng.2020.106189_bib0046) 2017; 28
Sun (10.1016/j.optlaseng.2020.106189_bib0025) 2016; 27
Wang (10.1016/j.optlaseng.2020.106189_bib0052) 2018; 58
Girard (10.1016/j.optlaseng.2020.106189_bib0032) 2013; 10
Fedele (10.1016/j.optlaseng.2020.106189_bib0006) 2014; 135
Pan (10.1016/j.optlaseng.2020.106189_bib0021) 2012; 50
Wang (10.1016/j.optlaseng.2020.106189_bib0034) 2016; 56
Bay (10.1016/j.optlaseng.2020.106189_bib0004) 2008; 43
10.1016/j.optlaseng.2020.106189_bib0045
Pan (10.1016/j.optlaseng.2020.106189_bib0009) 2017; 62
Pan (10.1016/j.optlaseng.2020.106189_bib0037) 2009; 47
Wang (10.1016/j.optlaseng.2020.106189_bib0047) 2018; 116
Lu (10.1016/j.optlaseng.2020.106189_bib0016) 2000; 40
Pan (10.1016/j.optlaseng.2020.106189_bib0051) 2018; 101
Hiller (10.1016/j.optlaseng.2020.106189_bib0024) 2012; 23
References_xml – volume: 26
  year: 2015
  ident: bib0017
  article-title: The errors in digital image correlation due to overmatched shape functions[J]
  publication-title: Measurement Science and Technology
– volume: 46
  start-page: 683
  year: 2011
  end-page: 695
  ident: bib0029
  article-title: Digital volume correlation analyses of synchrotron tomographic images[J]
  publication-title: JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN
– volume: 87
  year: 2016
  ident: bib0036
  article-title: Accurate B-spline-based 3-D interpolation scheme for digital volume correlation[J]
  publication-title: Review of Scientific Instruments
– volume: 40
  start-page: 393
  year: 2000
  end-page: 400
  ident: bib0016
  article-title: Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient[J]
  publication-title: Experimental Mechanics
– volume: 62
  start-page: 1671
  year: 2017
  end-page: 1681
  ident: bib0009
  article-title: Research progress in digital volume correlation method[J]
  publication-title: Chinese Science Bulletin
– volume: 54
  start-page: 1575
  year: 2014
  end-page: 1586
  ident: bib0020
  article-title: Internal Deformation Measurement and Force Chain Characterization of Mason Sand under Confined Compression using Incremental Digital Volume Correlation[J]
  publication-title: Experimental Mechanics
– volume: 29
  start-page: 82001
  year: 2018
  ident: bib0002
  article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals[J]
  publication-title: Measurement Science and Technology
– volume: 27
  start-page: 85004
  year: 2016
  ident: bib0025
  article-title: A reference sample for investigating the stability of the imaging system of x-ray computed tomography[J]
  publication-title: Measurement Science and Technology
– reference: Zou X., Pan B.The effect of low-pass pre-filtering on subvoxel registration algorithms in digital volume correlation [J]. Strain. 2020(Submitted).
– volume: 9
  start-page: 1418
  year: 2019
  ident: bib0035
  article-title: 3D strain mapping of opaque materials using an improved digital volumetric speckle photography technique with X-ray microtomography[J]
  publication-title: Applied Sciences
– volume: 28
  year: 2017
  ident: bib0050
  article-title: Systematic errors in digital volume correlation due to the self-heating effect of a laboratory X-ray CT scanner
  publication-title: Measurement Science and Technology
– volume: 101
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib0051
  article-title: Thermal error analysis and compensation for digital image/volume correlation[J]
  publication-title: Optics and Lasers in Engineering
– volume: 59
  start-page: 1
  year: 2013
  end-page: 43
  ident: bib0028
  article-title: Quantitative X-ray tomography[J]
  publication-title: International Materials Reviews
– volume: 23
  start-page: 85404
  year: 2012
  ident: bib0024
  article-title: Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications[J]
  publication-title: Measurement Science and Technology
– volume: 56
  start-page: 297
  year: 2016
  end-page: 309
  ident: bib0034
  article-title: GPU Accelerated Digital Volume Correlation[J]
  publication-title: Experimental Mechanics
– volume: 51
  start-page: 959
  year: 2011
  end-page: 970
  ident: bib0026
  article-title: Analysis and Artifact Correction for Volume Correlation Measurements Using Tomographic Images from a Laboratory X-ray Source[J]
  publication-title: Experimental Mechanics
– reference: Pan B., Zou X.Quasi-Gauss point digital image/volume correlation: a simple approach for reducing systematic errors due to undermatched shape functions[J]. Experimental Mechanics. 2020(In press).
– volume: 22
  start-page: 1011
  year: 2006
  end-page: 1018
  ident: bib0048
  article-title: Artefacts in X-ray microtomography of materials[J]
  publication-title: Materials Science and Technology
– volume: 39
  start-page: 2915
  year: 2000
  end-page: 2921
  ident: bib0022
  article-title: Systematic errors in digital image correlation caused by intensity interpolation[J]
  publication-title: Optical Engineering
– volume: 28
  year: 2017
  ident: bib0046
  article-title: A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images[J]
  publication-title: Measurement Science and Technology
– volume: 48
  start-page: 469
  year: 2010
  end-page: 477
  ident: bib0043
  article-title: Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation[J]
  publication-title: Optics and Lasers in Engineering
– volume: 20
  start-page: 62001
  year: 2009
  ident: bib0001
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]
  publication-title: Measurement Science and Technology
– volume: 135
  start-page: 171
  year: 2014
  end-page: 197
  ident: bib0006
  article-title: X-ray microtomography under loading and 3D-volume digital image correlation. a review[J]
  publication-title: Fundamenta Informaticae
– volume: 59
  start-page: 149
  year: 2019
  end-page: 162
  ident: bib0041
  article-title: Self-Adaptive Digital Volume Correlation for Unknown Deformation Fields[J]
  publication-title: Experimental Mechanics
– volume: 58
  start-page: 661
  year: 2018
  end-page: 708
  ident: bib0007
  article-title: Digital Volume Correlation: Review of Progress and Challenges[J]
  publication-title: Experimental Mechanics
– volume: 51
  start-page: 491
  year: 2011
  end-page: 507
  ident: bib0019
  article-title: Towards High Performance Digital Volume Correlation[J]
  publication-title: Experimental Mechanics
– volume: 53
  start-page: 1277
  year: 2013
  end-page: 1289
  ident: bib0012
  article-title: Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations[J]
  publication-title: Experimental Mechanics
– volume: 55
  start-page: 245
  year: 2015
  end-page: 259
  ident: bib0015
  article-title: Subset Refinement for Digital Volume Correlation: Numerical and Experimental Applications[J]
  publication-title: Experimental Mechanics
– year: 2008
  ident: bib0044
  article-title: A fast method for image noise estimation using Laplacian operator and adaptive edge detection: In 2008 3rd
  publication-title: Control and Signal Processing [M]
– volume: 30
  year: 2019
  ident: bib0042
  article-title: Anisotropic self-adaptive digital volume correlation with optimal cuboid subvolumes[J]
  publication-title: Measurement Science and Technology
– volume: 10
  year: 2013
  ident: bib0032
  article-title: In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm[J]
  publication-title: Journal of The Royal Society Interface
– volume: 43
  start-page: 745
  year: 2008
  end-page: 760
  ident: bib0004
  article-title: Methods and applications of digital volume correlation[J]
  publication-title: The Journal of Strain Analysis for Engineering Design
– volume: 3
  start-page: 335
  year: 2011
  end-page: 354
  ident: bib0010
  article-title: A digital volume correlation technique for 3D deformation measurements of soft gels[J]
  publication-title: International Journal of Applied Mechanics
– volume: 49
  start-page: 5501
  year: 2010
  end-page: 5509
  ident: bib0008
  article-title: Equivalence of Digital Image Correlation Criteria for Pattern Matching[J]
  publication-title: Applied Optics
– volume: 58
  start-page: 427
  year: 2018
  end-page: 436
  ident: bib0052
  article-title: In-Situ Systematic Error Correction for Digital Volume Correlation Using a Reference Sample[J]
  publication-title: Experimental Mechanics
– volume: 23
  start-page: 45002
  year: 2012
  ident: bib0011
  article-title: Internal displacement and strain measurement using digital volume correlation: a least-squares framework[J]
  publication-title: Measurement Science and Technology
– volume: 2
  start-page: 229
  year: 2012
  end-page: 240
  ident: bib0049
  article-title: CT artifacts: Causes and reduction techniques[J]
  publication-title: Imaging in Medicine
– volume: 50
  start-page: 289
  year: 2010
  end-page: 305
  ident: bib0027
  article-title: In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics[J]
  publication-title: Experimental Mechanics
– volume: 47
  start-page: 865
  year: 2009
  end-page: 874
  ident: bib0037
  article-title: Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements[J]
  publication-title: Optics and Lasers in Engineering
– volume: 58
  start-page: 126
  year: 2014
  end-page: 135
  ident: bib0038
  article-title: An efficient and accurate 3D displacements tracking strategy for digital volume correlation[J]
  publication-title: Optics and Lasers in Engineering
– volume: 42
  start-page: 2381
  year: 2009
  end-page: 2386
  ident: bib0033
  article-title: 3D analysis from micro-MRI during in situ compression on cancellous bone[J]
  publication-title: Journal of biomechanics
– volume: 71
  start-page: 9
  year: 2015
  end-page: 19
  ident: bib0013
  article-title: Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation[J]
  publication-title: Optics and Lasers in Engineering
– volume: 50
  start-page: 586
  year: 2012
  end-page: 592
  ident: bib0021
  article-title: Incremental Calculation for Large Deformation Measurement Using Reliability-guided Digital Image Correlation[J]
  publication-title: Optics and Lasers in Engineering
– volume: 55
  start-page: 5
  year: 2014
  end-page: 11
  ident: bib0023
  article-title: Adaptive subset offset for systematic error reduction in incremental digital image correlation[J]
  publication-title: Optics and Lasers in Engineering
– volume: 56
  start-page: 1395
  year: 2016
  end-page: 1409
  ident: bib0014
  article-title: Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms[J]
  publication-title: Experimental Mechanics
– volume: 47
  start-page: 427
  year: 2007
  end-page: 438
  ident: bib0030
  article-title: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation[J]
  publication-title: Experimental Mechanics
– volume: 39
  start-page: 217
  year: 1999
  end-page: 226
  ident: bib0003
  article-title: Digital volume correlation: Three-dimensional strain mapping using X-ray tomography[J]
  publication-title: Experimental Mechanics
– volume: 55
  start-page: 1717
  year: 2015
  end-page: 1727
  ident: bib0018
  article-title: Random Errors in Digital Image Correlation Due to Matched or Overmatched Shape Functions[J]
  publication-title: Experimental Mechanics
– volume: 47
  start-page: 923
  year: 2014
  end-page: 934
  ident: bib0005
  article-title: Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: A literature review[J]
  publication-title: Journal of Biomechanics
– volume: 10
  start-page: 4900
  year: 2017
  end-page: 4910
  ident: bib0040
  article-title: Volumetric image registration from invariant keypoints[J]
  publication-title: IEEE Transactions on Image Processing
– volume: 116
  start-page: 80
  year: 2018
  end-page: 88
  ident: bib0047
  article-title: Incremental digital volume correlation method with nearest subvolume offset: An accurate and simple approach for large deformation measurement[J]
  publication-title: Advances in Engineering Software
– volume: 18
  year: 2013
  ident: bib0031
  article-title: Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation[J]
  publication-title: Journal of biomedical optics
– volume: 42
  start-page: 2381
  issue: 14
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106189_bib0033
  article-title: 3D analysis from micro-MRI during in situ compression on cancellous bone[J]
  publication-title: Journal of biomechanics
  doi: 10.1016/j.jbiomech.2009.06.034
– volume: 18
  issue: 12
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106189_bib0031
  article-title: Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation[J]
  publication-title: Journal of biomedical optics
  doi: 10.1117/1.JBO.18.12.121512
– volume: 10
  issue: 87
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106189_bib0032
  article-title: In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm[J]
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2013.0459
– volume: 3
  start-page: 335
  issue: 2
  year: 2011
  ident: 10.1016/j.optlaseng.2020.106189_bib0010
  article-title: A digital volume correlation technique for 3D deformation measurements of soft gels[J]
  publication-title: International Journal of Applied Mechanics
  doi: 10.1142/S1758825111001019
– volume: 53
  start-page: 1277
  issue: 7
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106189_bib0012
  article-title: Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-013-9717-6
– volume: 40
  start-page: 393
  issue: 4
  year: 2000
  ident: 10.1016/j.optlaseng.2020.106189_bib0016
  article-title: Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/BF02326485
– volume: 135
  start-page: 171
  issue: 1-2
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106189_bib0006
  article-title: X-ray microtomography under loading and 3D-volume digital image correlation. a review[J]
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-2014-1117
– volume: 71
  start-page: 9
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106189_bib0013
  article-title: Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation[J]
  publication-title: Optics and Lasers in Engineering
  doi: 10.1016/j.optlaseng.2015.03.005
– volume: 9
  start-page: 1418
  issue: 7
  year: 2019
  ident: 10.1016/j.optlaseng.2020.106189_bib0035
  article-title: 3D strain mapping of opaque materials using an improved digital volumetric speckle photography technique with X-ray microtomography[J]
  publication-title: Applied Sciences
  doi: 10.3390/app9071418
– volume: 87
  issue: 12
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106189_bib0036
  article-title: Accurate B-spline-based 3-D interpolation scheme for digital volume correlation[J]
  publication-title: Review of Scientific Instruments
  doi: 10.1063/1.4972814
– volume: 39
  start-page: 2915
  issue: 11
  year: 2000
  ident: 10.1016/j.optlaseng.2020.106189_bib0022
  article-title: Systematic errors in digital image correlation caused by intensity interpolation[J]
  publication-title: Optical Engineering
  doi: 10.1117/1.1314593
– volume: 50
  start-page: 586
  issue: 4
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106189_bib0021
  article-title: Incremental Calculation for Large Deformation Measurement Using Reliability-guided Digital Image Correlation[J]
  publication-title: Optics and Lasers in Engineering
  doi: 10.1016/j.optlaseng.2011.05.005
– volume: 58
  start-page: 661
  issue: 5
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106189_bib0007
  article-title: Digital Volume Correlation: Review of Progress and Challenges[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-018-0390-7
– volume: 55
  start-page: 245
  issue: 1
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106189_bib0015
  article-title: Subset Refinement for Digital Volume Correlation: Numerical and Experimental Applications[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-014-9881-3
– volume: 23
  start-page: 85404
  issue: 8
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106189_bib0024
  article-title: Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications[J]
  publication-title: Measurement Science and Technology
  doi: 10.1088/0957-0233/23/8/085404
– volume: 47
  start-page: 865
  issue: 7-8
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106189_bib0037
  article-title: Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements[J]
  publication-title: Optics and Lasers in Engineering
  doi: 10.1016/j.optlaseng.2008.10.014
– year: 2008
  ident: 10.1016/j.optlaseng.2020.106189_bib0044
  article-title: A fast method for image noise estimation using Laplacian operator and adaptive edge detection: In 2008 3rd International Symposium on Communications
  publication-title: Control and Signal Processing [M]
– volume: 58
  start-page: 126
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106189_bib0038
  article-title: An efficient and accurate 3D displacements tracking strategy for digital volume correlation[J]
  publication-title: Optics and Lasers in Engineering
  doi: 10.1016/j.optlaseng.2014.02.003
– volume: 62
  start-page: 1671
  issue: 16
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106189_bib0009
  article-title: Research progress in digital volume correlation method[J]
  publication-title: Chinese Science Bulletin
  doi: 10.1360/N972016-00606
– volume: 10
  start-page: 4900
  issue: 26
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106189_bib0040
  article-title: Volumetric image registration from invariant keypoints[J]
  publication-title: IEEE Transactions on Image Processing
– volume: 55
  start-page: 1717
  issue: 9
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106189_bib0018
  article-title: Random Errors in Digital Image Correlation Due to Matched or Overmatched Shape Functions[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-015-0080-7
– ident: 10.1016/j.optlaseng.2020.106189_bib0045
  doi: 10.1007/s11340-020-00588-3
– volume: 46
  start-page: 683
  issue: 7SI
  year: 2011
  ident: 10.1016/j.optlaseng.2020.106189_bib0029
  article-title: Digital volume correlation analyses of synchrotron tomographic images[J]
  publication-title: JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN
  doi: 10.1177/0309324711409999
– volume: 50
  start-page: 289
  issue: 3
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106189_bib0027
  article-title: In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-010-9333-7
– volume: 26
  issue: 0452024
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106189_bib0017
  article-title: The errors in digital image correlation due to overmatched shape functions[J]
  publication-title: Measurement Science and Technology
– volume: 20
  start-page: 62001
  issue: 6
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106189_bib0001
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]
  publication-title: Measurement Science and Technology
  doi: 10.1088/0957-0233/20/6/062001
– volume: 51
  start-page: 959
  issue: 6
  year: 2011
  ident: 10.1016/j.optlaseng.2020.106189_bib0026
  article-title: Analysis and Artifact Correction for Volume Correlation Measurements Using Tomographic Images from a Laboratory X-ray Source[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-010-9397-4
– ident: 10.1016/j.optlaseng.2020.106189_bib0039
  doi: 10.2478/msr-2020-0025
– volume: 30
  issue: 11
  year: 2019
  ident: 10.1016/j.optlaseng.2020.106189_bib0042
  article-title: Anisotropic self-adaptive digital volume correlation with optimal cuboid subvolumes[J]
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ab2f82
– volume: 43
  start-page: 745
  issue: 8
  year: 2008
  ident: 10.1016/j.optlaseng.2020.106189_bib0004
  article-title: Methods and applications of digital volume correlation[J]
  publication-title: The Journal of Strain Analysis for Engineering Design
  doi: 10.1243/03093247JSA436
– volume: 55
  start-page: 5
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106189_bib0023
  article-title: Adaptive subset offset for systematic error reduction in incremental digital image correlation[J]
  publication-title: Optics and Lasers in Engineering
  doi: 10.1016/j.optlaseng.2013.10.014
– volume: 27
  start-page: 85004
  issue: 8
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106189_bib0025
  article-title: A reference sample for investigating the stability of the imaging system of x-ray computed tomography[J]
  publication-title: Measurement Science and Technology
  doi: 10.1088/0957-0233/27/8/085004
– volume: 56
  start-page: 297
  issue: 2
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106189_bib0034
  article-title: GPU Accelerated Digital Volume Correlation[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-015-0091-4
– volume: 28
  issue: 10
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106189_bib0046
  article-title: A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images[J]
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/aa7e8a
– volume: 101
  start-page: 1
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106189_bib0051
  article-title: Thermal error analysis and compensation for digital image/volume correlation[J]
  publication-title: Optics and Lasers in Engineering
  doi: 10.1016/j.optlaseng.2017.09.015
– volume: 39
  start-page: 217
  issue: 3
  year: 1999
  ident: 10.1016/j.optlaseng.2020.106189_bib0003
  article-title: Digital volume correlation: Three-dimensional strain mapping using X-ray tomography[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/BF02323555
– volume: 59
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106189_bib0028
  article-title: Quantitative X-ray tomography[J]
  publication-title: International Materials Reviews
  doi: 10.1179/1743280413Y.0000000023
– volume: 2
  start-page: 229
  issue: 4
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106189_bib0049
  article-title: CT artifacts: Causes and reduction techniques[J]
  publication-title: Imaging in Medicine
  doi: 10.2217/iim.12.13
– volume: 23
  start-page: 45002
  issue: 4
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106189_bib0011
  article-title: Internal displacement and strain measurement using digital volume correlation: a least-squares framework[J]
  publication-title: Measurement Science and Technology
  doi: 10.1088/0957-0233/23/4/045002
– volume: 47
  start-page: 923
  issue: 5
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106189_bib0005
  article-title: Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: A literature review[J]
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2014.01.001
– volume: 116
  start-page: 80
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106189_bib0047
  article-title: Incremental digital volume correlation method with nearest subvolume offset: An accurate and simple approach for large deformation measurement[J]
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.12.004
– volume: 56
  start-page: 1395
  issue: 8
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106189_bib0014
  article-title: Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-016-0180-z
– volume: 47
  start-page: 427
  issue: 3
  year: 2007
  ident: 10.1016/j.optlaseng.2020.106189_bib0030
  article-title: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-007-9037-9
– volume: 58
  start-page: 427
  issue: 3
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106189_bib0052
  article-title: In-Situ Systematic Error Correction for Digital Volume Correlation Using a Reference Sample[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-017-0356-1
– volume: 22
  start-page: 1011
  issue: 9
  year: 2006
  ident: 10.1016/j.optlaseng.2020.106189_bib0048
  article-title: Artefacts in X-ray microtomography of materials[J]
  publication-title: Materials Science and Technology
  doi: 10.1179/174328406X114117
– volume: 54
  start-page: 1575
  issue: 9
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106189_bib0020
  article-title: Internal Deformation Measurement and Force Chain Characterization of Mason Sand under Confined Compression using Incremental Digital Volume Correlation[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-014-9915-x
– volume: 51
  start-page: 491
  issue: 4
  year: 2011
  ident: 10.1016/j.optlaseng.2020.106189_bib0019
  article-title: Towards High Performance Digital Volume Correlation[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-010-9445-0
– volume: 28
  issue: 5
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106189_bib0050
  article-title: Systematic errors in digital volume correlation due to the self-heating effect of a laboratory X-ray CT scanner
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/aa60ad
– volume: 29
  start-page: 82001
  issue: 8
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106189_bib0002
  article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals[J]
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/aac55b
– volume: 48
  start-page: 469
  issue: 4
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106189_bib0043
  article-title: Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation[J]
  publication-title: Optics and Lasers in Engineering
  doi: 10.1016/j.optlaseng.2009.08.010
– volume: 49
  start-page: 5501
  issue: 28
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106189_bib0008
  article-title: Equivalence of Digital Image Correlation Criteria for Pattern Matching[J]
  publication-title: Applied Optics
  doi: 10.1364/AO.49.005501
– volume: 59
  start-page: 149
  issue: 2
  year: 2019
  ident: 10.1016/j.optlaseng.2020.106189_bib0041
  article-title: Self-Adaptive Digital Volume Correlation for Unknown Deformation Fields[J]
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-018-00455-2
SSID ssj0016411
Score 2.4706378
SecondaryResourceType review_article
Snippet •This paper summarizes our recent advances made on DVC.•Accuracy and efficiency-enhanced subvoxel registration algorithm and self-adaptive selection DVC...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106189
SubjectTerms Digital volume correlation
Internal deformation measurement
Subvoxel registration
Title Some recent advances in digital volume correlation
URI https://dx.doi.org/10.1016/j.optlaseng.2020.106189
Volume 135
WOSCitedRecordID wos000591017400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS-NAEB_OqnA-yFmV0_sgD76VlCSbZBPfvEO5Ow4VrNq30N3sloqmxVbxz3c2s01iFfSQewnJwOZjfstkdmb2NwB72pfS94RyuZAhLlC454rEl67W-L9WeRoFZTDn4i8_Pk76_fTUduGblu0EeFEkDw_p5L9CjTIE22yd_Qe4q5uiAM8RdDwi7Hh8E_Bn4xvTCkWWxeOU4aea19HQNAjpkD3qSNOW47rGxTqoJ5OKtxn9arO713CK1KSFdcqJ-rw3RJc29Pxj3AwlBItlGdUel7qgiEKOzDXZRfpjkJlMOHPRPDy1o8Q78swmU3jgqjuezMyLF8OueXbXrEWpe9AC4bWpNyvTmehb-oZfcAmWA44nLVg--H3Y_1NlieLQp36T9g2f1O-9-LiXvY-GR9H7BOt2KeAcEIQb8EEVbVhrEES2YbUs0JXTTQgMrA7B6sxhdUaFY2F1SD1OA9YtOD867P385dp-F67ED525SgnGtI4izX0hWCRi5kmWR4aUUaiQCY6XqZejFy6ESlGUyygUiY4HQRqLgG1DqxgX6jM46BZLhhJcP_HQC7VQwSDmg4Gn_TQXItyBeK6HTFoyeNOT5DqbV_1dZZUCM6PAjBS4A141cEJ8KK8P2Z8rOrNuHblrGc6Q1wbvvmfwF_hYT_Ov0Jrd3qlvsCLvZ6Pp7Xc7mx4B0rh1QQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+recent+advances+in+digital+volume+correlation&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Pan%2C+Bing&rft.au=Wang%2C+Bo&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=135&rft_id=info:doi/10.1016%2Fj.optlaseng.2020.106189&rft.externalDocID=S0143816619315982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon