Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming
We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial port...
Saved in:
| Published in: | Journal of global optimization Vol. 43; no. 2-3; pp. 471 - 484 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.03.2009
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that the use of SDP and RLT constraints together can produce bounds that are substantially better than either technique used alone. For highly symmetric problems we also consider the effect of symmetry-breaking based on tightened bounds on variables and/or order constraints. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-008-9372-0 |