Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming

We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial port...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of global optimization Ročník 43; číslo 2-3; s. 471 - 484
Hlavný autor: Anstreicher, Kurt M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.03.2009
Springer Nature B.V
Predmet:
ISSN:0925-5001, 1573-2916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that the use of SDP and RLT constraints together can produce bounds that are substantially better than either technique used alone. For highly symmetric problems we also consider the effect of symmetry-breaking based on tightened bounds on variables and/or order constraints.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-008-9372-0