Topology optimization of active tensegrity structures

•A general computational framework for active tensegrity topology design is proposed.•Structure member topology and actuator layout coupling relation is handled.•The proposed method can result in more lightweight active tensegrity with novel forms.•The proposed framework applies for optimum design o...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures Vol. 305; p. 107513
Main Authors: Wang, Yafeng, Han, Zhentao, Xu, Xian, Luo, Yaozhi
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2024
Subjects:
ISSN:0045-7949
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A general computational framework for active tensegrity topology design is proposed.•Structure member topology and actuator layout coupling relation is handled.•The proposed method can result in more lightweight active tensegrity with novel forms.•The proposed framework applies for optimum design of any type tensegrity structures. Existing studies on active tensegrity structure optimum design only focus on sizing and/or shape optimization i.e., the structural element topology does not change during the design process, which vastly limits the design space and further improvement of mass-saving performance. This study investigates the optimum design of active tensegrity structures through topology optimization, which has never been done to the best of the authors’ knowledge. Structural member topology and actuator layout are considered as binary design variables and their coupling relation is handled by auxiliary constraints. Member cross-sectional areas are treated as discrete design variables considering practical availability. Member prestress, actuator length changes, and other necessary auxiliary parameters are defined as continuous variables and designed simultaneously. Equilibrium conditions, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other design requirements are formulated as constraints. Linearization algorithm is proposed to transform the bilinear expressions in the objective and constraint functions to allow the problem to be solved to global optimum. Typical benchmark examples indicate that the topology-optimized active designs obtained through the proposed approach can further decrease the material consumption compared with sizing-optimized active tensegrity designs hence leading to more lightweight structures.
AbstractList •A general computational framework for active tensegrity topology design is proposed.•Structure member topology and actuator layout coupling relation is handled.•The proposed method can result in more lightweight active tensegrity with novel forms.•The proposed framework applies for optimum design of any type tensegrity structures. Existing studies on active tensegrity structure optimum design only focus on sizing and/or shape optimization i.e., the structural element topology does not change during the design process, which vastly limits the design space and further improvement of mass-saving performance. This study investigates the optimum design of active tensegrity structures through topology optimization, which has never been done to the best of the authors’ knowledge. Structural member topology and actuator layout are considered as binary design variables and their coupling relation is handled by auxiliary constraints. Member cross-sectional areas are treated as discrete design variables considering practical availability. Member prestress, actuator length changes, and other necessary auxiliary parameters are defined as continuous variables and designed simultaneously. Equilibrium conditions, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other design requirements are formulated as constraints. Linearization algorithm is proposed to transform the bilinear expressions in the objective and constraint functions to allow the problem to be solved to global optimum. Typical benchmark examples indicate that the topology-optimized active designs obtained through the proposed approach can further decrease the material consumption compared with sizing-optimized active tensegrity designs hence leading to more lightweight structures.
ArticleNumber 107513
Author Wang, Yafeng
Luo, Yaozhi
Han, Zhentao
Xu, Xian
Author_xml – sequence: 1
  givenname: Yafeng
  orcidid: 0000-0002-7470-1200
  surname: Wang
  fullname: Wang, Yafeng
– sequence: 2
  givenname: Zhentao
  surname: Han
  fullname: Han, Zhentao
– sequence: 3
  givenname: Xian
  surname: Xu
  fullname: Xu, Xian
  email: xian_xu@zju.edu.cn
– sequence: 4
  givenname: Yaozhi
  surname: Luo
  fullname: Luo, Yaozhi
BookMark eNqNj01rAjEQQHOwULX9Dd0_sHaym83HoQeRfoHQiz2HNJmViG6WJAr213fV0kMv7Wlg4L2ZNyGjLnRIyB2FGQXK7zczG3Z9ynFvZxVUbNiKhtYjMgZgTSkUU9dkktIGADgDGJNmFfqwDetjEfrsd_7TZB-6IrSFsdkfsMjYJVxHn4_F2Zv3EdMNuWrNNuHt95yS96fH1eKlXL49vy7my9LWtMklGsklRSaEMryVOFyspHLKILQfgjdOCMor1koFznIlnaWMWldXFXIpmaun5OHitTGkFLHV1ufzhzkav9UU9Klbb_RPtz5160v3wItffB_9zsTjP8j5hcQh7-Ax6mQ9dhadj2izdsH_6fgCELB9Ug
CitedBy_id crossref_primary_10_1007_s11831_025_10290_z
crossref_primary_10_1142_S0129183125500986
crossref_primary_10_1016_j_cscm_2025_e05063
crossref_primary_10_1007_s11760_025_04592_9
crossref_primary_10_1016_j_ssc_2025_115872
crossref_primary_10_1007_s42235_025_00745_1
crossref_primary_10_1016_j_tws_2025_112965
crossref_primary_10_1038_s41598_025_90188_9
crossref_primary_10_1016_j_tws_2025_113912
crossref_primary_10_1061_JSENDH_STENG_14127
crossref_primary_10_1371_journal_pone_0318903
crossref_primary_10_3390_buildings15121983
crossref_primary_10_1016_j_jcsr_2024_109205
crossref_primary_10_1002_adem_202402679
crossref_primary_10_1016_j_compstruc_2025_107863
crossref_primary_10_1002_pc_70183
crossref_primary_10_1016_j_engstruct_2025_120930
crossref_primary_10_1016_j_jcsr_2024_109166
crossref_primary_10_1016_j_apm_2025_116413
crossref_primary_10_1002_pc_29826
crossref_primary_10_1016_j_jmps_2025_106030
crossref_primary_10_1186_s40537_025_01129_2
crossref_primary_10_1007_s11696_025_04245_8
crossref_primary_10_32604_cmes_2025_059249
crossref_primary_10_1007_s00707_025_04264_2
crossref_primary_10_1016_j_tws_2025_113717
crossref_primary_10_1051_aacus_2025036
crossref_primary_10_1016_j_compstruct_2025_118925
crossref_primary_10_3390_buildings15122027
crossref_primary_10_1016_j_istruc_2025_108906
crossref_primary_10_1007_s10115_025_02498_z
crossref_primary_10_1016_j_compstruc_2025_107695
crossref_primary_10_1016_j_tws_2025_113184
Cites_doi 10.1016/j.compstruct.2016.05.009
10.1061/(ASCE)0733-9445(2004)130:10(1454)
10.1007/s00158-014-1085-z
10.1016/j.jclepro.2022.135521
10.1177/0956059919845330
10.1061/9780784481899.084
10.1016/j.ijsolstr.2020.09.002
10.1016/j.compstruc.2021.106486
10.1007/s11081-011-9172-0
10.1016/j.mechrescom.2013.10.017
10.1016/j.engstruct.2022.115450
10.1007/s00158-021-02899-y
10.1109/TRO.2006.878980
10.1016/0020-7683(86)90014-4
10.1016/j.engstruct.2023.116868
10.1016/j.mechrescom.2019.103396
10.1016/j.disopt.2016.01.005
10.1016/0020-7683(91)90137-5
10.1016/j.euromechsol.2022.104584
10.1177/026635119200700206
10.1061/(ASCE)ST.1943-541X.0002156
10.1016/j.engstruct.2021.111965
10.1061/(ASCE)0887-3801(2005)19:1(16)
10.1016/j.compstruct.2020.112454
10.1061/(ASCE)0893-1321(1998)11:2(37)
10.1061/(ASCE)BE.1943-5592.0001438
10.1016/j.mechrescom.2020.103477
10.3390/math10020283
10.2514/3.9043
10.1016/j.ijsolstr.2020.05.029
10.1016/j.cma.2023.116710
10.1016/j.istruc.2023.04.001
10.1177/026635119200700207
10.1007/s00158-023-03698-3
10.1016/S0020-7683(03)00267-1
10.1016/j.engstruct.2010.08.009
10.1007/s00158-019-02224-8
10.1061/(ASCE)0887-3801(2007)21:1(3)
10.1016/j.compstruct.2015.04.038
10.1109/ICRA.2015.7139590
10.1061/(ASCE)ST.1943-541X.0001189
10.1088/0964-1726/24/10/105008
10.1016/j.compstruct.2018.10.108
10.1016/j.engstruct.2009.12.042
10.1016/j.engstruct.2020.111419
10.1016/S0045-7825(96)01164-4
10.1016/j.ijsolstr.2020.05.030
10.1088/0034-4885/77/4/046603
10.1515/cls-2021-0007
10.1287/opre.14.4.699
10.1117/12.2044869
10.1146/annurev.physiol.59.1.575
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruc.2024.107513
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compstruc_2024_107513
S0045794924002426
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29F
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
OHT
R2-
SBC
SET
T9H
TAE
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c315t-ea8681e4779a6f8e400289d9ae0fb765d771624f890dc698dc141cd322e6884d3
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001317413500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Tue Nov 18 21:02:18 EST 2025
Sat Nov 29 04:10:47 EST 2025
Sat Dec 21 16:01:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Topology optimization
Active tensegrity structure
Mixed integer programming
Lightweight structures
Low-carbon buildings
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-ea8681e4779a6f8e400289d9ae0fb765d771624f890dc698dc141cd322e6884d3
ORCID 0000-0002-7470-1200
ParticipantIDs crossref_citationtrail_10_1016_j_compstruc_2024_107513
crossref_primary_10_1016_j_compstruc_2024_107513
elsevier_sciencedirect_doi_10_1016_j_compstruc_2024_107513
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers & structures
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Calladine, Pellegrino (b0270) Jan. 1991; 27
Lai, Plummer, Cleaver (b0235) 2020; 142
Wang, Xu (b0120) 2019; 2019
Rhode-Barbarigos (b0220) 2012
Furuya (b0035) 1992; 7
Asghari, Fathollahi-Fard, Mirzapour Al-E-Hashem, Dulebenets (b0330) 2022; 10
Zhang, Ohsaki (b0165) 2007
Lawler, Wood (b0315) 1966; 14
Levy MP. The Georgia Dome and beyond: achieving lightweight-longspan structures. In: Spatial, Lattice and Tension Structures; 1994, pp. 560–562.
Goyal, Peraza Hernandez, Skelton (b0105) 2019; 34
2014, vol. 9061, p. 90610W, DOI: 10.1117/12.2044869.
Fraddosio, Pavone, Piccioni (b0125) 2021; 8
Franklin K, Ozkan E, Powell D, et al. Design of the Kurilpa Pedestrian Bridge for Dynamic Effects Due to Pedestrian and Wind Loads. In: 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference; 2010, p. 885.
Pellegrino (b0020) 1992; 7
Ali, Rhode-Barbarigos, Albi, Smith (b0215) 2010; 32
Wang, Xu, Luo (b0135) 2021; 227
Senatore G, Duffour P, Winslow P. Synthesis of minimum energy adaptive structures. Structural and Multidisciplinary Optimization; 2019, pp. 1–29, Doi
Ingber, Wang, Stamenović (b0060) 2014; 77
Wang, Xu, Luo (b0240) 2021; 234
Kanno (b0175) 2013; 14
.
Su, Zhang, Ohsaki, Wu (b0185) 2020; 206
Adam, Smith (b0205) 2007; 21
You (b0195) 1997; 144
Lee, Lee (b0145) 2016; 152
Chen, Skelton (b0160) 2020
Zegard, Paulino (b0290) 2014; 50
Chen, Fraddosio, Micheletti, Pavone, Piccioni, Skelton (b0115) 2023; 296
Senatore, Wang (b0255) 2024; 422
Ingber (b0055) 1997; 59
Rhode-Barbarigos, Ali, Motro, Smith (b0010) 2010; 32
Xu, Wang, Luo, Hu (b0180) 2018; 144
Morrison, Jacobson, Sauppe, Sewell (b0325) 2016; 19
Sultan, Skelton (b0030) 2003; 40
Krishnan S, Li B. Design of lightweight deployable antennas using the tensegrity principle. In: Earth and Space 2018: Engineering for Extreme Environments, American Society of Civil Engineers Reston, VA; 2018, pp. 888–899.
K. Nagase and R. Skelton, “Minimal mass design of tensegrity structures,” in
Skelton, Fraternali, Carpentieri, Micheletti (b0085) 2014; 58
Amendola, Hernández-Nava, Goodall, Todd, Skelton, Fraternali (b0070) 2015; 131
Ma, Yuan, Samy (b0170) 2019; 100
Haftka (b0245) 1985; 23
Dorn (b0260) 1964; 3
Wang, Senatore (b0250) 2021; 64
Wang, Xu, Luo (b0140) 2021; 247
Wang, Senatore (b0285) 2020; 202
You, Xu, Wang, Xiang, Luo (b0300) 2023; 52
Ganga, Micheletti, Podio-Guidugli, Scolamiero, Tibert, Zolesi (b0040) 2016
[Accessed: 28-Apr-2024].
Feron, Boucher, Denoël, Latteur (b0090) 2019; 24
Xu, You, Wang, Luo (b0295) 2023; 385
Tibert (b0025) 2002
Djouadi, Motro, Pons, Crosnier (b0190) 1998; 11
Kmet, Mojdis (b0225) 2015; 141
Sabelhaus AP et al. System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE international conference on robotics and automation (ICRA), 2015, pp. 2867–2873, DOI
Goyal, Skelton, Hernandez (b0110) 2020; 103
Domer, Smith (b0210) 2005; 19
Zhang, Lu, Lu, Li (b0230) 2023; 278
Santos, Rodrigues, Micheletti (b0065) 2015; 24
Trinh, Lee, Kang, Lee (b0130) 2022; 94
Wang, Sigmund (b0305) 2024; 67
Paul, Valero-Cuevas, Lipson (b0045) 2006; 22
Wang, Xu, Luo (b0150) 2020; 202
Fest, Shea, Smith (b0200) 2004; 130
Lee, Leyffer (b0310) 2011; vol. 154
Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; 2024.
Pellegrino, Calladine (b0265) 1986; 22
Kawaguchi, Abe, Tatemichi (b0080) 1999; 40
Geiger DH, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS symposium on shells, membranes and space frames, vol. 2; 1986, pp. 265–272.
Fraddosio, Pavone, Piccioni (b0100) 2019; 209
ENERPAC. E328e Industrial Tools – Europe; 2016. [Online]. Available
Feron (10.1016/j.compstruc.2024.107513_b0090) 2019; 24
Ingber (10.1016/j.compstruc.2024.107513_b0055) 1997; 59
Sultan (10.1016/j.compstruc.2024.107513_b0030) 2003; 40
Wang (10.1016/j.compstruc.2024.107513_b0140) 2021; 247
Wang (10.1016/j.compstruc.2024.107513_b0120) 2019; 2019
Calladine (10.1016/j.compstruc.2024.107513_b0270) 1991; 27
Wang (10.1016/j.compstruc.2024.107513_b0150) 2020; 202
Kmet (10.1016/j.compstruc.2024.107513_b0225) 2015; 141
Chen (10.1016/j.compstruc.2024.107513_b0160) 2020
Santos (10.1016/j.compstruc.2024.107513_b0065) 2015; 24
Djouadi (10.1016/j.compstruc.2024.107513_b0190) 1998; 11
Rhode-Barbarigos (10.1016/j.compstruc.2024.107513_b0220) 2012
Wang (10.1016/j.compstruc.2024.107513_b0250) 2021; 64
Lai (10.1016/j.compstruc.2024.107513_b0235) 2020; 142
10.1016/j.compstruc.2024.107513_b0095
Senatore (10.1016/j.compstruc.2024.107513_b0255) 2024; 422
10.1016/j.compstruc.2024.107513_b0050
Ali (10.1016/j.compstruc.2024.107513_b0215) 2010; 32
You (10.1016/j.compstruc.2024.107513_b0300) 2023; 52
10.1016/j.compstruc.2024.107513_b0015
Domer (10.1016/j.compstruc.2024.107513_b0210) 2005; 19
Lawler (10.1016/j.compstruc.2024.107513_b0315) 1966; 14
Morrison (10.1016/j.compstruc.2024.107513_b0325) 2016; 19
Dorn (10.1016/j.compstruc.2024.107513_b0260) 1964; 3
Pellegrino (10.1016/j.compstruc.2024.107513_b0020) 1992; 7
Tibert (10.1016/j.compstruc.2024.107513_b0025) 2002
Wang (10.1016/j.compstruc.2024.107513_b0285) 2020; 202
Kawaguchi (10.1016/j.compstruc.2024.107513_b0080) 1999; 40
Skelton (10.1016/j.compstruc.2024.107513_b0085) 2014; 58
Adam (10.1016/j.compstruc.2024.107513_b0205) 2007; 21
Rhode-Barbarigos (10.1016/j.compstruc.2024.107513_b0010) 2010; 32
Xu (10.1016/j.compstruc.2024.107513_b0295) 2023; 385
Wang (10.1016/j.compstruc.2024.107513_b0135) 2021; 227
Zhang (10.1016/j.compstruc.2024.107513_b0165) 2007
Ingber (10.1016/j.compstruc.2024.107513_b0060) 2014; 77
10.1016/j.compstruc.2024.107513_b0280
Ma (10.1016/j.compstruc.2024.107513_b0170) 2019; 100
10.1016/j.compstruc.2024.107513_b0320
Goyal (10.1016/j.compstruc.2024.107513_b0110) 2020; 103
Amendola (10.1016/j.compstruc.2024.107513_b0070) 2015; 131
Wang (10.1016/j.compstruc.2024.107513_b0305) 2024; 67
10.1016/j.compstruc.2024.107513_b0005
Furuya (10.1016/j.compstruc.2024.107513_b0035) 1992; 7
Fest (10.1016/j.compstruc.2024.107513_b0200) 2004; 130
Lee (10.1016/j.compstruc.2024.107513_b0310) 2011; vol. 154
Kanno (10.1016/j.compstruc.2024.107513_b0175) 2013; 14
Chen (10.1016/j.compstruc.2024.107513_b0115) 2023; 296
Asghari (10.1016/j.compstruc.2024.107513_b0330) 2022; 10
Fraddosio (10.1016/j.compstruc.2024.107513_b0125) 2021; 8
You (10.1016/j.compstruc.2024.107513_b0195) 1997; 144
Xu (10.1016/j.compstruc.2024.107513_b0180) 2018; 144
Haftka (10.1016/j.compstruc.2024.107513_b0245) 1985; 23
Ganga (10.1016/j.compstruc.2024.107513_b0040) 2016
Trinh (10.1016/j.compstruc.2024.107513_b0130) 2022; 94
Lee (10.1016/j.compstruc.2024.107513_b0145) 2016; 152
Zegard (10.1016/j.compstruc.2024.107513_b0290) 2014; 50
Goyal (10.1016/j.compstruc.2024.107513_b0105) 2019; 34
10.1016/j.compstruc.2024.107513_b0275
Paul (10.1016/j.compstruc.2024.107513_b0045) 2006; 22
Fraddosio (10.1016/j.compstruc.2024.107513_b0100) 2019; 209
10.1016/j.compstruc.2024.107513_b0155
10.1016/j.compstruc.2024.107513_b0075
Zhang (10.1016/j.compstruc.2024.107513_b0230) 2023; 278
Pellegrino (10.1016/j.compstruc.2024.107513_b0265) 1986; 22
Su (10.1016/j.compstruc.2024.107513_b0185) 2020; 206
Wang (10.1016/j.compstruc.2024.107513_b0240) 2021; 234
References_xml – volume: 152
  start-page: 11
  year: 2016
  end-page: 19
  ident: b0145
  article-title: A novel method for topology design of tensegrity structures
  publication-title: Compos Struct
– volume: 100
  year: 2019
  ident: b0170
  article-title: Shape optimization of a new tensegrity torus
  publication-title: Mech Res Commun
– volume: 234
  year: 2021
  ident: b0240
  article-title: Minimal mass design of active tensegrity structures
  publication-title: Eng Struct
– volume: 14
  start-page: 699
  year: 1966
  end-page: 719
  ident: b0315
  article-title: Branch-and-bound methods: a survey
  publication-title: Oper Res
– year: 2012
  ident: b0220
  article-title: An active deployable tensegrity structure
– volume: 11
  start-page: 37
  year: 1998
  end-page: 44
  ident: b0190
  article-title: Active control of tensegrity systems
  publication-title: J Aerosp Eng
– volume: 59
  start-page: 575
  year: 1997
  end-page: 599
  ident: b0055
  article-title: Tensegrity: the architectural basis of cellular mechanotransduction
  publication-title: Annu Rev Physiol
– reference: Krishnan S, Li B. Design of lightweight deployable antennas using the tensegrity principle. In: Earth and Space 2018: Engineering for Extreme Environments, American Society of Civil Engineers Reston, VA; 2018, pp. 888–899.
– volume: 32
  start-page: 3650
  year: 2010
  end-page: 3659
  ident: b0215
  article-title: Design optimization and dynamic analysis of a tensegrity-based footbridge
  publication-title: Eng Struct
– volume: 64
  start-page: 1079
  year: 2021
  end-page: 1110
  ident: b0250
  article-title: Design of adaptive structures through energy minimization: extension to tensegrity
  publication-title: Struct Multidiscip Optim
– volume: 34
  start-page: 3
  year: 2019
  end-page: 21
  ident: b0105
  article-title: Analytical study of tensegrity lattices for mass-efficient mechanical energy absorption
  publication-title: Int J Space Struct
– reference: ENERPAC. E328e Industrial Tools – Europe; 2016. [Online]. Available:
– volume: 209
  start-page: 754
  year: 2019
  end-page: 774
  ident: b0100
  article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells
  publication-title: Compos Struct
– volume: 278
  year: 2023
  ident: b0230
  article-title: Active control experiments on a Levy cable dome
  publication-title: Eng Struct
– reference: Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; 2024.
– reference: Franklin K, Ozkan E, Powell D, et al. Design of the Kurilpa Pedestrian Bridge for Dynamic Effects Due to Pedestrian and Wind Loads. In: 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference; 2010, p. 885.
– volume: 52
  start-page: 842
  year: 2023
  end-page: 853
  ident: b0300
  article-title: Life cycle carbon emission assessment of large-span steel structures: a case study
  publication-title: Structures
– volume: 19
  start-page: 79
  year: 2016
  end-page: 102
  ident: b0325
  article-title: Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning
  publication-title: Discret Optim
– volume: 32
  start-page: 1158
  year: 2010
  end-page: 1167
  ident: b0010
  article-title: Designing tensegrity modules for pedestrian bridges
  publication-title: Eng Struct
– volume: 21
  start-page: 3
  year: 2007
  end-page: 10
  ident: b0205
  article-title: Tensegrity active control: Multiobjective approach
  publication-title: J Comput Civ Eng
– volume: 58
  start-page: 124
  year: 2014
  end-page: 132
  ident: b0085
  article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity
  publication-title: Mech Res Commun
– volume: 27
  start-page: 505
  year: Jan. 1991
  end-page: 515
  ident: b0270
  article-title: First-order infinitesimal mechanisms
  publication-title: Int J Solids Struct
– volume: 422
  year: 2024
  ident: b0255
  article-title: Topology optimization of adaptive structures: New limits of material economy
  publication-title: Comput Methods Appl Mech Eng
– reference: Levy MP. The Georgia Dome and beyond: achieving lightweight-longspan structures. In: Spatial, Lattice and Tension Structures; 1994, pp. 560–562.
– volume: 77
  year: 2014
  ident: b0060
  article-title: Tensegrity, cellular biophysics, and the mechanics of living systems
  publication-title: Rep Prog Phys
– volume: vol. 154
  year: 2011
  ident: b0310
  publication-title: Mixed integer nonlinear programming
– volume: 19
  start-page: 16
  year: 2005
  end-page: 24
  ident: b0210
  article-title: An active structure that learns
  publication-title: J Comput Civ Eng
– volume: 94
  year: 2022
  ident: b0130
  article-title: Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes
  publication-title: Eur J Mechanics-A/Solids
– volume: 296
  year: 2023
  ident: b0115
  article-title: Analysis of clustered cable-actuation strategies of V-Expander tensegrity structures
  publication-title: Eng Struct
– volume: 206
  start-page: 9
  year: 2020
  end-page: 22
  ident: b0185
  article-title: Topology optimization and shape design method for large-span tensegrity structures with reciprocal struts
  publication-title: Int J Solids Struct
– volume: 67
  start-page: 5
  year: 2024
  ident: b0305
  article-title: Topology optimization of multi-material active structures to reduce energy consumption and carbon footprint
  publication-title: Struct Multidiscip Optim
– volume: 40
  start-page: 179
  year: 1999
  end-page: 192
  ident: b0080
  article-title: Design, tests and realization of ‘suspen-dome’ system
  publication-title: J Int Assoc Shell Spatial Struct
– volume: 103
  year: 2020
  ident: b0110
  article-title: Design of minimal mass load-bearing tensegrity lattices
  publication-title: Mech Res Commun
– start-page: 40
  year: 2007
  end-page: 49
  ident: b0165
  article-title: Optimization methods for force and shape design of tensegrity structures
  publication-title: Proc. 7th World Congresses of Structural and Multidisciplinary Optimization
– volume: 22
  start-page: 409
  year: 1986
  end-page: 428
  ident: b0265
  article-title: Matrix analysis of statically and kinematically indeterminate frameworks
  publication-title: Int J Solids Struct
– start-page: 269
  year: 2016
  end-page: 304
  ident: b0040
  article-title: Tensegrity rings for deployable space antennas: concept, design, analysis, and prototype testing
  publication-title: Variational Analysis and Aerospace Engineering
– reference: . [Accessed: 28-Apr-2024].
– volume: 202
  start-page: 278
  year: 2020
  end-page: 298
  ident: b0150
  article-title: Topology design of general tensegrity with rigid bodies
  publication-title: Int J Solids Struct
– volume: 202
  start-page: 798
  year: 2020
  end-page: 815
  ident: b0285
  article-title: Extended Integrated Force Method for the analysis of prestress-stable statically and kinematically indeterminate structures
  publication-title: Int J Solids Struct
– volume: 40
  start-page: 4637
  year: 2003
  end-page: 4657
  ident: b0030
  article-title: Deployment of tensegrity structures
  publication-title: Int J Solids Struct
– volume: 227
  year: 2021
  ident: b0135
  article-title: Form-finding of tensegrity structures via rank minimization of force density matrix
  publication-title: Eng Struct
– year: 2020
  ident: b0160
  article-title: A general approach to minimal mass tensegrity
  publication-title: Compos Struct
– volume: 14
  start-page: 61
  year: 2013
  end-page: 96
  ident: b0175
  article-title: Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach
  publication-title: Optim Eng
– volume: 23
  start-page: 1099
  year: 1985
  end-page: 1103
  ident: b0245
  article-title: Simultaneous analysis and design
  publication-title: AIAA J
– volume: 142
  year: 2020
  ident: b0235
  article-title: Distributed actuation and control of a morphing tensegrity structure
  publication-title: J Dynamic Syst, Measure, Control
– volume: 131
  start-page: 66
  year: 2015
  end-page: 71
  ident: b0070
  article-title: On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures
  publication-title: Compos Struct
– volume: 2019
  year: 2019
  ident: b0120
  article-title: Prestress design of tensegrity structures using semidefinite programming
  publication-title: Adv Civ Eng
– volume: 22
  start-page: 944
  year: 2006
  end-page: 957
  ident: b0045
  article-title: Design and control of tensegrity robots for locomotion
  publication-title: IEEE Trans Rob
– volume: 7
  start-page: 143
  year: 1992
  end-page: 151
  ident: b0035
  article-title: Concept of deployable tensegrity structures in space application
  publication-title: Int J Space Struct
– volume: 24
  start-page: 04019112
  year: 2019
  ident: b0090
  article-title: Optimization of footbridges composed of prismatic tensegrity modules
  publication-title: J Bridg Eng
– reference: , 2014, vol. 9061, p. 90610W, DOI: 10.1117/12.2044869.
– volume: 247
  year: 2021
  ident: b0140
  article-title: A unifying framework for form-finding and topology-finding of tensegrity structures
  publication-title: Comput Struct
– reference: K. Nagase and R. Skelton, “Minimal mass design of tensegrity structures,” in
– reference: Geiger DH, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS symposium on shells, membranes and space frames, vol. 2; 1986, pp. 265–272.
– volume: 144
  start-page: 04018173
  year: 2018
  ident: b0180
  article-title: Topology optimization of tensegrity structures considering buckling constraints
  publication-title: J Struct Eng
– volume: 3
  start-page: 25
  year: 1964
  end-page: 52
  ident: b0260
  article-title: Automatic design of optimal structures
  publication-title: J de Mecanique
– volume: 7
  start-page: 127
  year: 1992
  end-page: 142
  ident: b0020
  article-title: A class of tensegrity domes
  publication-title: Int J Space Struct
– volume: 24
  year: 2015
  ident: b0065
  article-title: Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys
  publication-title: Smart Mater Struct
– volume: 385
  year: 2023
  ident: b0295
  article-title: Analysis and assessment of life-cycle carbon emissions of space frame structures
  publication-title: J Clean Prod
– year: 2002
  ident: b0025
  article-title: Deployable tensegrity structures for space applications
– reference: .
– volume: 10
  start-page: 283
  year: 2022
  ident: b0330
  article-title: Transformation and linearization techniques in optimization: a state-of-the-art survey
  publication-title: Mathematics
– reference: Sabelhaus AP et al. System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE international conference on robotics and automation (ICRA), 2015, pp. 2867–2873, DOI:
– volume: 141
  start-page: 04014225
  year: 2015
  ident: b0225
  article-title: Adaptive cable dome
  publication-title: J Struct Eng
– volume: 144
  start-page: 51
  year: 1997
  end-page: 59
  ident: b0195
  article-title: Displacement control of prestressed structures
  publication-title: Comput Methods Appl Mech Eng
– reference: Senatore G, Duffour P, Winslow P. Synthesis of minimum energy adaptive structures. Structural and Multidisciplinary Optimization; 2019, pp. 1–29, Doi:
– volume: 8
  start-page: 70
  year: 2021
  end-page: 88
  ident: b0125
  article-title: A novel method for determining the feasible integral self-stress states for tensegrity structures
  publication-title: Curved Layered Struct
– volume: 130
  start-page: 1454
  year: 2004
  end-page: 1465
  ident: b0200
  article-title: Active tensegrity structure
  publication-title: J Struct Eng
– volume: 50
  start-page: 861
  year: 2014
  end-page: 882
  ident: b0290
  article-title: GRAND—Ground structure based topology optimization for arbitrary 2D domains using MATLAB
  publication-title: Struct Multidiscip Optim
– start-page: 269
  year: 2016
  ident: 10.1016/j.compstruc.2024.107513_b0040
  article-title: Tensegrity rings for deployable space antennas: concept, design, analysis, and prototype testing
– start-page: 40
  year: 2007
  ident: 10.1016/j.compstruc.2024.107513_b0165
  article-title: Optimization methods for force and shape design of tensegrity structures
– volume: 152
  start-page: 11
  year: 2016
  ident: 10.1016/j.compstruc.2024.107513_b0145
  article-title: A novel method for topology design of tensegrity structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.05.009
– ident: 10.1016/j.compstruc.2024.107513_b0320
– volume: 130
  start-page: 1454
  issue: 10
  year: 2004
  ident: 10.1016/j.compstruc.2024.107513_b0200
  article-title: Active tensegrity structure
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2004)130:10(1454)
– volume: 50
  start-page: 861
  year: 2014
  ident: 10.1016/j.compstruc.2024.107513_b0290
  article-title: GRAND—Ground structure based topology optimization for arbitrary 2D domains using MATLAB
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1085-z
– volume: 385
  year: 2023
  ident: 10.1016/j.compstruc.2024.107513_b0295
  article-title: Analysis and assessment of life-cycle carbon emissions of space frame structures
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.135521
– volume: 34
  start-page: 3
  issue: 1–2
  year: 2019
  ident: 10.1016/j.compstruc.2024.107513_b0105
  article-title: Analytical study of tensegrity lattices for mass-efficient mechanical energy absorption
  publication-title: Int J Space Struct
  doi: 10.1177/0956059919845330
– ident: 10.1016/j.compstruc.2024.107513_b0095
  doi: 10.1061/9780784481899.084
– volume: 142
  issue: 7
  year: 2020
  ident: 10.1016/j.compstruc.2024.107513_b0235
  article-title: Distributed actuation and control of a morphing tensegrity structure
  publication-title: J Dynamic Syst, Measure, Control
– volume: 206
  start-page: 9
  year: 2020
  ident: 10.1016/j.compstruc.2024.107513_b0185
  article-title: Topology optimization and shape design method for large-span tensegrity structures with reciprocal struts
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2020.09.002
– volume: 247
  year: 2021
  ident: 10.1016/j.compstruc.2024.107513_b0140
  article-title: A unifying framework for form-finding and topology-finding of tensegrity structures
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2021.106486
– volume: 14
  start-page: 61
  issue: 1
  year: 2013
  ident: 10.1016/j.compstruc.2024.107513_b0175
  article-title: Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach
  publication-title: Optim Eng
  doi: 10.1007/s11081-011-9172-0
– volume: 58
  start-page: 124
  year: 2014
  ident: 10.1016/j.compstruc.2024.107513_b0085
  article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2013.10.017
– volume: 278
  year: 2023
  ident: 10.1016/j.compstruc.2024.107513_b0230
  article-title: Active control experiments on a Levy cable dome
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115450
– volume: 64
  start-page: 1079
  issue: 3
  year: 2021
  ident: 10.1016/j.compstruc.2024.107513_b0250
  article-title: Design of adaptive structures through energy minimization: extension to tensegrity
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-021-02899-y
– volume: 22
  start-page: 944
  issue: 5
  year: 2006
  ident: 10.1016/j.compstruc.2024.107513_b0045
  article-title: Design and control of tensegrity robots for locomotion
  publication-title: IEEE Trans Rob
  doi: 10.1109/TRO.2006.878980
– volume: 40
  start-page: 179
  issue: 3
  year: 1999
  ident: 10.1016/j.compstruc.2024.107513_b0080
  article-title: Design, tests and realization of ‘suspen-dome’ system
  publication-title: J Int Assoc Shell Spatial Struct
– volume: 22
  start-page: 409
  issue: 4
  year: 1986
  ident: 10.1016/j.compstruc.2024.107513_b0265
  article-title: Matrix analysis of statically and kinematically indeterminate frameworks
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(86)90014-4
– volume: 296
  year: 2023
  ident: 10.1016/j.compstruc.2024.107513_b0115
  article-title: Analysis of clustered cable-actuation strategies of V-Expander tensegrity structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.116868
– volume: 100
  year: 2019
  ident: 10.1016/j.compstruc.2024.107513_b0170
  article-title: Shape optimization of a new tensegrity torus
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2019.103396
– volume: 19
  start-page: 79
  year: 2016
  ident: 10.1016/j.compstruc.2024.107513_b0325
  article-title: Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning
  publication-title: Discret Optim
  doi: 10.1016/j.disopt.2016.01.005
– volume: 27
  start-page: 505
  issue: 4
  year: 1991
  ident: 10.1016/j.compstruc.2024.107513_b0270
  article-title: First-order infinitesimal mechanisms
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(91)90137-5
– volume: 94
  year: 2022
  ident: 10.1016/j.compstruc.2024.107513_b0130
  article-title: Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes
  publication-title: Eur J Mechanics-A/Solids
  doi: 10.1016/j.euromechsol.2022.104584
– volume: 2019
  year: 2019
  ident: 10.1016/j.compstruc.2024.107513_b0120
  article-title: Prestress design of tensegrity structures using semidefinite programming
  publication-title: Adv Civ Eng
– volume: 7
  start-page: 127
  issue: 2
  year: 1992
  ident: 10.1016/j.compstruc.2024.107513_b0020
  article-title: A class of tensegrity domes
  publication-title: Int J Space Struct
  doi: 10.1177/026635119200700206
– volume: 144
  start-page: 04018173
  issue: 10
  year: 2018
  ident: 10.1016/j.compstruc.2024.107513_b0180
  article-title: Topology optimization of tensegrity structures considering buckling constraints
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002156
– volume: 234
  year: 2021
  ident: 10.1016/j.compstruc.2024.107513_b0240
  article-title: Minimal mass design of active tensegrity structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.111965
– volume: vol. 154
  year: 2011
  ident: 10.1016/j.compstruc.2024.107513_b0310
– volume: 19
  start-page: 16
  issue: 1
  year: 2005
  ident: 10.1016/j.compstruc.2024.107513_b0210
  article-title: An active structure that learns
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2005)19:1(16)
– year: 2020
  ident: 10.1016/j.compstruc.2024.107513_b0160
  article-title: A general approach to minimal mass tensegrity
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.112454
– volume: 11
  start-page: 37
  issue: 2
  year: 1998
  ident: 10.1016/j.compstruc.2024.107513_b0190
  article-title: Active control of tensegrity systems
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)0893-1321(1998)11:2(37)
– volume: 24
  start-page: 04019112
  issue: 12
  year: 2019
  ident: 10.1016/j.compstruc.2024.107513_b0090
  article-title: Optimization of footbridges composed of prismatic tensegrity modules
  publication-title: J Bridg Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001438
– volume: 103
  year: 2020
  ident: 10.1016/j.compstruc.2024.107513_b0110
  article-title: Design of minimal mass load-bearing tensegrity lattices
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2020.103477
– year: 2012
  ident: 10.1016/j.compstruc.2024.107513_b0220
– volume: 10
  start-page: 283
  issue: 2
  year: 2022
  ident: 10.1016/j.compstruc.2024.107513_b0330
  article-title: Transformation and linearization techniques in optimization: a state-of-the-art survey
  publication-title: Mathematics
  doi: 10.3390/math10020283
– volume: 23
  start-page: 1099
  issue: 7
  year: 1985
  ident: 10.1016/j.compstruc.2024.107513_b0245
  article-title: Simultaneous analysis and design
  publication-title: AIAA J
  doi: 10.2514/3.9043
– volume: 202
  start-page: 798
  year: 2020
  ident: 10.1016/j.compstruc.2024.107513_b0285
  article-title: Extended Integrated Force Method for the analysis of prestress-stable statically and kinematically indeterminate structures
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2020.05.029
– volume: 422
  year: 2024
  ident: 10.1016/j.compstruc.2024.107513_b0255
  article-title: Topology optimization of adaptive structures: New limits of material economy
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2023.116710
– volume: 52
  start-page: 842
  year: 2023
  ident: 10.1016/j.compstruc.2024.107513_b0300
  article-title: Life cycle carbon emission assessment of large-span steel structures: a case study
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.04.001
– volume: 7
  start-page: 143
  issue: 2
  year: 1992
  ident: 10.1016/j.compstruc.2024.107513_b0035
  article-title: Concept of deployable tensegrity structures in space application
  publication-title: Int J Space Struct
  doi: 10.1177/026635119200700207
– volume: 67
  start-page: 5
  issue: 1
  year: 2024
  ident: 10.1016/j.compstruc.2024.107513_b0305
  article-title: Topology optimization of multi-material active structures to reduce energy consumption and carbon footprint
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-023-03698-3
– volume: 40
  start-page: 4637
  issue: 18
  year: 2003
  ident: 10.1016/j.compstruc.2024.107513_b0030
  article-title: Deployment of tensegrity structures
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(03)00267-1
– volume: 32
  start-page: 3650
  issue: 11
  year: 2010
  ident: 10.1016/j.compstruc.2024.107513_b0215
  article-title: Design optimization and dynamic analysis of a tensegrity-based footbridge
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.08.009
– ident: 10.1016/j.compstruc.2024.107513_b0280
  doi: 10.1007/s00158-019-02224-8
– ident: 10.1016/j.compstruc.2024.107513_b0275
– volume: 21
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.compstruc.2024.107513_b0205
  article-title: Tensegrity active control: Multiobjective approach
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2007)21:1(3)
– ident: 10.1016/j.compstruc.2024.107513_b0015
– volume: 131
  start-page: 66
  year: 2015
  ident: 10.1016/j.compstruc.2024.107513_b0070
  article-title: On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.04.038
– ident: 10.1016/j.compstruc.2024.107513_b0050
  doi: 10.1109/ICRA.2015.7139590
– volume: 141
  start-page: 04014225
  issue: 9
  year: 2015
  ident: 10.1016/j.compstruc.2024.107513_b0225
  article-title: Adaptive cable dome
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001189
– volume: 24
  issue: 10
  year: 2015
  ident: 10.1016/j.compstruc.2024.107513_b0065
  article-title: Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/24/10/105008
– volume: 209
  start-page: 754
  year: 2019
  ident: 10.1016/j.compstruc.2024.107513_b0100
  article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.10.108
– volume: 32
  start-page: 1158
  issue: 4
  year: 2010
  ident: 10.1016/j.compstruc.2024.107513_b0010
  article-title: Designing tensegrity modules for pedestrian bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2009.12.042
– volume: 227
  year: 2021
  ident: 10.1016/j.compstruc.2024.107513_b0135
  article-title: Form-finding of tensegrity structures via rank minimization of force density matrix
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111419
– volume: 144
  start-page: 51
  issue: 1–2
  year: 1997
  ident: 10.1016/j.compstruc.2024.107513_b0195
  article-title: Displacement control of prestressed structures
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01164-4
– ident: 10.1016/j.compstruc.2024.107513_b0005
– volume: 202
  start-page: 278
  year: 2020
  ident: 10.1016/j.compstruc.2024.107513_b0150
  article-title: Topology design of general tensegrity with rigid bodies
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2020.05.030
– volume: 77
  issue: 4
  year: 2014
  ident: 10.1016/j.compstruc.2024.107513_b0060
  article-title: Tensegrity, cellular biophysics, and the mechanics of living systems
  publication-title: Rep Prog Phys
  doi: 10.1088/0034-4885/77/4/046603
– volume: 3
  start-page: 25
  year: 1964
  ident: 10.1016/j.compstruc.2024.107513_b0260
  article-title: Automatic design of optimal structures
  publication-title: J de Mecanique
– year: 2002
  ident: 10.1016/j.compstruc.2024.107513_b0025
– volume: 8
  start-page: 70
  issue: 1
  year: 2021
  ident: 10.1016/j.compstruc.2024.107513_b0125
  article-title: A novel method for determining the feasible integral self-stress states for tensegrity structures
  publication-title: Curved Layered Struct
  doi: 10.1515/cls-2021-0007
– ident: 10.1016/j.compstruc.2024.107513_b0075
– volume: 14
  start-page: 699
  issue: 4
  year: 1966
  ident: 10.1016/j.compstruc.2024.107513_b0315
  article-title: Branch-and-bound methods: a survey
  publication-title: Oper Res
  doi: 10.1287/opre.14.4.699
– ident: 10.1016/j.compstruc.2024.107513_b0155
  doi: 10.1117/12.2044869
– volume: 59
  start-page: 575
  issue: 1
  year: 1997
  ident: 10.1016/j.compstruc.2024.107513_b0055
  article-title: Tensegrity: the architectural basis of cellular mechanotransduction
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.physiol.59.1.575
SSID ssj0006400
Score 2.5785708
Snippet •A general computational framework for active tensegrity topology design is proposed.•Structure member topology and actuator layout coupling relation is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107513
SubjectTerms Active tensegrity structure
Lightweight structures
Low-carbon buildings
Mixed integer programming
Topology optimization
Title Topology optimization of active tensegrity structures
URI https://dx.doi.org/10.1016/j.compstruc.2024.107513
Volume 305
WOSCitedRecordID wos001317413500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006400
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZ49AAHVKAICq1y6G0VlGyc2OaGEAhQhXqgUuASOfaEhyBZsWxF--sZP5INFGnLoZcocjJO4vnyzcQZzxDyDZ2GimZQ4psmZYj2tgwlj1VIQTKNJrYSktpiE-zsjOe5-OHLpY5tOQFW1_zpSYz-q6qxDZVtls6-Q91dp9iA-6h03KLacftvindlD34PGmSDe7_M0v7ut9Q2MCHrcGVq1g1c8tjJg48jbBMW-EIPYwuLV-fYuXfHDxeyAm_3LIVZ_rq8NsHoTduaT0xj3sPg90njhJs_1zf9OYch7cVveB6lJtGlSzba8mgSpT0mxM_K1K0y_Yuk3XzBrRnjkX2IXXON3anEy7TYr8xVF0TYxqfdFl1HhemocB3Nk8UhSwUy3eL-yWF-2tnnjLYLk9wzvIj6e_Oe3vZZen7I-Uey4j8ggn2n-FUyB_UaWe6llVwnaQuBoA-BoKkCB4FgCoFgqt5P5OfR4fnBcejLY4QqidPHECTPeAyUMSGzigO1f421kBBVJctSzUx2MFpxEWmVCa5VTGOlkcEh45zqZIMs1E0NmyQAzuOEa6YjUVFQUJY0giSBhA9LzZnaIlk7AIXyueNNCZO7YoYStkjUCY5c-pTZInvtCBfeC3TeXYH4mSX8-f3X2yZLU4jvkAU8Dl_IB_Xr8Wb88NWD5xkQz4SR
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+active+tensegrity+structures&rft.jtitle=Computers+%26+structures&rft.au=Wang%2C+Yafeng&rft.au=Han%2C+Zhentao&rft.au=Xu%2C+Xian&rft.au=Luo%2C+Yaozhi&rft.date=2024-12-01&rft.issn=0045-7949&rft.volume=305&rft.spage=107513&rft_id=info:doi/10.1016%2Fj.compstruc.2024.107513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruc_2024_107513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon