Topology optimization of active tensegrity structures
•A general computational framework for active tensegrity topology design is proposed.•Structure member topology and actuator layout coupling relation is handled.•The proposed method can result in more lightweight active tensegrity with novel forms.•The proposed framework applies for optimum design o...
Saved in:
| Published in: | Computers & structures Vol. 305; p. 107513 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.12.2024
|
| Subjects: | |
| ISSN: | 0045-7949 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A general computational framework for active tensegrity topology design is proposed.•Structure member topology and actuator layout coupling relation is handled.•The proposed method can result in more lightweight active tensegrity with novel forms.•The proposed framework applies for optimum design of any type tensegrity structures.
Existing studies on active tensegrity structure optimum design only focus on sizing and/or shape optimization i.e., the structural element topology does not change during the design process, which vastly limits the design space and further improvement of mass-saving performance. This study investigates the optimum design of active tensegrity structures through topology optimization, which has never been done to the best of the authors’ knowledge. Structural member topology and actuator layout are considered as binary design variables and their coupling relation is handled by auxiliary constraints. Member cross-sectional areas are treated as discrete design variables considering practical availability. Member prestress, actuator length changes, and other necessary auxiliary parameters are defined as continuous variables and designed simultaneously. Equilibrium conditions, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other design requirements are formulated as constraints. Linearization algorithm is proposed to transform the bilinear expressions in the objective and constraint functions to allow the problem to be solved to global optimum. Typical benchmark examples indicate that the topology-optimized active designs obtained through the proposed approach can further decrease the material consumption compared with sizing-optimized active tensegrity designs hence leading to more lightweight structures. |
|---|---|
| AbstractList | •A general computational framework for active tensegrity topology design is proposed.•Structure member topology and actuator layout coupling relation is handled.•The proposed method can result in more lightweight active tensegrity with novel forms.•The proposed framework applies for optimum design of any type tensegrity structures.
Existing studies on active tensegrity structure optimum design only focus on sizing and/or shape optimization i.e., the structural element topology does not change during the design process, which vastly limits the design space and further improvement of mass-saving performance. This study investigates the optimum design of active tensegrity structures through topology optimization, which has never been done to the best of the authors’ knowledge. Structural member topology and actuator layout are considered as binary design variables and their coupling relation is handled by auxiliary constraints. Member cross-sectional areas are treated as discrete design variables considering practical availability. Member prestress, actuator length changes, and other necessary auxiliary parameters are defined as continuous variables and designed simultaneously. Equilibrium conditions, member yielding, cable slackness, strut buckling, and the limitations on the nodal displacements as well as other design requirements are formulated as constraints. Linearization algorithm is proposed to transform the bilinear expressions in the objective and constraint functions to allow the problem to be solved to global optimum. Typical benchmark examples indicate that the topology-optimized active designs obtained through the proposed approach can further decrease the material consumption compared with sizing-optimized active tensegrity designs hence leading to more lightweight structures. |
| ArticleNumber | 107513 |
| Author | Wang, Yafeng Luo, Yaozhi Han, Zhentao Xu, Xian |
| Author_xml | – sequence: 1 givenname: Yafeng orcidid: 0000-0002-7470-1200 surname: Wang fullname: Wang, Yafeng – sequence: 2 givenname: Zhentao surname: Han fullname: Han, Zhentao – sequence: 3 givenname: Xian surname: Xu fullname: Xu, Xian email: xian_xu@zju.edu.cn – sequence: 4 givenname: Yaozhi surname: Luo fullname: Luo, Yaozhi |
| BookMark | eNqNj01rAjEQQHOwULX9Dd0_sHaym83HoQeRfoHQiz2HNJmViG6WJAr213fV0kMv7Wlg4L2ZNyGjLnRIyB2FGQXK7zczG3Z9ynFvZxVUbNiKhtYjMgZgTSkUU9dkktIGADgDGJNmFfqwDetjEfrsd_7TZB-6IrSFsdkfsMjYJVxHn4_F2Zv3EdMNuWrNNuHt95yS96fH1eKlXL49vy7my9LWtMklGsklRSaEMryVOFyspHLKILQfgjdOCMor1koFznIlnaWMWldXFXIpmaun5OHitTGkFLHV1ufzhzkav9UU9Klbb_RPtz5160v3wItffB_9zsTjP8j5hcQh7-Ax6mQ9dhadj2izdsH_6fgCELB9Ug |
| CitedBy_id | crossref_primary_10_1007_s11831_025_10290_z crossref_primary_10_1142_S0129183125500986 crossref_primary_10_1016_j_cscm_2025_e05063 crossref_primary_10_1007_s11760_025_04592_9 crossref_primary_10_1016_j_ssc_2025_115872 crossref_primary_10_1007_s42235_025_00745_1 crossref_primary_10_1016_j_tws_2025_112965 crossref_primary_10_1038_s41598_025_90188_9 crossref_primary_10_1016_j_tws_2025_113912 crossref_primary_10_1061_JSENDH_STENG_14127 crossref_primary_10_1371_journal_pone_0318903 crossref_primary_10_3390_buildings15121983 crossref_primary_10_1016_j_jcsr_2024_109205 crossref_primary_10_1002_adem_202402679 crossref_primary_10_1016_j_compstruc_2025_107863 crossref_primary_10_1002_pc_70183 crossref_primary_10_1016_j_engstruct_2025_120930 crossref_primary_10_1016_j_jcsr_2024_109166 crossref_primary_10_1016_j_apm_2025_116413 crossref_primary_10_1002_pc_29826 crossref_primary_10_1016_j_jmps_2025_106030 crossref_primary_10_1186_s40537_025_01129_2 crossref_primary_10_1007_s11696_025_04245_8 crossref_primary_10_32604_cmes_2025_059249 crossref_primary_10_1007_s00707_025_04264_2 crossref_primary_10_1016_j_tws_2025_113717 crossref_primary_10_1051_aacus_2025036 crossref_primary_10_1016_j_compstruct_2025_118925 crossref_primary_10_3390_buildings15122027 crossref_primary_10_1016_j_istruc_2025_108906 crossref_primary_10_1007_s10115_025_02498_z crossref_primary_10_1016_j_compstruc_2025_107695 crossref_primary_10_1016_j_tws_2025_113184 |
| Cites_doi | 10.1016/j.compstruct.2016.05.009 10.1061/(ASCE)0733-9445(2004)130:10(1454) 10.1007/s00158-014-1085-z 10.1016/j.jclepro.2022.135521 10.1177/0956059919845330 10.1061/9780784481899.084 10.1016/j.ijsolstr.2020.09.002 10.1016/j.compstruc.2021.106486 10.1007/s11081-011-9172-0 10.1016/j.mechrescom.2013.10.017 10.1016/j.engstruct.2022.115450 10.1007/s00158-021-02899-y 10.1109/TRO.2006.878980 10.1016/0020-7683(86)90014-4 10.1016/j.engstruct.2023.116868 10.1016/j.mechrescom.2019.103396 10.1016/j.disopt.2016.01.005 10.1016/0020-7683(91)90137-5 10.1016/j.euromechsol.2022.104584 10.1177/026635119200700206 10.1061/(ASCE)ST.1943-541X.0002156 10.1016/j.engstruct.2021.111965 10.1061/(ASCE)0887-3801(2005)19:1(16) 10.1016/j.compstruct.2020.112454 10.1061/(ASCE)0893-1321(1998)11:2(37) 10.1061/(ASCE)BE.1943-5592.0001438 10.1016/j.mechrescom.2020.103477 10.3390/math10020283 10.2514/3.9043 10.1016/j.ijsolstr.2020.05.029 10.1016/j.cma.2023.116710 10.1016/j.istruc.2023.04.001 10.1177/026635119200700207 10.1007/s00158-023-03698-3 10.1016/S0020-7683(03)00267-1 10.1016/j.engstruct.2010.08.009 10.1007/s00158-019-02224-8 10.1061/(ASCE)0887-3801(2007)21:1(3) 10.1016/j.compstruct.2015.04.038 10.1109/ICRA.2015.7139590 10.1061/(ASCE)ST.1943-541X.0001189 10.1088/0964-1726/24/10/105008 10.1016/j.compstruct.2018.10.108 10.1016/j.engstruct.2009.12.042 10.1016/j.engstruct.2020.111419 10.1016/S0045-7825(96)01164-4 10.1016/j.ijsolstr.2020.05.030 10.1088/0034-4885/77/4/046603 10.1515/cls-2021-0007 10.1287/opre.14.4.699 10.1117/12.2044869 10.1146/annurev.physiol.59.1.575 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compstruc.2024.107513 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compstruc_2024_107513 S0045794924002426 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABAOU ABBOA ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ RXW SDF SDG SDP SES SEW SPC SPCBC SPD SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29F 6TJ 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABFNM ABJNI ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 OHT R2- SBC SET T9H TAE VH1 WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c315t-ea8681e4779a6f8e400289d9ae0fb765d771624f890dc698dc141cd322e6884d3 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001317413500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7949 |
| IngestDate | Tue Nov 18 21:02:18 EST 2025 Sat Nov 29 04:10:47 EST 2025 Sat Dec 21 16:01:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Topology optimization Active tensegrity structure Mixed integer programming Lightweight structures Low-carbon buildings |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c315t-ea8681e4779a6f8e400289d9ae0fb765d771624f890dc698dc141cd322e6884d3 |
| ORCID | 0000-0002-7470-1200 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compstruc_2024_107513 crossref_primary_10_1016_j_compstruc_2024_107513 elsevier_sciencedirect_doi_10_1016_j_compstruc_2024_107513 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & structures |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Calladine, Pellegrino (b0270) Jan. 1991; 27 Lai, Plummer, Cleaver (b0235) 2020; 142 Wang, Xu (b0120) 2019; 2019 Rhode-Barbarigos (b0220) 2012 Furuya (b0035) 1992; 7 Asghari, Fathollahi-Fard, Mirzapour Al-E-Hashem, Dulebenets (b0330) 2022; 10 Zhang, Ohsaki (b0165) 2007 Lawler, Wood (b0315) 1966; 14 Levy MP. The Georgia Dome and beyond: achieving lightweight-longspan structures. In: Spatial, Lattice and Tension Structures; 1994, pp. 560–562. Goyal, Peraza Hernandez, Skelton (b0105) 2019; 34 2014, vol. 9061, p. 90610W, DOI: 10.1117/12.2044869. Fraddosio, Pavone, Piccioni (b0125) 2021; 8 Franklin K, Ozkan E, Powell D, et al. Design of the Kurilpa Pedestrian Bridge for Dynamic Effects Due to Pedestrian and Wind Loads. In: 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference; 2010, p. 885. Pellegrino (b0020) 1992; 7 Ali, Rhode-Barbarigos, Albi, Smith (b0215) 2010; 32 Wang, Xu, Luo (b0135) 2021; 227 Senatore G, Duffour P, Winslow P. Synthesis of minimum energy adaptive structures. Structural and Multidisciplinary Optimization; 2019, pp. 1–29, Doi Ingber, Wang, Stamenović (b0060) 2014; 77 Wang, Xu, Luo (b0240) 2021; 234 Kanno (b0175) 2013; 14 . Su, Zhang, Ohsaki, Wu (b0185) 2020; 206 Adam, Smith (b0205) 2007; 21 You (b0195) 1997; 144 Lee, Lee (b0145) 2016; 152 Chen, Skelton (b0160) 2020 Zegard, Paulino (b0290) 2014; 50 Chen, Fraddosio, Micheletti, Pavone, Piccioni, Skelton (b0115) 2023; 296 Senatore, Wang (b0255) 2024; 422 Ingber (b0055) 1997; 59 Rhode-Barbarigos, Ali, Motro, Smith (b0010) 2010; 32 Xu, Wang, Luo, Hu (b0180) 2018; 144 Morrison, Jacobson, Sauppe, Sewell (b0325) 2016; 19 Sultan, Skelton (b0030) 2003; 40 Krishnan S, Li B. Design of lightweight deployable antennas using the tensegrity principle. In: Earth and Space 2018: Engineering for Extreme Environments, American Society of Civil Engineers Reston, VA; 2018, pp. 888–899. K. Nagase and R. Skelton, “Minimal mass design of tensegrity structures,” in Skelton, Fraternali, Carpentieri, Micheletti (b0085) 2014; 58 Amendola, Hernández-Nava, Goodall, Todd, Skelton, Fraternali (b0070) 2015; 131 Ma, Yuan, Samy (b0170) 2019; 100 Haftka (b0245) 1985; 23 Dorn (b0260) 1964; 3 Wang, Senatore (b0250) 2021; 64 Wang, Xu, Luo (b0140) 2021; 247 Wang, Senatore (b0285) 2020; 202 You, Xu, Wang, Xiang, Luo (b0300) 2023; 52 Ganga, Micheletti, Podio-Guidugli, Scolamiero, Tibert, Zolesi (b0040) 2016 [Accessed: 28-Apr-2024]. Feron, Boucher, Denoël, Latteur (b0090) 2019; 24 Xu, You, Wang, Luo (b0295) 2023; 385 Tibert (b0025) 2002 Djouadi, Motro, Pons, Crosnier (b0190) 1998; 11 Kmet, Mojdis (b0225) 2015; 141 Sabelhaus AP et al. System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE international conference on robotics and automation (ICRA), 2015, pp. 2867–2873, DOI Goyal, Skelton, Hernandez (b0110) 2020; 103 Domer, Smith (b0210) 2005; 19 Zhang, Lu, Lu, Li (b0230) 2023; 278 Santos, Rodrigues, Micheletti (b0065) 2015; 24 Trinh, Lee, Kang, Lee (b0130) 2022; 94 Wang, Sigmund (b0305) 2024; 67 Paul, Valero-Cuevas, Lipson (b0045) 2006; 22 Wang, Xu, Luo (b0150) 2020; 202 Fest, Shea, Smith (b0200) 2004; 130 Lee, Leyffer (b0310) 2011; vol. 154 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; 2024. Pellegrino, Calladine (b0265) 1986; 22 Kawaguchi, Abe, Tatemichi (b0080) 1999; 40 Geiger DH, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS symposium on shells, membranes and space frames, vol. 2; 1986, pp. 265–272. Fraddosio, Pavone, Piccioni (b0100) 2019; 209 ENERPAC. E328e Industrial Tools – Europe; 2016. [Online]. Available Feron (10.1016/j.compstruc.2024.107513_b0090) 2019; 24 Ingber (10.1016/j.compstruc.2024.107513_b0055) 1997; 59 Sultan (10.1016/j.compstruc.2024.107513_b0030) 2003; 40 Wang (10.1016/j.compstruc.2024.107513_b0140) 2021; 247 Wang (10.1016/j.compstruc.2024.107513_b0120) 2019; 2019 Calladine (10.1016/j.compstruc.2024.107513_b0270) 1991; 27 Wang (10.1016/j.compstruc.2024.107513_b0150) 2020; 202 Kmet (10.1016/j.compstruc.2024.107513_b0225) 2015; 141 Chen (10.1016/j.compstruc.2024.107513_b0160) 2020 Santos (10.1016/j.compstruc.2024.107513_b0065) 2015; 24 Djouadi (10.1016/j.compstruc.2024.107513_b0190) 1998; 11 Rhode-Barbarigos (10.1016/j.compstruc.2024.107513_b0220) 2012 Wang (10.1016/j.compstruc.2024.107513_b0250) 2021; 64 Lai (10.1016/j.compstruc.2024.107513_b0235) 2020; 142 10.1016/j.compstruc.2024.107513_b0095 Senatore (10.1016/j.compstruc.2024.107513_b0255) 2024; 422 10.1016/j.compstruc.2024.107513_b0050 Ali (10.1016/j.compstruc.2024.107513_b0215) 2010; 32 You (10.1016/j.compstruc.2024.107513_b0300) 2023; 52 10.1016/j.compstruc.2024.107513_b0015 Domer (10.1016/j.compstruc.2024.107513_b0210) 2005; 19 Lawler (10.1016/j.compstruc.2024.107513_b0315) 1966; 14 Morrison (10.1016/j.compstruc.2024.107513_b0325) 2016; 19 Dorn (10.1016/j.compstruc.2024.107513_b0260) 1964; 3 Pellegrino (10.1016/j.compstruc.2024.107513_b0020) 1992; 7 Tibert (10.1016/j.compstruc.2024.107513_b0025) 2002 Wang (10.1016/j.compstruc.2024.107513_b0285) 2020; 202 Kawaguchi (10.1016/j.compstruc.2024.107513_b0080) 1999; 40 Skelton (10.1016/j.compstruc.2024.107513_b0085) 2014; 58 Adam (10.1016/j.compstruc.2024.107513_b0205) 2007; 21 Rhode-Barbarigos (10.1016/j.compstruc.2024.107513_b0010) 2010; 32 Xu (10.1016/j.compstruc.2024.107513_b0295) 2023; 385 Wang (10.1016/j.compstruc.2024.107513_b0135) 2021; 227 Zhang (10.1016/j.compstruc.2024.107513_b0165) 2007 Ingber (10.1016/j.compstruc.2024.107513_b0060) 2014; 77 10.1016/j.compstruc.2024.107513_b0280 Ma (10.1016/j.compstruc.2024.107513_b0170) 2019; 100 10.1016/j.compstruc.2024.107513_b0320 Goyal (10.1016/j.compstruc.2024.107513_b0110) 2020; 103 Amendola (10.1016/j.compstruc.2024.107513_b0070) 2015; 131 Wang (10.1016/j.compstruc.2024.107513_b0305) 2024; 67 10.1016/j.compstruc.2024.107513_b0005 Furuya (10.1016/j.compstruc.2024.107513_b0035) 1992; 7 Fest (10.1016/j.compstruc.2024.107513_b0200) 2004; 130 Lee (10.1016/j.compstruc.2024.107513_b0310) 2011; vol. 154 Kanno (10.1016/j.compstruc.2024.107513_b0175) 2013; 14 Chen (10.1016/j.compstruc.2024.107513_b0115) 2023; 296 Asghari (10.1016/j.compstruc.2024.107513_b0330) 2022; 10 Fraddosio (10.1016/j.compstruc.2024.107513_b0125) 2021; 8 You (10.1016/j.compstruc.2024.107513_b0195) 1997; 144 Xu (10.1016/j.compstruc.2024.107513_b0180) 2018; 144 Haftka (10.1016/j.compstruc.2024.107513_b0245) 1985; 23 Ganga (10.1016/j.compstruc.2024.107513_b0040) 2016 Trinh (10.1016/j.compstruc.2024.107513_b0130) 2022; 94 Lee (10.1016/j.compstruc.2024.107513_b0145) 2016; 152 Zegard (10.1016/j.compstruc.2024.107513_b0290) 2014; 50 Goyal (10.1016/j.compstruc.2024.107513_b0105) 2019; 34 10.1016/j.compstruc.2024.107513_b0275 Paul (10.1016/j.compstruc.2024.107513_b0045) 2006; 22 Fraddosio (10.1016/j.compstruc.2024.107513_b0100) 2019; 209 10.1016/j.compstruc.2024.107513_b0155 10.1016/j.compstruc.2024.107513_b0075 Zhang (10.1016/j.compstruc.2024.107513_b0230) 2023; 278 Pellegrino (10.1016/j.compstruc.2024.107513_b0265) 1986; 22 Su (10.1016/j.compstruc.2024.107513_b0185) 2020; 206 Wang (10.1016/j.compstruc.2024.107513_b0240) 2021; 234 |
| References_xml | – volume: 152 start-page: 11 year: 2016 end-page: 19 ident: b0145 article-title: A novel method for topology design of tensegrity structures publication-title: Compos Struct – volume: 100 year: 2019 ident: b0170 article-title: Shape optimization of a new tensegrity torus publication-title: Mech Res Commun – volume: 234 year: 2021 ident: b0240 article-title: Minimal mass design of active tensegrity structures publication-title: Eng Struct – volume: 14 start-page: 699 year: 1966 end-page: 719 ident: b0315 article-title: Branch-and-bound methods: a survey publication-title: Oper Res – year: 2012 ident: b0220 article-title: An active deployable tensegrity structure – volume: 11 start-page: 37 year: 1998 end-page: 44 ident: b0190 article-title: Active control of tensegrity systems publication-title: J Aerosp Eng – volume: 59 start-page: 575 year: 1997 end-page: 599 ident: b0055 article-title: Tensegrity: the architectural basis of cellular mechanotransduction publication-title: Annu Rev Physiol – reference: Krishnan S, Li B. Design of lightweight deployable antennas using the tensegrity principle. In: Earth and Space 2018: Engineering for Extreme Environments, American Society of Civil Engineers Reston, VA; 2018, pp. 888–899. – volume: 32 start-page: 3650 year: 2010 end-page: 3659 ident: b0215 article-title: Design optimization and dynamic analysis of a tensegrity-based footbridge publication-title: Eng Struct – volume: 64 start-page: 1079 year: 2021 end-page: 1110 ident: b0250 article-title: Design of adaptive structures through energy minimization: extension to tensegrity publication-title: Struct Multidiscip Optim – volume: 34 start-page: 3 year: 2019 end-page: 21 ident: b0105 article-title: Analytical study of tensegrity lattices for mass-efficient mechanical energy absorption publication-title: Int J Space Struct – reference: ENERPAC. E328e Industrial Tools – Europe; 2016. [Online]. Available: – volume: 209 start-page: 754 year: 2019 end-page: 774 ident: b0100 article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells publication-title: Compos Struct – volume: 278 year: 2023 ident: b0230 article-title: Active control experiments on a Levy cable dome publication-title: Eng Struct – reference: Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; 2024. – reference: Franklin K, Ozkan E, Powell D, et al. Design of the Kurilpa Pedestrian Bridge for Dynamic Effects Due to Pedestrian and Wind Loads. In: 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference; 2010, p. 885. – volume: 52 start-page: 842 year: 2023 end-page: 853 ident: b0300 article-title: Life cycle carbon emission assessment of large-span steel structures: a case study publication-title: Structures – volume: 19 start-page: 79 year: 2016 end-page: 102 ident: b0325 article-title: Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning publication-title: Discret Optim – volume: 32 start-page: 1158 year: 2010 end-page: 1167 ident: b0010 article-title: Designing tensegrity modules for pedestrian bridges publication-title: Eng Struct – volume: 21 start-page: 3 year: 2007 end-page: 10 ident: b0205 article-title: Tensegrity active control: Multiobjective approach publication-title: J Comput Civ Eng – volume: 58 start-page: 124 year: 2014 end-page: 132 ident: b0085 article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity publication-title: Mech Res Commun – volume: 27 start-page: 505 year: Jan. 1991 end-page: 515 ident: b0270 article-title: First-order infinitesimal mechanisms publication-title: Int J Solids Struct – volume: 422 year: 2024 ident: b0255 article-title: Topology optimization of adaptive structures: New limits of material economy publication-title: Comput Methods Appl Mech Eng – reference: Levy MP. The Georgia Dome and beyond: achieving lightweight-longspan structures. In: Spatial, Lattice and Tension Structures; 1994, pp. 560–562. – volume: 77 year: 2014 ident: b0060 article-title: Tensegrity, cellular biophysics, and the mechanics of living systems publication-title: Rep Prog Phys – volume: vol. 154 year: 2011 ident: b0310 publication-title: Mixed integer nonlinear programming – volume: 19 start-page: 16 year: 2005 end-page: 24 ident: b0210 article-title: An active structure that learns publication-title: J Comput Civ Eng – volume: 94 year: 2022 ident: b0130 article-title: Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes publication-title: Eur J Mechanics-A/Solids – volume: 296 year: 2023 ident: b0115 article-title: Analysis of clustered cable-actuation strategies of V-Expander tensegrity structures publication-title: Eng Struct – volume: 206 start-page: 9 year: 2020 end-page: 22 ident: b0185 article-title: Topology optimization and shape design method for large-span tensegrity structures with reciprocal struts publication-title: Int J Solids Struct – volume: 67 start-page: 5 year: 2024 ident: b0305 article-title: Topology optimization of multi-material active structures to reduce energy consumption and carbon footprint publication-title: Struct Multidiscip Optim – volume: 40 start-page: 179 year: 1999 end-page: 192 ident: b0080 article-title: Design, tests and realization of ‘suspen-dome’ system publication-title: J Int Assoc Shell Spatial Struct – volume: 103 year: 2020 ident: b0110 article-title: Design of minimal mass load-bearing tensegrity lattices publication-title: Mech Res Commun – start-page: 40 year: 2007 end-page: 49 ident: b0165 article-title: Optimization methods for force and shape design of tensegrity structures publication-title: Proc. 7th World Congresses of Structural and Multidisciplinary Optimization – volume: 22 start-page: 409 year: 1986 end-page: 428 ident: b0265 article-title: Matrix analysis of statically and kinematically indeterminate frameworks publication-title: Int J Solids Struct – start-page: 269 year: 2016 end-page: 304 ident: b0040 article-title: Tensegrity rings for deployable space antennas: concept, design, analysis, and prototype testing publication-title: Variational Analysis and Aerospace Engineering – reference: . [Accessed: 28-Apr-2024]. – volume: 202 start-page: 278 year: 2020 end-page: 298 ident: b0150 article-title: Topology design of general tensegrity with rigid bodies publication-title: Int J Solids Struct – volume: 202 start-page: 798 year: 2020 end-page: 815 ident: b0285 article-title: Extended Integrated Force Method for the analysis of prestress-stable statically and kinematically indeterminate structures publication-title: Int J Solids Struct – volume: 40 start-page: 4637 year: 2003 end-page: 4657 ident: b0030 article-title: Deployment of tensegrity structures publication-title: Int J Solids Struct – volume: 227 year: 2021 ident: b0135 article-title: Form-finding of tensegrity structures via rank minimization of force density matrix publication-title: Eng Struct – year: 2020 ident: b0160 article-title: A general approach to minimal mass tensegrity publication-title: Compos Struct – volume: 14 start-page: 61 year: 2013 end-page: 96 ident: b0175 article-title: Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach publication-title: Optim Eng – volume: 23 start-page: 1099 year: 1985 end-page: 1103 ident: b0245 article-title: Simultaneous analysis and design publication-title: AIAA J – volume: 142 year: 2020 ident: b0235 article-title: Distributed actuation and control of a morphing tensegrity structure publication-title: J Dynamic Syst, Measure, Control – volume: 131 start-page: 66 year: 2015 end-page: 71 ident: b0070 article-title: On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures publication-title: Compos Struct – volume: 2019 year: 2019 ident: b0120 article-title: Prestress design of tensegrity structures using semidefinite programming publication-title: Adv Civ Eng – volume: 22 start-page: 944 year: 2006 end-page: 957 ident: b0045 article-title: Design and control of tensegrity robots for locomotion publication-title: IEEE Trans Rob – volume: 7 start-page: 143 year: 1992 end-page: 151 ident: b0035 article-title: Concept of deployable tensegrity structures in space application publication-title: Int J Space Struct – volume: 24 start-page: 04019112 year: 2019 ident: b0090 article-title: Optimization of footbridges composed of prismatic tensegrity modules publication-title: J Bridg Eng – reference: , 2014, vol. 9061, p. 90610W, DOI: 10.1117/12.2044869. – volume: 247 year: 2021 ident: b0140 article-title: A unifying framework for form-finding and topology-finding of tensegrity structures publication-title: Comput Struct – reference: K. Nagase and R. Skelton, “Minimal mass design of tensegrity structures,” in – reference: Geiger DH, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS symposium on shells, membranes and space frames, vol. 2; 1986, pp. 265–272. – volume: 144 start-page: 04018173 year: 2018 ident: b0180 article-title: Topology optimization of tensegrity structures considering buckling constraints publication-title: J Struct Eng – volume: 3 start-page: 25 year: 1964 end-page: 52 ident: b0260 article-title: Automatic design of optimal structures publication-title: J de Mecanique – volume: 7 start-page: 127 year: 1992 end-page: 142 ident: b0020 article-title: A class of tensegrity domes publication-title: Int J Space Struct – volume: 24 year: 2015 ident: b0065 article-title: Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys publication-title: Smart Mater Struct – volume: 385 year: 2023 ident: b0295 article-title: Analysis and assessment of life-cycle carbon emissions of space frame structures publication-title: J Clean Prod – year: 2002 ident: b0025 article-title: Deployable tensegrity structures for space applications – reference: . – volume: 10 start-page: 283 year: 2022 ident: b0330 article-title: Transformation and linearization techniques in optimization: a state-of-the-art survey publication-title: Mathematics – reference: Sabelhaus AP et al. System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE international conference on robotics and automation (ICRA), 2015, pp. 2867–2873, DOI: – volume: 141 start-page: 04014225 year: 2015 ident: b0225 article-title: Adaptive cable dome publication-title: J Struct Eng – volume: 144 start-page: 51 year: 1997 end-page: 59 ident: b0195 article-title: Displacement control of prestressed structures publication-title: Comput Methods Appl Mech Eng – reference: Senatore G, Duffour P, Winslow P. Synthesis of minimum energy adaptive structures. Structural and Multidisciplinary Optimization; 2019, pp. 1–29, Doi: – volume: 8 start-page: 70 year: 2021 end-page: 88 ident: b0125 article-title: A novel method for determining the feasible integral self-stress states for tensegrity structures publication-title: Curved Layered Struct – volume: 130 start-page: 1454 year: 2004 end-page: 1465 ident: b0200 article-title: Active tensegrity structure publication-title: J Struct Eng – volume: 50 start-page: 861 year: 2014 end-page: 882 ident: b0290 article-title: GRAND—Ground structure based topology optimization for arbitrary 2D domains using MATLAB publication-title: Struct Multidiscip Optim – start-page: 269 year: 2016 ident: 10.1016/j.compstruc.2024.107513_b0040 article-title: Tensegrity rings for deployable space antennas: concept, design, analysis, and prototype testing – start-page: 40 year: 2007 ident: 10.1016/j.compstruc.2024.107513_b0165 article-title: Optimization methods for force and shape design of tensegrity structures – volume: 152 start-page: 11 year: 2016 ident: 10.1016/j.compstruc.2024.107513_b0145 article-title: A novel method for topology design of tensegrity structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.05.009 – ident: 10.1016/j.compstruc.2024.107513_b0320 – volume: 130 start-page: 1454 issue: 10 year: 2004 ident: 10.1016/j.compstruc.2024.107513_b0200 article-title: Active tensegrity structure publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2004)130:10(1454) – volume: 50 start-page: 861 year: 2014 ident: 10.1016/j.compstruc.2024.107513_b0290 article-title: GRAND—Ground structure based topology optimization for arbitrary 2D domains using MATLAB publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1085-z – volume: 385 year: 2023 ident: 10.1016/j.compstruc.2024.107513_b0295 article-title: Analysis and assessment of life-cycle carbon emissions of space frame structures publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.135521 – volume: 34 start-page: 3 issue: 1–2 year: 2019 ident: 10.1016/j.compstruc.2024.107513_b0105 article-title: Analytical study of tensegrity lattices for mass-efficient mechanical energy absorption publication-title: Int J Space Struct doi: 10.1177/0956059919845330 – ident: 10.1016/j.compstruc.2024.107513_b0095 doi: 10.1061/9780784481899.084 – volume: 142 issue: 7 year: 2020 ident: 10.1016/j.compstruc.2024.107513_b0235 article-title: Distributed actuation and control of a morphing tensegrity structure publication-title: J Dynamic Syst, Measure, Control – volume: 206 start-page: 9 year: 2020 ident: 10.1016/j.compstruc.2024.107513_b0185 article-title: Topology optimization and shape design method for large-span tensegrity structures with reciprocal struts publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2020.09.002 – volume: 247 year: 2021 ident: 10.1016/j.compstruc.2024.107513_b0140 article-title: A unifying framework for form-finding and topology-finding of tensegrity structures publication-title: Comput Struct doi: 10.1016/j.compstruc.2021.106486 – volume: 14 start-page: 61 issue: 1 year: 2013 ident: 10.1016/j.compstruc.2024.107513_b0175 article-title: Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach publication-title: Optim Eng doi: 10.1007/s11081-011-9172-0 – volume: 58 start-page: 124 year: 2014 ident: 10.1016/j.compstruc.2024.107513_b0085 article-title: Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2013.10.017 – volume: 278 year: 2023 ident: 10.1016/j.compstruc.2024.107513_b0230 article-title: Active control experiments on a Levy cable dome publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115450 – volume: 64 start-page: 1079 issue: 3 year: 2021 ident: 10.1016/j.compstruc.2024.107513_b0250 article-title: Design of adaptive structures through energy minimization: extension to tensegrity publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-021-02899-y – volume: 22 start-page: 944 issue: 5 year: 2006 ident: 10.1016/j.compstruc.2024.107513_b0045 article-title: Design and control of tensegrity robots for locomotion publication-title: IEEE Trans Rob doi: 10.1109/TRO.2006.878980 – volume: 40 start-page: 179 issue: 3 year: 1999 ident: 10.1016/j.compstruc.2024.107513_b0080 article-title: Design, tests and realization of ‘suspen-dome’ system publication-title: J Int Assoc Shell Spatial Struct – volume: 22 start-page: 409 issue: 4 year: 1986 ident: 10.1016/j.compstruc.2024.107513_b0265 article-title: Matrix analysis of statically and kinematically indeterminate frameworks publication-title: Int J Solids Struct doi: 10.1016/0020-7683(86)90014-4 – volume: 296 year: 2023 ident: 10.1016/j.compstruc.2024.107513_b0115 article-title: Analysis of clustered cable-actuation strategies of V-Expander tensegrity structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.116868 – volume: 100 year: 2019 ident: 10.1016/j.compstruc.2024.107513_b0170 article-title: Shape optimization of a new tensegrity torus publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2019.103396 – volume: 19 start-page: 79 year: 2016 ident: 10.1016/j.compstruc.2024.107513_b0325 article-title: Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning publication-title: Discret Optim doi: 10.1016/j.disopt.2016.01.005 – volume: 27 start-page: 505 issue: 4 year: 1991 ident: 10.1016/j.compstruc.2024.107513_b0270 article-title: First-order infinitesimal mechanisms publication-title: Int J Solids Struct doi: 10.1016/0020-7683(91)90137-5 – volume: 94 year: 2022 ident: 10.1016/j.compstruc.2024.107513_b0130 article-title: Force density-informed neural network for prestress design of tensegrity structures with multiple self-stress modes publication-title: Eur J Mechanics-A/Solids doi: 10.1016/j.euromechsol.2022.104584 – volume: 2019 year: 2019 ident: 10.1016/j.compstruc.2024.107513_b0120 article-title: Prestress design of tensegrity structures using semidefinite programming publication-title: Adv Civ Eng – volume: 7 start-page: 127 issue: 2 year: 1992 ident: 10.1016/j.compstruc.2024.107513_b0020 article-title: A class of tensegrity domes publication-title: Int J Space Struct doi: 10.1177/026635119200700206 – volume: 144 start-page: 04018173 issue: 10 year: 2018 ident: 10.1016/j.compstruc.2024.107513_b0180 article-title: Topology optimization of tensegrity structures considering buckling constraints publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0002156 – volume: 234 year: 2021 ident: 10.1016/j.compstruc.2024.107513_b0240 article-title: Minimal mass design of active tensegrity structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.111965 – volume: vol. 154 year: 2011 ident: 10.1016/j.compstruc.2024.107513_b0310 – volume: 19 start-page: 16 issue: 1 year: 2005 ident: 10.1016/j.compstruc.2024.107513_b0210 article-title: An active structure that learns publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2005)19:1(16) – year: 2020 ident: 10.1016/j.compstruc.2024.107513_b0160 article-title: A general approach to minimal mass tensegrity publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.112454 – volume: 11 start-page: 37 issue: 2 year: 1998 ident: 10.1016/j.compstruc.2024.107513_b0190 article-title: Active control of tensegrity systems publication-title: J Aerosp Eng doi: 10.1061/(ASCE)0893-1321(1998)11:2(37) – volume: 24 start-page: 04019112 issue: 12 year: 2019 ident: 10.1016/j.compstruc.2024.107513_b0090 article-title: Optimization of footbridges composed of prismatic tensegrity modules publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0001438 – volume: 103 year: 2020 ident: 10.1016/j.compstruc.2024.107513_b0110 article-title: Design of minimal mass load-bearing tensegrity lattices publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2020.103477 – year: 2012 ident: 10.1016/j.compstruc.2024.107513_b0220 – volume: 10 start-page: 283 issue: 2 year: 2022 ident: 10.1016/j.compstruc.2024.107513_b0330 article-title: Transformation and linearization techniques in optimization: a state-of-the-art survey publication-title: Mathematics doi: 10.3390/math10020283 – volume: 23 start-page: 1099 issue: 7 year: 1985 ident: 10.1016/j.compstruc.2024.107513_b0245 article-title: Simultaneous analysis and design publication-title: AIAA J doi: 10.2514/3.9043 – volume: 202 start-page: 798 year: 2020 ident: 10.1016/j.compstruc.2024.107513_b0285 article-title: Extended Integrated Force Method for the analysis of prestress-stable statically and kinematically indeterminate structures publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2020.05.029 – volume: 422 year: 2024 ident: 10.1016/j.compstruc.2024.107513_b0255 article-title: Topology optimization of adaptive structures: New limits of material economy publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2023.116710 – volume: 52 start-page: 842 year: 2023 ident: 10.1016/j.compstruc.2024.107513_b0300 article-title: Life cycle carbon emission assessment of large-span steel structures: a case study publication-title: Structures doi: 10.1016/j.istruc.2023.04.001 – volume: 7 start-page: 143 issue: 2 year: 1992 ident: 10.1016/j.compstruc.2024.107513_b0035 article-title: Concept of deployable tensegrity structures in space application publication-title: Int J Space Struct doi: 10.1177/026635119200700207 – volume: 67 start-page: 5 issue: 1 year: 2024 ident: 10.1016/j.compstruc.2024.107513_b0305 article-title: Topology optimization of multi-material active structures to reduce energy consumption and carbon footprint publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-023-03698-3 – volume: 40 start-page: 4637 issue: 18 year: 2003 ident: 10.1016/j.compstruc.2024.107513_b0030 article-title: Deployment of tensegrity structures publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(03)00267-1 – volume: 32 start-page: 3650 issue: 11 year: 2010 ident: 10.1016/j.compstruc.2024.107513_b0215 article-title: Design optimization and dynamic analysis of a tensegrity-based footbridge publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.08.009 – ident: 10.1016/j.compstruc.2024.107513_b0280 doi: 10.1007/s00158-019-02224-8 – ident: 10.1016/j.compstruc.2024.107513_b0275 – volume: 21 start-page: 3 issue: 1 year: 2007 ident: 10.1016/j.compstruc.2024.107513_b0205 article-title: Tensegrity active control: Multiobjective approach publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2007)21:1(3) – ident: 10.1016/j.compstruc.2024.107513_b0015 – volume: 131 start-page: 66 year: 2015 ident: 10.1016/j.compstruc.2024.107513_b0070 article-title: On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.04.038 – ident: 10.1016/j.compstruc.2024.107513_b0050 doi: 10.1109/ICRA.2015.7139590 – volume: 141 start-page: 04014225 issue: 9 year: 2015 ident: 10.1016/j.compstruc.2024.107513_b0225 article-title: Adaptive cable dome publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0001189 – volume: 24 issue: 10 year: 2015 ident: 10.1016/j.compstruc.2024.107513_b0065 article-title: Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys publication-title: Smart Mater Struct doi: 10.1088/0964-1726/24/10/105008 – volume: 209 start-page: 754 year: 2019 ident: 10.1016/j.compstruc.2024.107513_b0100 article-title: Minimal mass and self-stress analysis for innovative V-Expander tensegrity cells publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.10.108 – volume: 32 start-page: 1158 issue: 4 year: 2010 ident: 10.1016/j.compstruc.2024.107513_b0010 article-title: Designing tensegrity modules for pedestrian bridges publication-title: Eng Struct doi: 10.1016/j.engstruct.2009.12.042 – volume: 227 year: 2021 ident: 10.1016/j.compstruc.2024.107513_b0135 article-title: Form-finding of tensegrity structures via rank minimization of force density matrix publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111419 – volume: 144 start-page: 51 issue: 1–2 year: 1997 ident: 10.1016/j.compstruc.2024.107513_b0195 article-title: Displacement control of prestressed structures publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(96)01164-4 – ident: 10.1016/j.compstruc.2024.107513_b0005 – volume: 202 start-page: 278 year: 2020 ident: 10.1016/j.compstruc.2024.107513_b0150 article-title: Topology design of general tensegrity with rigid bodies publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2020.05.030 – volume: 77 issue: 4 year: 2014 ident: 10.1016/j.compstruc.2024.107513_b0060 article-title: Tensegrity, cellular biophysics, and the mechanics of living systems publication-title: Rep Prog Phys doi: 10.1088/0034-4885/77/4/046603 – volume: 3 start-page: 25 year: 1964 ident: 10.1016/j.compstruc.2024.107513_b0260 article-title: Automatic design of optimal structures publication-title: J de Mecanique – year: 2002 ident: 10.1016/j.compstruc.2024.107513_b0025 – volume: 8 start-page: 70 issue: 1 year: 2021 ident: 10.1016/j.compstruc.2024.107513_b0125 article-title: A novel method for determining the feasible integral self-stress states for tensegrity structures publication-title: Curved Layered Struct doi: 10.1515/cls-2021-0007 – ident: 10.1016/j.compstruc.2024.107513_b0075 – volume: 14 start-page: 699 issue: 4 year: 1966 ident: 10.1016/j.compstruc.2024.107513_b0315 article-title: Branch-and-bound methods: a survey publication-title: Oper Res doi: 10.1287/opre.14.4.699 – ident: 10.1016/j.compstruc.2024.107513_b0155 doi: 10.1117/12.2044869 – volume: 59 start-page: 575 issue: 1 year: 1997 ident: 10.1016/j.compstruc.2024.107513_b0055 article-title: Tensegrity: the architectural basis of cellular mechanotransduction publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.59.1.575 |
| SSID | ssj0006400 |
| Score | 2.5785708 |
| Snippet | •A general computational framework for active tensegrity topology design is proposed.•Structure member topology and actuator layout coupling relation is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107513 |
| SubjectTerms | Active tensegrity structure Lightweight structures Low-carbon buildings Mixed integer programming Topology optimization |
| Title | Topology optimization of active tensegrity structures |
| URI | https://dx.doi.org/10.1016/j.compstruc.2024.107513 |
| Volume | 305 |
| WOSCitedRecordID | wos001317413500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0045-7949 databaseCode: AIEXJ dateStart: 19950103 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006400 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZ49AAHVKAICq1y6G0VlGyc2OaGEAhQhXqgUuASOfaEhyBZsWxF--sZP5INFGnLoZcocjJO4vnyzcQZzxDyDZ2GimZQ4psmZYj2tgwlj1VIQTKNJrYSktpiE-zsjOe5-OHLpY5tOQFW1_zpSYz-q6qxDZVtls6-Q91dp9iA-6h03KLacftvindlD34PGmSDe7_M0v7ut9Q2MCHrcGVq1g1c8tjJg48jbBMW-EIPYwuLV-fYuXfHDxeyAm_3LIVZ_rq8NsHoTduaT0xj3sPg90njhJs_1zf9OYch7cVveB6lJtGlSzba8mgSpT0mxM_K1K0y_Yuk3XzBrRnjkX2IXXON3anEy7TYr8xVF0TYxqfdFl1HhemocB3Nk8UhSwUy3eL-yWF-2tnnjLYLk9wzvIj6e_Oe3vZZen7I-Uey4j8ggn2n-FUyB_UaWe6llVwnaQuBoA-BoKkCB4FgCoFgqt5P5OfR4fnBcejLY4QqidPHECTPeAyUMSGzigO1f421kBBVJctSzUx2MFpxEWmVCa5VTGOlkcEh45zqZIMs1E0NmyQAzuOEa6YjUVFQUJY0giSBhA9LzZnaIlk7AIXyueNNCZO7YoYStkjUCY5c-pTZInvtCBfeC3TeXYH4mSX8-f3X2yZLU4jvkAU8Dl_IB_Xr8Wb88NWD5xkQz4SR |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+active+tensegrity+structures&rft.jtitle=Computers+%26+structures&rft.au=Wang%2C+Yafeng&rft.au=Han%2C+Zhentao&rft.au=Xu%2C+Xian&rft.au=Luo%2C+Yaozhi&rft.date=2024-12-01&rft.issn=0045-7949&rft.volume=305&rft.spage=107513&rft_id=info:doi/10.1016%2Fj.compstruc.2024.107513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruc_2024_107513 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon |