Random Error in Strain Calculation using Regularized Polynomial Smoothing (RPS) and Point-wise Least Squares (PLS) in Digital Image Correlation
•The estimations of random error and under-matched error caused by two strain calculation methods (point-wise least squares (PLS) and regularized polynomial smoothing method (RPS)) are proposed, based on two assumptions on the noise error of calculated displacement.•For the typical kernel function o...
Uložené v:
| Vydané v: | Optics and lasers in engineering Ročník 142; s. 106590 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.07.2021
|
| Predmet: | |
| ISSN: | 0143-8166, 1873-0302 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •The estimations of random error and under-matched error caused by two strain calculation methods (point-wise least squares (PLS) and regularized polynomial smoothing method (RPS)) are proposed, based on two assumptions on the noise error of calculated displacement.•For the typical kernel function of 3rd order polynomial, a self-adaptive algorithm minimizing the total error is proposed to choose the optimal parameters.•The self-adaptive algorithm can give the optimal parameters in restoring the displacement and strain field, and obtain a more accurate result if the provided displacement field conforms strictly to assumptions.
The strain error analysis is greatly concerned recently as digital image correlation (DIC) is used to measure the heterogeneous deformation. This paper focuses on the estimation of random error and under-matched error caused by two strain calculation methods, i.e. the point-wise least squares (PLS) and the regularized polynomial smoothing method (RPS). Two assumptions are put forward on the noise error of the calculated displacement that are: a) it is pure random error without bias and b) in each strain window, it is the independent Gaussian white noise with zero-mean. Based on the assumptions, the random error of displacement and strain is estimated, and the under-matched error of displacement and strain is theoretically analyzed by the aid of Laplacian operator. These two error solutions are verified by some stimulated experiments. Then for the typical kernel function of 3rd order polynomial, a self-adaptive algorithm minimizing the total error is proposed to choose the optimal parameters, i.e. window size and parameter λ. Experiments show that when the original displacement noise conforms to the assumptions strictly, 1) the estimated random error and under-matched error agrees very well with the experimental value, 2) the self-adaptive algorithm can give the optimal parameters in restoring the displacement and strain field, and 3) the estimation of random error and under-matched error is affected by DIC noise greatly, and it is better to use low-pass Gaussian filter before utilizing self-adaptive algorithm. |
|---|---|
| AbstractList | •The estimations of random error and under-matched error caused by two strain calculation methods (point-wise least squares (PLS) and regularized polynomial smoothing method (RPS)) are proposed, based on two assumptions on the noise error of calculated displacement.•For the typical kernel function of 3rd order polynomial, a self-adaptive algorithm minimizing the total error is proposed to choose the optimal parameters.•The self-adaptive algorithm can give the optimal parameters in restoring the displacement and strain field, and obtain a more accurate result if the provided displacement field conforms strictly to assumptions.
The strain error analysis is greatly concerned recently as digital image correlation (DIC) is used to measure the heterogeneous deformation. This paper focuses on the estimation of random error and under-matched error caused by two strain calculation methods, i.e. the point-wise least squares (PLS) and the regularized polynomial smoothing method (RPS). Two assumptions are put forward on the noise error of the calculated displacement that are: a) it is pure random error without bias and b) in each strain window, it is the independent Gaussian white noise with zero-mean. Based on the assumptions, the random error of displacement and strain is estimated, and the under-matched error of displacement and strain is theoretically analyzed by the aid of Laplacian operator. These two error solutions are verified by some stimulated experiments. Then for the typical kernel function of 3rd order polynomial, a self-adaptive algorithm minimizing the total error is proposed to choose the optimal parameters, i.e. window size and parameter λ. Experiments show that when the original displacement noise conforms to the assumptions strictly, 1) the estimated random error and under-matched error agrees very well with the experimental value, 2) the self-adaptive algorithm can give the optimal parameters in restoring the displacement and strain field, and 3) the estimation of random error and under-matched error is affected by DIC noise greatly, and it is better to use low-pass Gaussian filter before utilizing self-adaptive algorithm. |
| ArticleNumber | 106590 |
| Author | Wang, Haitao Zhao, Jiaqing Fang, Gang Li, Xin Zhang, Zhengming Sun, Libin Wu, Xinxin |
| Author_xml | – sequence: 1 givenname: Xin surname: Li fullname: Li, Xin organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China – sequence: 2 givenname: Gang surname: Fang fullname: Fang, Gang organization: Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China – sequence: 3 givenname: Jiaqing surname: Zhao fullname: Zhao, Jiaqing email: jqzhao@mail.tsinghua.edu.cn organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China – sequence: 4 givenname: Zhengming surname: Zhang fullname: Zhang, Zhengming organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China – sequence: 5 givenname: Libin surname: Sun fullname: Sun, Libin organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China – sequence: 6 givenname: Haitao surname: Wang fullname: Wang, Haitao organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China – sequence: 7 givenname: Xinxin surname: Wu fullname: Wu, Xinxin organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China |
| BookMark | eNqNkM1OAjEUhRujiYg-g13iYrCdnzIsXBBEJSGRgK6bm3IZS2ZabIsGX8JXthOMCze6usnp_U7vOWfk2FiDhFxy1ueMi-tN325DDR5N1U9ZyqMqiiE7Ih1eDrKEZSw9Jh3G8ywpuRCn5Mz7DYtkznmHfC7ArGxDJ85ZR7Why-AgjjHUaldD0NbQndemogusouD0B67o3NZ7YxsNNV021oaXdqG3mC-vaLSLz9qE5F17pDMEH-jydQcOPe3NZ3El2t_qSodITxuokI6tc3j47JycrKH2ePE9u-T5bvI0fkhmj_fT8WiWqIwXIcEc0lyVosSYaxglKNcsA8FZipmAocCiKDM-EIVQJVOogOdCFKBUjkNkadYlNwdf5az3DtdSxYPaC9r8teRMtu3KjfxpV7btykO7kR_84rdON-D2_yBHBxJjvDeNTnql0ShcaYcqyJXVf3p8AUpbnQ0 |
| CitedBy_id | crossref_primary_10_1007_s40195_024_01669_1 crossref_primary_10_3390_opt5040042 crossref_primary_10_1364_AO_520232 crossref_primary_10_1016_j_optlaseng_2023_107492 crossref_primary_10_1016_j_measurement_2023_113947 |
| Cites_doi | 10.1007/BF02326485 10.1007/s11340-018-00455-2 10.1117/1.2714926 10.1111/j.1475-1305.2008.00592.x 10.1088/0957-0233/20/6/062001 10.1007/s11340-017-0268-0 10.1088/0957-0233/23/2/025403 10.1007/BF02410987 10.1111/str.12173 10.1016/j.optlaseng.2007.01.012 10.1016/j.optlaseng.2014.12.010 10.1016/j.optlaseng.2014.05.007 10.1016/j.optlaseng.2016.08.016 10.1111/str.12174 10.1117/1.1314593 10.1016/j.optlaseng.2012.04.008 10.1007/s11340-013-9717-6 10.1016/j.optlaseng.2019.04.017 10.1016/j.optlaseng.2014.03.016 10.1016/j.optlaseng.2014.03.007 10.1364/OE.16.007037 10.1007/s11340-012-9612-6 10.1016/j.engstruct.2012.08.018 10.1016/0262-8856(83)90064-1 10.1007/s11340-015-0080-7 10.1016/j.optlaseng.2007.05.008 10.1111/j.1475-1305.2005.00227.x 10.1016/j.optlaseng.2018.08.022 10.1080/09243046.2015.1052131 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optlaseng.2021.106590 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-0302 |
| ExternalDocumentID | 10_1016_j_optlaseng_2021_106590 S0143816621000609 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c315t-e4a24c868e1439315a8f03a6102e36a96e558317656c80ceca14665acc4e9e023 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648730600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-8166 |
| IngestDate | Tue Nov 18 22:17:20 EST 2025 Sat Nov 29 07:23:55 EST 2025 Fri Feb 23 02:45:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Strain random error Digital image correlation Displacement smoothing Self-Adaptive Algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c315t-e4a24c868e1439315a8f03a6102e36a96e558317656c80ceca14665acc4e9e023 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_optlaseng_2021_106590 crossref_primary_10_1016_j_optlaseng_2021_106590 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2021_106590 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 2021-07-00 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics and lasers in engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lu, Cary (bib0031) 2000; 40 Wang, Pan (bib0022) 2019; 59 Sutton, Orteu, Schreier (bib0027) 2009 Pan, Xie, Guo, Hua (bib0004) 2007; 46 Wang, Lava, Reu, Debruyne (bib0013) 2016; 52 Sutton, Wolters, Peters, Ranson, McNeill (bib0001) 1983; 1 Pan, Qian, Xie, Asundi (bib0029) 2009; 20 Zhao, Song, Wu (bib0005) 2015; 68 Ghadbeigi, Pinna, Celotto (bib0025) 2012; 52 Pan, Xie, Wang, Qian, Wang (bib0032) 2008; 16 Wang, Lava, Reu, Debruyne (bib0024) 2016; 52 Wang, Pan (bib0012) 2015; 55 Ma, Pang, Ma (bib0019) 2012; 23 Hoult, Andy Take, Lee, Dutton (bib0018) 2013; 46 Zhao, Zeng, Pan, Lei, Du, He, 2012 (bib0006) 2012; 50 Zappa, Matinmanesh, Mazzoleni (bib0016) 2014; 59 Dai, Yang, Chen, Shao, He (bib0008) 2015; 65 Tong (bib0023) 2005; 41 Yoneyama, Koyanagi, Arikawa (bib0009) 2016; 25 Pan, Yuan, Xia (bib0010) 2015; 65 Sun, Pang (bib0015) 2007; 45 Tu, Liu (bib0017) 2017; 57 Haddadi, Belhabib (bib0014) 2008; 46 Pan, Li, Tong (bib0003) 2013; 53 Li, Fang, Zhao, Zhang, Wu (bib0028) 2019; 121 Wang, Sutton, Bruck, Schreier (bib0026) 2009; 45 Schreier, Braasch, Sutton (bib0030) 2000; 39 Xin, Gang, Jiaqing, Zhengming, Xinxin (bib0007) 2019; 112 Schreier, Sutton (bib0011) 2002; 42 Xu, Su, Zhang (bib0021) 2017; 88 Li, Wang, Duan (bib0020) 2018; 29 2018 (bib0002) 2018; 29 Pan (10.1016/j.optlaseng.2021.106590_bib0004) 2007; 46 Yoneyama (10.1016/j.optlaseng.2021.106590_bib0009) 2016; 25 Wang (10.1016/j.optlaseng.2021.106590_bib0024) 2016; 52 Zhao (10.1016/j.optlaseng.2021.106590_bib0006) 2012; 50 Pan (10.1016/j.optlaseng.2021.106590_bib0029) 2009; 20 Sutton (10.1016/j.optlaseng.2021.106590_bib0027) 2009 Li (10.1016/j.optlaseng.2021.106590_bib0028) 2019; 121 Sun (10.1016/j.optlaseng.2021.106590_bib0015) 2007; 45 Zhao (10.1016/j.optlaseng.2021.106590_bib0005) 2015; 68 Schreier (10.1016/j.optlaseng.2021.106590_bib0030) 2000; 39 Hoult (10.1016/j.optlaseng.2021.106590_bib0018) 2013; 46 Ma (10.1016/j.optlaseng.2021.106590_bib0019) 2012; 23 Pan (10.1016/j.optlaseng.2021.106590_bib0003) 2013; 53 2018 (10.1016/j.optlaseng.2021.106590_bib0002) 2018; 29 Wang (10.1016/j.optlaseng.2021.106590_bib0022) 2019; 59 Dai (10.1016/j.optlaseng.2021.106590_bib0008) 2015; 65 Sutton (10.1016/j.optlaseng.2021.106590_bib0001) 1983; 1 Pan (10.1016/j.optlaseng.2021.106590_bib0032) 2008; 16 Wang (10.1016/j.optlaseng.2021.106590_bib0012) 2015; 55 Ghadbeigi (10.1016/j.optlaseng.2021.106590_bib0025) 2012; 52 Schreier (10.1016/j.optlaseng.2021.106590_bib0011) 2002; 42 Wang (10.1016/j.optlaseng.2021.106590_bib0013) 2016; 52 Li (10.1016/j.optlaseng.2021.106590_bib0020) 2018; 29 Tong (10.1016/j.optlaseng.2021.106590_bib0023) 2005; 41 Zappa (10.1016/j.optlaseng.2021.106590_bib0016) 2014; 59 Xin (10.1016/j.optlaseng.2021.106590_bib0007) 2019; 112 Xu (10.1016/j.optlaseng.2021.106590_bib0021) 2017; 88 Lu (10.1016/j.optlaseng.2021.106590_bib0031) 2000; 40 Wang (10.1016/j.optlaseng.2021.106590_bib0026) 2009; 45 Haddadi (10.1016/j.optlaseng.2021.106590_bib0014) 2008; 46 Pan (10.1016/j.optlaseng.2021.106590_bib0010) 2015; 65 Tu (10.1016/j.optlaseng.2021.106590_bib0017) 2017; 57 |
| References_xml | – volume: 16 year: 2008 ident: bib0032 article-title: Study on subset size selection in digital image correlation for speckle patterns publication-title: Opt Express – volume: 50 start-page: 1662 year: 2012 end-page: 1671 ident: bib0006 article-title: Improved Hermite finite element smoothing method for full-field strain measurement over arbitrary region of interest in digital image correlation publication-title: Opt Laser Eng – volume: 42 start-page: 303 year: 2002 end-page: 310 ident: bib0011 article-title: Systematic errors in digital image correlation due to undermatched subset shape functions publication-title: Exp Mech – volume: 46 start-page: 718 year: 2013 end-page: 726 ident: bib0018 article-title: Experimental accuracy of two dimensional strain measurements using Digital Image Correlation publication-title: Eng Struct – volume: 45 start-page: 160 year: 2009 end-page: 178 ident: bib0026 article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement publication-title: Strain – volume: 41 start-page: 167 year: 2005 end-page: 175 ident: bib0023 article-title: An evaluation of digital image correlation criteria for strain mapping applications publication-title: Strain – volume: 46 start-page: 185 year: 2008 end-page: 196 ident: bib0014 article-title: Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique publication-title: Opt Laser Eng – volume: 88 start-page: 265 year: 2017 end-page: 279 ident: bib0021 article-title: Theoretical estimation of systematic errors in local deformation measurements using digital image correlation publication-title: Opt Laser Eng – volume: 40 start-page: 393 year: 2000 end-page: 400 ident: bib0031 article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient publication-title: Exp Mech – volume: 20 year: 2009 ident: bib0029 article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review publication-title: Meas Sci Technol – volume: 53 start-page: 1277 year: 2013 end-page: 1289 ident: bib0003 article-title: Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations publication-title: Exp Mech – volume: 121 start-page: 215 year: 2019 end-page: 226 ident: bib0028 article-title: A practical and effective regularized polynomial smoothing (RPS) method for high-gradient strain field measurement in digital image correlation publication-title: Opt Laser Eng – volume: 59 start-page: 149 year: 2019 ident: bib0022 article-title: Self-Adaptive Digital Volume Correlation for Unknown Deformation Fields publication-title: Exp Mech – volume: 46 start-page: 33601 year: 2007 ident: bib0004 article-title: Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation publication-title: Opt Eng – volume: 29 year: 2018 ident: bib0002 article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals publication-title: Meas Sci Technol – volume: 23 start-page: 25403 year: 2012 ident: bib0019 article-title: The systematic error in digital image correlation induced by self-heating of a digital camera publication-title: Meas Sci Technol – volume: 52 start-page: 110 year: 2016 end-page: 128 ident: bib0013 article-title: Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part I Temporal and Spatial Uncertainty Quantification of Displacement Measurements publication-title: Strain – volume: 68 start-page: 25 year: 2015 end-page: 34 ident: bib0005 article-title: Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation publication-title: Opt Laser Eng – volume: 65 start-page: 64 year: 2015 end-page: 72 ident: bib0008 article-title: Strain field estimation based on digital image correlation and radial basis function publication-title: Opt Laser Eng – volume: 59 start-page: 82 year: 2014 end-page: 92 ident: bib0016 article-title: Evaluation and improvement of digital image correlation uncertainty in dynamic conditions publication-title: Opt Laser Eng – volume: 112 start-page: 26 year: 2019 end-page: 38 ident: bib0007 article-title: Local Hermite (LH) Method: An accurate and robust smooth technique for high-gradient strain reconstruction in digital image correlation publication-title: Opt Laser Eng – volume: 55 start-page: 1717 year: 2015 end-page: 1727 ident: bib0012 article-title: Random Errors in Digital Image Correlation Due to Matched or Overmatched Shape Functions publication-title: Exp Mech – volume: 29 year: 2018 ident: bib0020 article-title: Strain measurement errors with digital image correlation due to the Savitzky–Golay filter-based method publication-title: Meas Sci Technol – volume: 39 start-page: 2915 year: 2000 end-page: 2921 ident: bib0030 article-title: Systematic errors in digital image correlation caused by intensity interpolation publication-title: Opt Eng – volume: 65 start-page: 9 year: 2015 end-page: 17 ident: bib0010 article-title: Strain field denoising for digital image correlation using a regularized cost-function publication-title: Opt Laser Eng – volume: 25 start-page: 329 year: 2016 end-page: 343 ident: bib0009 article-title: Measurement of discontinuous displacement/strain using mesh-based digital image correlation publication-title: Adv Compos Mater – volume: 52 start-page: 1483 year: 2012 end-page: 1492 ident: bib0025 article-title: Quantitative Strain Analysis of the Large Deformation at the Scale of Microstructure: Comparison between Digital Image Correlation and Microgrid Techniques publication-title: Exp Mech – volume: 52 start-page: 129 year: 2016 end-page: 147 ident: bib0024 article-title: Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part II Assessment of Strain Errors of the Local Smoothing Method–Approaching an Answer to the Overlap Question publication-title: Strain – year: 2009 ident: bib0027 article-title: Image correlation for shape, motion and deformation measurements – volume: 1 start-page: 133 year: 1983 end-page: 139 ident: bib0001 article-title: Determination of displacements using an improved digital correlation method publication-title: Image Vision Compute – volume: 45 start-page: 967 year: 2007 end-page: 974 ident: bib0015 article-title: Study of optimal subset size in digital image correlation of speckle pattern images publication-title: Opt Laser Eng – volume: 57 start-page: 783 year: 2017 end-page: 799 ident: bib0017 article-title: An Error Criterion in Digital Image Correlation for Unknown Deformation Fields and Its Application of Parameters Selection publication-title: Exp Mech – volume: 40 start-page: 393 year: 2000 ident: 10.1016/j.optlaseng.2021.106590_bib0031 article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient publication-title: Exp Mech doi: 10.1007/BF02326485 – volume: 59 start-page: 149 year: 2019 ident: 10.1016/j.optlaseng.2021.106590_bib0022 article-title: Self-Adaptive Digital Volume Correlation for Unknown Deformation Fields publication-title: Exp Mech doi: 10.1007/s11340-018-00455-2 – volume: 46 start-page: 33601 year: 2007 ident: 10.1016/j.optlaseng.2021.106590_bib0004 article-title: Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation publication-title: Opt Eng doi: 10.1117/1.2714926 – volume: 29 year: 2018 ident: 10.1016/j.optlaseng.2021.106590_bib0020 article-title: Strain measurement errors with digital image correlation due to the Savitzky–Golay filter-based method publication-title: Meas Sci Technol – volume: 45 start-page: 160 year: 2009 ident: 10.1016/j.optlaseng.2021.106590_bib0026 article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement publication-title: Strain doi: 10.1111/j.1475-1305.2008.00592.x – volume: 20 year: 2009 ident: 10.1016/j.optlaseng.2021.106590_bib0029 article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review publication-title: Meas Sci Technol doi: 10.1088/0957-0233/20/6/062001 – volume: 57 start-page: 783 year: 2017 ident: 10.1016/j.optlaseng.2021.106590_bib0017 article-title: An Error Criterion in Digital Image Correlation for Unknown Deformation Fields and Its Application of Parameters Selection publication-title: Exp Mech doi: 10.1007/s11340-017-0268-0 – volume: 23 start-page: 25403 year: 2012 ident: 10.1016/j.optlaseng.2021.106590_bib0019 article-title: The systematic error in digital image correlation induced by self-heating of a digital camera publication-title: Meas Sci Technol doi: 10.1088/0957-0233/23/2/025403 – volume: 42 start-page: 303 year: 2002 ident: 10.1016/j.optlaseng.2021.106590_bib0011 article-title: Systematic errors in digital image correlation due to undermatched subset shape functions publication-title: Exp Mech doi: 10.1007/BF02410987 – volume: 52 start-page: 110 year: 2016 ident: 10.1016/j.optlaseng.2021.106590_bib0013 article-title: Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part I Temporal and Spatial Uncertainty Quantification of Displacement Measurements publication-title: Strain doi: 10.1111/str.12173 – volume: 45 start-page: 967 year: 2007 ident: 10.1016/j.optlaseng.2021.106590_bib0015 article-title: Study of optimal subset size in digital image correlation of speckle pattern images publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2007.01.012 – volume: 68 start-page: 25 year: 2015 ident: 10.1016/j.optlaseng.2021.106590_bib0005 article-title: Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2014.12.010 – volume: 65 start-page: 64 year: 2015 ident: 10.1016/j.optlaseng.2021.106590_bib0008 article-title: Strain field estimation based on digital image correlation and radial basis function publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2014.05.007 – volume: 88 start-page: 265 year: 2017 ident: 10.1016/j.optlaseng.2021.106590_bib0021 article-title: Theoretical estimation of systematic errors in local deformation measurements using digital image correlation publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2016.08.016 – volume: 52 start-page: 129 year: 2016 ident: 10.1016/j.optlaseng.2021.106590_bib0024 article-title: Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part II Assessment of Strain Errors of the Local Smoothing Method–Approaching an Answer to the Overlap Question publication-title: Strain doi: 10.1111/str.12174 – volume: 39 start-page: 2915 year: 2000 ident: 10.1016/j.optlaseng.2021.106590_bib0030 article-title: Systematic errors in digital image correlation caused by intensity interpolation publication-title: Opt Eng doi: 10.1117/1.1314593 – volume: 50 start-page: 1662 year: 2012 ident: 10.1016/j.optlaseng.2021.106590_bib0006 article-title: Improved Hermite finite element smoothing method for full-field strain measurement over arbitrary region of interest in digital image correlation publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2012.04.008 – volume: 53 start-page: 1277 year: 2013 ident: 10.1016/j.optlaseng.2021.106590_bib0003 article-title: Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations publication-title: Exp Mech doi: 10.1007/s11340-013-9717-6 – year: 2009 ident: 10.1016/j.optlaseng.2021.106590_bib0027 – volume: 121 start-page: 215 year: 2019 ident: 10.1016/j.optlaseng.2021.106590_bib0028 article-title: A practical and effective regularized polynomial smoothing (RPS) method for high-gradient strain field measurement in digital image correlation publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2019.04.017 – volume: 65 start-page: 9 year: 2015 ident: 10.1016/j.optlaseng.2021.106590_bib0010 article-title: Strain field denoising for digital image correlation using a regularized cost-function publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2014.03.016 – volume: 59 start-page: 82 year: 2014 ident: 10.1016/j.optlaseng.2021.106590_bib0016 article-title: Evaluation and improvement of digital image correlation uncertainty in dynamic conditions publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2014.03.007 – volume: 16 year: 2008 ident: 10.1016/j.optlaseng.2021.106590_bib0032 article-title: Study on subset size selection in digital image correlation for speckle patterns publication-title: Opt Express doi: 10.1364/OE.16.007037 – volume: 52 start-page: 1483 year: 2012 ident: 10.1016/j.optlaseng.2021.106590_bib0025 article-title: Quantitative Strain Analysis of the Large Deformation at the Scale of Microstructure: Comparison between Digital Image Correlation and Microgrid Techniques publication-title: Exp Mech doi: 10.1007/s11340-012-9612-6 – volume: 46 start-page: 718 year: 2013 ident: 10.1016/j.optlaseng.2021.106590_bib0018 article-title: Experimental accuracy of two dimensional strain measurements using Digital Image Correlation publication-title: Eng Struct doi: 10.1016/j.engstruct.2012.08.018 – volume: 1 start-page: 133 year: 1983 ident: 10.1016/j.optlaseng.2021.106590_bib0001 article-title: Determination of displacements using an improved digital correlation method publication-title: Image Vision Compute doi: 10.1016/0262-8856(83)90064-1 – volume: 55 start-page: 1717 year: 2015 ident: 10.1016/j.optlaseng.2021.106590_bib0012 article-title: Random Errors in Digital Image Correlation Due to Matched or Overmatched Shape Functions publication-title: Exp Mech doi: 10.1007/s11340-015-0080-7 – volume: 46 start-page: 185 year: 2008 ident: 10.1016/j.optlaseng.2021.106590_bib0014 article-title: Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2007.05.008 – volume: 41 start-page: 167 year: 2005 ident: 10.1016/j.optlaseng.2021.106590_bib0023 article-title: An evaluation of digital image correlation criteria for strain mapping applications publication-title: Strain doi: 10.1111/j.1475-1305.2005.00227.x – volume: 29 year: 2018 ident: 10.1016/j.optlaseng.2021.106590_bib0002 article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals publication-title: Meas Sci Technol – volume: 112 start-page: 26 year: 2019 ident: 10.1016/j.optlaseng.2021.106590_bib0007 article-title: Local Hermite (LH) Method: An accurate and robust smooth technique for high-gradient strain reconstruction in digital image correlation publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2018.08.022 – volume: 25 start-page: 329 year: 2016 ident: 10.1016/j.optlaseng.2021.106590_bib0009 article-title: Measurement of discontinuous displacement/strain using mesh-based digital image correlation publication-title: Adv Compos Mater doi: 10.1080/09243046.2015.1052131 |
| SSID | ssj0016411 |
| Score | 2.3417497 |
| Snippet | •The estimations of random error and under-matched error caused by two strain calculation methods (point-wise least squares (PLS) and regularized polynomial... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106590 |
| SubjectTerms | Digital image correlation Displacement smoothing Self-Adaptive Algorithm Strain random error |
| Title | Random Error in Strain Calculation using Regularized Polynomial Smoothing (RPS) and Point-wise Least Squares (PLS) in Digital Image Correlation |
| URI | https://dx.doi.org/10.1016/j.optlaseng.2021.106590 |
| Volume | 142 |
| WOSCitedRecordID | wos000648730600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-0302 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016411 issn: 0143-8166 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhI8IBggxk1-4GFTlam5OQ5v09hgaBrVNlC1l8hz3S1Tm3RNOgZ_gv_CL-Qc27kUJg2EeIkq15fU31f7-PhcCHktezJUvjd0gqGSThBx5ghXxY7ggYiGsH-a7A2f96L9fT4YxP1O50flC3M5jrKMX13F0_8KNZQB2Og6-xdw151CAXwG0OEJsMPzj4A_ENkwn8ACN9Om5njvLNC1T4ylTdXVnRfG6A7T0M_SbyBz9vPxV3RQxtggkxzQsxqEg_4h6g20S0GeZqXzJS3QB0gUZffwYo7OS1itv6erwTBv01NMQ9LdnaAx0Bbm_hg34Fsp-OO0Dg4Nwju6EGPgkiYyYm0lpE0NBmlN4B2r3X4nmkrHZ8LcHqXiIl0oNnWPz6DnSfWNVXB4bm0Ma7VuledNY-ZkFKG-g3eeZh8zizePfAcWrcXV3QTv-m2nMEqL8418WuIvzU43cGwoZ6HJX_pLGG60gtOXrJ6rg9jEt8iyF4UxrKTLm7vbgw_13RULXJMF077hglXhtcNdLxO15JyjB-S-PaDQTUOsh6SjshVyrxW2coXc0WbDsnhEvhuyUU02mmbUkI22yEY12WiLbLQhG63JRteAausUuqMN0agmGrVEo2tAs3UcxZKMapLRFskek08720db7x2b4sORvhuWjgqEF0jOuILZiqFI8FHPFyDTe8pnImYqDDmIuHDqkLwnlRSws7NQSBmoWIG8-YQsZXmmnhIanITu8ISxke_DEXnERBRKOE4IwTmgoMJVwqpJTqSNf49zMk4qQ8fzpEYnQXQSg84q6dUNpyYEzM1N3lQoJlaSNRJqAvS7qfGzf2n8nNxt_kMvyFI5m6uX5La8LNNi9spS9SfkscgT |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Error+in+Strain+Calculation+using+Regularized+Polynomial+Smoothing+%28RPS%29+and+Point-wise+Least+Squares+%28PLS%29+in+Digital+Image+Correlation&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Li%2C+Xin&rft.au=Fang%2C+Gang&rft.au=Zhao%2C+Jiaqing&rft.au=Zhang%2C+Zhengming&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=142&rft_id=info:doi/10.1016%2Fj.optlaseng.2021.106590&rft.externalDocID=S0143816621000609 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |