Random Error in Strain Calculation using Regularized Polynomial Smoothing (RPS) and Point-wise Least Squares (PLS) in Digital Image Correlation

•The estimations of random error and under-matched error caused by two strain calculation methods (point-wise least squares (PLS) and regularized polynomial smoothing method (RPS)) are proposed, based on two assumptions on the noise error of calculated displacement.•For the typical kernel function o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics and lasers in engineering Ročník 142; s. 106590
Hlavní autori: Li, Xin, Fang, Gang, Zhao, Jiaqing, Zhang, Zhengming, Sun, Libin, Wang, Haitao, Wu, Xinxin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2021
Predmet:
ISSN:0143-8166, 1873-0302
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The estimations of random error and under-matched error caused by two strain calculation methods (point-wise least squares (PLS) and regularized polynomial smoothing method (RPS)) are proposed, based on two assumptions on the noise error of calculated displacement.•For the typical kernel function of 3rd order polynomial, a self-adaptive algorithm minimizing the total error is proposed to choose the optimal parameters.•The self-adaptive algorithm can give the optimal parameters in restoring the displacement and strain field, and obtain a more accurate result if the provided displacement field conforms strictly to assumptions. The strain error analysis is greatly concerned recently as digital image correlation (DIC) is used to measure the heterogeneous deformation. This paper focuses on the estimation of random error and under-matched error caused by two strain calculation methods, i.e. the point-wise least squares (PLS) and the regularized polynomial smoothing method (RPS). Two assumptions are put forward on the noise error of the calculated displacement that are: a) it is pure random error without bias and b) in each strain window, it is the independent Gaussian white noise with zero-mean. Based on the assumptions, the random error of displacement and strain is estimated, and the under-matched error of displacement and strain is theoretically analyzed by the aid of Laplacian operator. These two error solutions are verified by some stimulated experiments. Then for the typical kernel function of 3rd order polynomial, a self-adaptive algorithm minimizing the total error is proposed to choose the optimal parameters, i.e. window size and parameter λ. Experiments show that when the original displacement noise conforms to the assumptions strictly, 1) the estimated random error and under-matched error agrees very well with the experimental value, 2) the self-adaptive algorithm can give the optimal parameters in restoring the displacement and strain field, and 3) the estimation of random error and under-matched error is affected by DIC noise greatly, and it is better to use low-pass Gaussian filter before utilizing self-adaptive algorithm.
AbstractList •The estimations of random error and under-matched error caused by two strain calculation methods (point-wise least squares (PLS) and regularized polynomial smoothing method (RPS)) are proposed, based on two assumptions on the noise error of calculated displacement.•For the typical kernel function of 3rd order polynomial, a self-adaptive algorithm minimizing the total error is proposed to choose the optimal parameters.•The self-adaptive algorithm can give the optimal parameters in restoring the displacement and strain field, and obtain a more accurate result if the provided displacement field conforms strictly to assumptions. The strain error analysis is greatly concerned recently as digital image correlation (DIC) is used to measure the heterogeneous deformation. This paper focuses on the estimation of random error and under-matched error caused by two strain calculation methods, i.e. the point-wise least squares (PLS) and the regularized polynomial smoothing method (RPS). Two assumptions are put forward on the noise error of the calculated displacement that are: a) it is pure random error without bias and b) in each strain window, it is the independent Gaussian white noise with zero-mean. Based on the assumptions, the random error of displacement and strain is estimated, and the under-matched error of displacement and strain is theoretically analyzed by the aid of Laplacian operator. These two error solutions are verified by some stimulated experiments. Then for the typical kernel function of 3rd order polynomial, a self-adaptive algorithm minimizing the total error is proposed to choose the optimal parameters, i.e. window size and parameter λ. Experiments show that when the original displacement noise conforms to the assumptions strictly, 1) the estimated random error and under-matched error agrees very well with the experimental value, 2) the self-adaptive algorithm can give the optimal parameters in restoring the displacement and strain field, and 3) the estimation of random error and under-matched error is affected by DIC noise greatly, and it is better to use low-pass Gaussian filter before utilizing self-adaptive algorithm.
ArticleNumber 106590
Author Wang, Haitao
Zhao, Jiaqing
Fang, Gang
Li, Xin
Zhang, Zhengming
Sun, Libin
Wu, Xinxin
Author_xml – sequence: 1
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
– sequence: 2
  givenname: Gang
  surname: Fang
  fullname: Fang, Gang
  organization: Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 3
  givenname: Jiaqing
  surname: Zhao
  fullname: Zhao, Jiaqing
  email: jqzhao@mail.tsinghua.edu.cn
  organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
– sequence: 4
  givenname: Zhengming
  surname: Zhang
  fullname: Zhang, Zhengming
  organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
– sequence: 5
  givenname: Libin
  surname: Sun
  fullname: Sun, Libin
  organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
– sequence: 6
  givenname: Haitao
  surname: Wang
  fullname: Wang, Haitao
  organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
– sequence: 7
  givenname: Xinxin
  surname: Wu
  fullname: Wu, Xinxin
  organization: The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
BookMark eNqNkM1OAjEUhRujiYg-g13iYrCdnzIsXBBEJSGRgK6bm3IZS2ZabIsGX8JXthOMCze6usnp_U7vOWfk2FiDhFxy1ueMi-tN325DDR5N1U9ZyqMqiiE7Ih1eDrKEZSw9Jh3G8ywpuRCn5Mz7DYtkznmHfC7ArGxDJ85ZR7Why-AgjjHUaldD0NbQndemogusouD0B67o3NZ7YxsNNV021oaXdqG3mC-vaLSLz9qE5F17pDMEH-jydQcOPe3NZ3El2t_qSodITxuokI6tc3j47JycrKH2ePE9u-T5bvI0fkhmj_fT8WiWqIwXIcEc0lyVosSYaxglKNcsA8FZipmAocCiKDM-EIVQJVOogOdCFKBUjkNkadYlNwdf5az3DtdSxYPaC9r8teRMtu3KjfxpV7btykO7kR_84rdON-D2_yBHBxJjvDeNTnql0ShcaYcqyJXVf3p8AUpbnQ0
CitedBy_id crossref_primary_10_1007_s40195_024_01669_1
crossref_primary_10_3390_opt5040042
crossref_primary_10_1364_AO_520232
crossref_primary_10_1016_j_optlaseng_2023_107492
crossref_primary_10_1016_j_measurement_2023_113947
Cites_doi 10.1007/BF02326485
10.1007/s11340-018-00455-2
10.1117/1.2714926
10.1111/j.1475-1305.2008.00592.x
10.1088/0957-0233/20/6/062001
10.1007/s11340-017-0268-0
10.1088/0957-0233/23/2/025403
10.1007/BF02410987
10.1111/str.12173
10.1016/j.optlaseng.2007.01.012
10.1016/j.optlaseng.2014.12.010
10.1016/j.optlaseng.2014.05.007
10.1016/j.optlaseng.2016.08.016
10.1111/str.12174
10.1117/1.1314593
10.1016/j.optlaseng.2012.04.008
10.1007/s11340-013-9717-6
10.1016/j.optlaseng.2019.04.017
10.1016/j.optlaseng.2014.03.016
10.1016/j.optlaseng.2014.03.007
10.1364/OE.16.007037
10.1007/s11340-012-9612-6
10.1016/j.engstruct.2012.08.018
10.1016/0262-8856(83)90064-1
10.1007/s11340-015-0080-7
10.1016/j.optlaseng.2007.05.008
10.1111/j.1475-1305.2005.00227.x
10.1016/j.optlaseng.2018.08.022
10.1080/09243046.2015.1052131
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.optlaseng.2021.106590
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
ExternalDocumentID 10_1016_j_optlaseng_2021_106590
S0143816621000609
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c315t-e4a24c868e1439315a8f03a6102e36a96e558317656c80ceca14665acc4e9e023
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648730600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Tue Nov 18 22:17:20 EST 2025
Sat Nov 29 07:23:55 EST 2025
Fri Feb 23 02:45:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Strain random error
Digital image correlation
Displacement smoothing
Self-Adaptive Algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-e4a24c868e1439315a8f03a6102e36a96e558317656c80ceca14665acc4e9e023
ParticipantIDs crossref_citationtrail_10_1016_j_optlaseng_2021_106590
crossref_primary_10_1016_j_optlaseng_2021_106590
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2021_106590
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Optics and lasers in engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lu, Cary (bib0031) 2000; 40
Wang, Pan (bib0022) 2019; 59
Sutton, Orteu, Schreier (bib0027) 2009
Pan, Xie, Guo, Hua (bib0004) 2007; 46
Wang, Lava, Reu, Debruyne (bib0013) 2016; 52
Sutton, Wolters, Peters, Ranson, McNeill (bib0001) 1983; 1
Pan, Qian, Xie, Asundi (bib0029) 2009; 20
Zhao, Song, Wu (bib0005) 2015; 68
Ghadbeigi, Pinna, Celotto (bib0025) 2012; 52
Pan, Xie, Wang, Qian, Wang (bib0032) 2008; 16
Wang, Lava, Reu, Debruyne (bib0024) 2016; 52
Wang, Pan (bib0012) 2015; 55
Ma, Pang, Ma (bib0019) 2012; 23
Hoult, Andy Take, Lee, Dutton (bib0018) 2013; 46
Zhao, Zeng, Pan, Lei, Du, He, 2012 (bib0006) 2012; 50
Zappa, Matinmanesh, Mazzoleni (bib0016) 2014; 59
Dai, Yang, Chen, Shao, He (bib0008) 2015; 65
Tong (bib0023) 2005; 41
Yoneyama, Koyanagi, Arikawa (bib0009) 2016; 25
Pan, Yuan, Xia (bib0010) 2015; 65
Sun, Pang (bib0015) 2007; 45
Tu, Liu (bib0017) 2017; 57
Haddadi, Belhabib (bib0014) 2008; 46
Pan, Li, Tong (bib0003) 2013; 53
Li, Fang, Zhao, Zhang, Wu (bib0028) 2019; 121
Wang, Sutton, Bruck, Schreier (bib0026) 2009; 45
Schreier, Braasch, Sutton (bib0030) 2000; 39
Xin, Gang, Jiaqing, Zhengming, Xinxin (bib0007) 2019; 112
Schreier, Sutton (bib0011) 2002; 42
Xu, Su, Zhang (bib0021) 2017; 88
Li, Wang, Duan (bib0020) 2018; 29
2018 (bib0002) 2018; 29
Pan (10.1016/j.optlaseng.2021.106590_bib0004) 2007; 46
Yoneyama (10.1016/j.optlaseng.2021.106590_bib0009) 2016; 25
Wang (10.1016/j.optlaseng.2021.106590_bib0024) 2016; 52
Zhao (10.1016/j.optlaseng.2021.106590_bib0006) 2012; 50
Pan (10.1016/j.optlaseng.2021.106590_bib0029) 2009; 20
Sutton (10.1016/j.optlaseng.2021.106590_bib0027) 2009
Li (10.1016/j.optlaseng.2021.106590_bib0028) 2019; 121
Sun (10.1016/j.optlaseng.2021.106590_bib0015) 2007; 45
Zhao (10.1016/j.optlaseng.2021.106590_bib0005) 2015; 68
Schreier (10.1016/j.optlaseng.2021.106590_bib0030) 2000; 39
Hoult (10.1016/j.optlaseng.2021.106590_bib0018) 2013; 46
Ma (10.1016/j.optlaseng.2021.106590_bib0019) 2012; 23
Pan (10.1016/j.optlaseng.2021.106590_bib0003) 2013; 53
2018 (10.1016/j.optlaseng.2021.106590_bib0002) 2018; 29
Wang (10.1016/j.optlaseng.2021.106590_bib0022) 2019; 59
Dai (10.1016/j.optlaseng.2021.106590_bib0008) 2015; 65
Sutton (10.1016/j.optlaseng.2021.106590_bib0001) 1983; 1
Pan (10.1016/j.optlaseng.2021.106590_bib0032) 2008; 16
Wang (10.1016/j.optlaseng.2021.106590_bib0012) 2015; 55
Ghadbeigi (10.1016/j.optlaseng.2021.106590_bib0025) 2012; 52
Schreier (10.1016/j.optlaseng.2021.106590_bib0011) 2002; 42
Wang (10.1016/j.optlaseng.2021.106590_bib0013) 2016; 52
Li (10.1016/j.optlaseng.2021.106590_bib0020) 2018; 29
Tong (10.1016/j.optlaseng.2021.106590_bib0023) 2005; 41
Zappa (10.1016/j.optlaseng.2021.106590_bib0016) 2014; 59
Xin (10.1016/j.optlaseng.2021.106590_bib0007) 2019; 112
Xu (10.1016/j.optlaseng.2021.106590_bib0021) 2017; 88
Lu (10.1016/j.optlaseng.2021.106590_bib0031) 2000; 40
Wang (10.1016/j.optlaseng.2021.106590_bib0026) 2009; 45
Haddadi (10.1016/j.optlaseng.2021.106590_bib0014) 2008; 46
Pan (10.1016/j.optlaseng.2021.106590_bib0010) 2015; 65
Tu (10.1016/j.optlaseng.2021.106590_bib0017) 2017; 57
References_xml – volume: 16
  year: 2008
  ident: bib0032
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
– volume: 50
  start-page: 1662
  year: 2012
  end-page: 1671
  ident: bib0006
  article-title: Improved Hermite finite element smoothing method for full-field strain measurement over arbitrary region of interest in digital image correlation
  publication-title: Opt Laser Eng
– volume: 42
  start-page: 303
  year: 2002
  end-page: 310
  ident: bib0011
  article-title: Systematic errors in digital image correlation due to undermatched subset shape functions
  publication-title: Exp Mech
– volume: 46
  start-page: 718
  year: 2013
  end-page: 726
  ident: bib0018
  article-title: Experimental accuracy of two dimensional strain measurements using Digital Image Correlation
  publication-title: Eng Struct
– volume: 45
  start-page: 160
  year: 2009
  end-page: 178
  ident: bib0026
  article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement
  publication-title: Strain
– volume: 41
  start-page: 167
  year: 2005
  end-page: 175
  ident: bib0023
  article-title: An evaluation of digital image correlation criteria for strain mapping applications
  publication-title: Strain
– volume: 46
  start-page: 185
  year: 2008
  end-page: 196
  ident: bib0014
  article-title: Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique
  publication-title: Opt Laser Eng
– volume: 88
  start-page: 265
  year: 2017
  end-page: 279
  ident: bib0021
  article-title: Theoretical estimation of systematic errors in local deformation measurements using digital image correlation
  publication-title: Opt Laser Eng
– volume: 40
  start-page: 393
  year: 2000
  end-page: 400
  ident: bib0031
  article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient
  publication-title: Exp Mech
– volume: 20
  year: 2009
  ident: bib0029
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
– volume: 53
  start-page: 1277
  year: 2013
  end-page: 1289
  ident: bib0003
  article-title: Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations
  publication-title: Exp Mech
– volume: 121
  start-page: 215
  year: 2019
  end-page: 226
  ident: bib0028
  article-title: A practical and effective regularized polynomial smoothing (RPS) method for high-gradient strain field measurement in digital image correlation
  publication-title: Opt Laser Eng
– volume: 59
  start-page: 149
  year: 2019
  ident: bib0022
  article-title: Self-Adaptive Digital Volume Correlation for Unknown Deformation Fields
  publication-title: Exp Mech
– volume: 46
  start-page: 33601
  year: 2007
  ident: bib0004
  article-title: Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation
  publication-title: Opt Eng
– volume: 29
  year: 2018
  ident: bib0002
  article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals
  publication-title: Meas Sci Technol
– volume: 23
  start-page: 25403
  year: 2012
  ident: bib0019
  article-title: The systematic error in digital image correlation induced by self-heating of a digital camera
  publication-title: Meas Sci Technol
– volume: 52
  start-page: 110
  year: 2016
  end-page: 128
  ident: bib0013
  article-title: Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part I Temporal and Spatial Uncertainty Quantification of Displacement Measurements
  publication-title: Strain
– volume: 68
  start-page: 25
  year: 2015
  end-page: 34
  ident: bib0005
  article-title: Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation
  publication-title: Opt Laser Eng
– volume: 65
  start-page: 64
  year: 2015
  end-page: 72
  ident: bib0008
  article-title: Strain field estimation based on digital image correlation and radial basis function
  publication-title: Opt Laser Eng
– volume: 59
  start-page: 82
  year: 2014
  end-page: 92
  ident: bib0016
  article-title: Evaluation and improvement of digital image correlation uncertainty in dynamic conditions
  publication-title: Opt Laser Eng
– volume: 112
  start-page: 26
  year: 2019
  end-page: 38
  ident: bib0007
  article-title: Local Hermite (LH) Method: An accurate and robust smooth technique for high-gradient strain reconstruction in digital image correlation
  publication-title: Opt Laser Eng
– volume: 55
  start-page: 1717
  year: 2015
  end-page: 1727
  ident: bib0012
  article-title: Random Errors in Digital Image Correlation Due to Matched or Overmatched Shape Functions
  publication-title: Exp Mech
– volume: 29
  year: 2018
  ident: bib0020
  article-title: Strain measurement errors with digital image correlation due to the Savitzky–Golay filter-based method
  publication-title: Meas Sci Technol
– volume: 39
  start-page: 2915
  year: 2000
  end-page: 2921
  ident: bib0030
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
– volume: 65
  start-page: 9
  year: 2015
  end-page: 17
  ident: bib0010
  article-title: Strain field denoising for digital image correlation using a regularized cost-function
  publication-title: Opt Laser Eng
– volume: 25
  start-page: 329
  year: 2016
  end-page: 343
  ident: bib0009
  article-title: Measurement of discontinuous displacement/strain using mesh-based digital image correlation
  publication-title: Adv Compos Mater
– volume: 52
  start-page: 1483
  year: 2012
  end-page: 1492
  ident: bib0025
  article-title: Quantitative Strain Analysis of the Large Deformation at the Scale of Microstructure: Comparison between Digital Image Correlation and Microgrid Techniques
  publication-title: Exp Mech
– volume: 52
  start-page: 129
  year: 2016
  end-page: 147
  ident: bib0024
  article-title: Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part II Assessment of Strain Errors of the Local Smoothing Method–Approaching an Answer to the Overlap Question
  publication-title: Strain
– year: 2009
  ident: bib0027
  article-title: Image correlation for shape, motion and deformation measurements
– volume: 1
  start-page: 133
  year: 1983
  end-page: 139
  ident: bib0001
  article-title: Determination of displacements using an improved digital correlation method
  publication-title: Image Vision Compute
– volume: 45
  start-page: 967
  year: 2007
  end-page: 974
  ident: bib0015
  article-title: Study of optimal subset size in digital image correlation of speckle pattern images
  publication-title: Opt Laser Eng
– volume: 57
  start-page: 783
  year: 2017
  end-page: 799
  ident: bib0017
  article-title: An Error Criterion in Digital Image Correlation for Unknown Deformation Fields and Its Application of Parameters Selection
  publication-title: Exp Mech
– volume: 40
  start-page: 393
  year: 2000
  ident: 10.1016/j.optlaseng.2021.106590_bib0031
  article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient
  publication-title: Exp Mech
  doi: 10.1007/BF02326485
– volume: 59
  start-page: 149
  year: 2019
  ident: 10.1016/j.optlaseng.2021.106590_bib0022
  article-title: Self-Adaptive Digital Volume Correlation for Unknown Deformation Fields
  publication-title: Exp Mech
  doi: 10.1007/s11340-018-00455-2
– volume: 46
  start-page: 33601
  year: 2007
  ident: 10.1016/j.optlaseng.2021.106590_bib0004
  article-title: Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation
  publication-title: Opt Eng
  doi: 10.1117/1.2714926
– volume: 29
  year: 2018
  ident: 10.1016/j.optlaseng.2021.106590_bib0020
  article-title: Strain measurement errors with digital image correlation due to the Savitzky–Golay filter-based method
  publication-title: Meas Sci Technol
– volume: 45
  start-page: 160
  year: 2009
  ident: 10.1016/j.optlaseng.2021.106590_bib0026
  article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2008.00592.x
– volume: 20
  year: 2009
  ident: 10.1016/j.optlaseng.2021.106590_bib0029
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/20/6/062001
– volume: 57
  start-page: 783
  year: 2017
  ident: 10.1016/j.optlaseng.2021.106590_bib0017
  article-title: An Error Criterion in Digital Image Correlation for Unknown Deformation Fields and Its Application of Parameters Selection
  publication-title: Exp Mech
  doi: 10.1007/s11340-017-0268-0
– volume: 23
  start-page: 25403
  year: 2012
  ident: 10.1016/j.optlaseng.2021.106590_bib0019
  article-title: The systematic error in digital image correlation induced by self-heating of a digital camera
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/23/2/025403
– volume: 42
  start-page: 303
  year: 2002
  ident: 10.1016/j.optlaseng.2021.106590_bib0011
  article-title: Systematic errors in digital image correlation due to undermatched subset shape functions
  publication-title: Exp Mech
  doi: 10.1007/BF02410987
– volume: 52
  start-page: 110
  year: 2016
  ident: 10.1016/j.optlaseng.2021.106590_bib0013
  article-title: Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part I Temporal and Spatial Uncertainty Quantification of Displacement Measurements
  publication-title: Strain
  doi: 10.1111/str.12173
– volume: 45
  start-page: 967
  year: 2007
  ident: 10.1016/j.optlaseng.2021.106590_bib0015
  article-title: Study of optimal subset size in digital image correlation of speckle pattern images
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2007.01.012
– volume: 68
  start-page: 25
  year: 2015
  ident: 10.1016/j.optlaseng.2021.106590_bib0005
  article-title: Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2014.12.010
– volume: 65
  start-page: 64
  year: 2015
  ident: 10.1016/j.optlaseng.2021.106590_bib0008
  article-title: Strain field estimation based on digital image correlation and radial basis function
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2014.05.007
– volume: 88
  start-page: 265
  year: 2017
  ident: 10.1016/j.optlaseng.2021.106590_bib0021
  article-title: Theoretical estimation of systematic errors in local deformation measurements using digital image correlation
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2016.08.016
– volume: 52
  start-page: 129
  year: 2016
  ident: 10.1016/j.optlaseng.2021.106590_bib0024
  article-title: Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part II Assessment of Strain Errors of the Local Smoothing Method–Approaching an Answer to the Overlap Question
  publication-title: Strain
  doi: 10.1111/str.12174
– volume: 39
  start-page: 2915
  year: 2000
  ident: 10.1016/j.optlaseng.2021.106590_bib0030
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
  doi: 10.1117/1.1314593
– volume: 50
  start-page: 1662
  year: 2012
  ident: 10.1016/j.optlaseng.2021.106590_bib0006
  article-title: Improved Hermite finite element smoothing method for full-field strain measurement over arbitrary region of interest in digital image correlation
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2012.04.008
– volume: 53
  start-page: 1277
  year: 2013
  ident: 10.1016/j.optlaseng.2021.106590_bib0003
  article-title: Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations
  publication-title: Exp Mech
  doi: 10.1007/s11340-013-9717-6
– year: 2009
  ident: 10.1016/j.optlaseng.2021.106590_bib0027
– volume: 121
  start-page: 215
  year: 2019
  ident: 10.1016/j.optlaseng.2021.106590_bib0028
  article-title: A practical and effective regularized polynomial smoothing (RPS) method for high-gradient strain field measurement in digital image correlation
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2019.04.017
– volume: 65
  start-page: 9
  year: 2015
  ident: 10.1016/j.optlaseng.2021.106590_bib0010
  article-title: Strain field denoising for digital image correlation using a regularized cost-function
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2014.03.016
– volume: 59
  start-page: 82
  year: 2014
  ident: 10.1016/j.optlaseng.2021.106590_bib0016
  article-title: Evaluation and improvement of digital image correlation uncertainty in dynamic conditions
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2014.03.007
– volume: 16
  year: 2008
  ident: 10.1016/j.optlaseng.2021.106590_bib0032
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
  doi: 10.1364/OE.16.007037
– volume: 52
  start-page: 1483
  year: 2012
  ident: 10.1016/j.optlaseng.2021.106590_bib0025
  article-title: Quantitative Strain Analysis of the Large Deformation at the Scale of Microstructure: Comparison between Digital Image Correlation and Microgrid Techniques
  publication-title: Exp Mech
  doi: 10.1007/s11340-012-9612-6
– volume: 46
  start-page: 718
  year: 2013
  ident: 10.1016/j.optlaseng.2021.106590_bib0018
  article-title: Experimental accuracy of two dimensional strain measurements using Digital Image Correlation
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.08.018
– volume: 1
  start-page: 133
  year: 1983
  ident: 10.1016/j.optlaseng.2021.106590_bib0001
  article-title: Determination of displacements using an improved digital correlation method
  publication-title: Image Vision Compute
  doi: 10.1016/0262-8856(83)90064-1
– volume: 55
  start-page: 1717
  year: 2015
  ident: 10.1016/j.optlaseng.2021.106590_bib0012
  article-title: Random Errors in Digital Image Correlation Due to Matched or Overmatched Shape Functions
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-0080-7
– volume: 46
  start-page: 185
  year: 2008
  ident: 10.1016/j.optlaseng.2021.106590_bib0014
  article-title: Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2007.05.008
– volume: 41
  start-page: 167
  year: 2005
  ident: 10.1016/j.optlaseng.2021.106590_bib0023
  article-title: An evaluation of digital image correlation criteria for strain mapping applications
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2005.00227.x
– volume: 29
  year: 2018
  ident: 10.1016/j.optlaseng.2021.106590_bib0002
  article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals
  publication-title: Meas Sci Technol
– volume: 112
  start-page: 26
  year: 2019
  ident: 10.1016/j.optlaseng.2021.106590_bib0007
  article-title: Local Hermite (LH) Method: An accurate and robust smooth technique for high-gradient strain reconstruction in digital image correlation
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2018.08.022
– volume: 25
  start-page: 329
  year: 2016
  ident: 10.1016/j.optlaseng.2021.106590_bib0009
  article-title: Measurement of discontinuous displacement/strain using mesh-based digital image correlation
  publication-title: Adv Compos Mater
  doi: 10.1080/09243046.2015.1052131
SSID ssj0016411
Score 2.3417497
Snippet •The estimations of random error and under-matched error caused by two strain calculation methods (point-wise least squares (PLS) and regularized polynomial...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106590
SubjectTerms Digital image correlation
Displacement smoothing
Self-Adaptive Algorithm
Strain random error
Title Random Error in Strain Calculation using Regularized Polynomial Smoothing (RPS) and Point-wise Least Squares (PLS) in Digital Image Correlation
URI https://dx.doi.org/10.1016/j.optlaseng.2021.106590
Volume 142
WOSCitedRecordID wos000648730600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhI8IBggxk1-4GFTlam5OQ5v09hgaBrVNlC1l8hz3S1Tm3RNOgZ_gv_CL-Qc27kUJg2EeIkq15fU31f7-PhcCHktezJUvjd0gqGSThBx5ghXxY7ggYiGsH-a7A2f96L9fT4YxP1O50flC3M5jrKMX13F0_8KNZQB2Og6-xdw151CAXwG0OEJsMPzj4A_ENkwn8ACN9Om5njvLNC1T4ylTdXVnRfG6A7T0M_SbyBz9vPxV3RQxtggkxzQsxqEg_4h6g20S0GeZqXzJS3QB0gUZffwYo7OS1itv6erwTBv01NMQ9LdnaAx0Bbm_hg34Fsp-OO0Dg4Nwju6EGPgkiYyYm0lpE0NBmlN4B2r3X4nmkrHZ8LcHqXiIl0oNnWPz6DnSfWNVXB4bm0Ma7VuledNY-ZkFKG-g3eeZh8zizePfAcWrcXV3QTv-m2nMEqL8418WuIvzU43cGwoZ6HJX_pLGG60gtOXrJ6rg9jEt8iyF4UxrKTLm7vbgw_13RULXJMF077hglXhtcNdLxO15JyjB-S-PaDQTUOsh6SjshVyrxW2coXc0WbDsnhEvhuyUU02mmbUkI22yEY12WiLbLQhG63JRteAausUuqMN0agmGrVEo2tAs3UcxZKMapLRFskek08720db7x2b4sORvhuWjgqEF0jOuILZiqFI8FHPFyDTe8pnImYqDDmIuHDqkLwnlRSws7NQSBmoWIG8-YQsZXmmnhIanITu8ISxke_DEXnERBRKOE4IwTmgoMJVwqpJTqSNf49zMk4qQ8fzpEYnQXQSg84q6dUNpyYEzM1N3lQoJlaSNRJqAvS7qfGzf2n8nNxt_kMvyFI5m6uX5La8LNNi9spS9SfkscgT
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Error+in+Strain+Calculation+using+Regularized+Polynomial+Smoothing+%28RPS%29+and+Point-wise+Least+Squares+%28PLS%29+in+Digital+Image+Correlation&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Li%2C+Xin&rft.au=Fang%2C+Gang&rft.au=Zhao%2C+Jiaqing&rft.au=Zhang%2C+Zhengming&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=142&rft_id=info:doi/10.1016%2Fj.optlaseng.2021.106590&rft.externalDocID=S0143816621000609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon