Bayesian optimization and channel-fusion-based convolutional autoencoder network for fault diagnosis of rotating machinery

•A novel convolutional network based on Bayesian optimization and channel fusion mechanism is developed.•The proposed method is applied to extract the compressed features and reconstruct the input data.•The channel fusion mechanism is newly designed to merge features of different layers for more sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures Jg. 280; S. 115708
Hauptverfasser: Zou, L., Zhuang, K.J., Zhou, A., Hu, J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2023
Schlagworte:
ISSN:0141-0296, 1873-7323
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel convolutional network based on Bayesian optimization and channel fusion mechanism is developed.•The proposed method is applied to extract the compressed features and reconstruct the input data.•The channel fusion mechanism is newly designed to merge features of different layers for more stable feature expression.•A hybrid loss function is creatively defined through summing the error values of mean square error and cross-entropy for model training.•The Bayesian optimization scheme is introduced to optimize the model’s hyper-parameters and obtain a powerful learning ability for fault diagnosis.•A laboratory bearing dataset and an industrial bearing dataset are both used to evaluate the performance of the proposed method on fault diagnosis. Deep learning methods are essential for the application of data driven technologies on fault diagnosis of rotating machinery. However, the generalization and performance of deep learning methods for fault diagnosis are highly dependent on the selection of hyper parameters and the design of network structure. To solve aforementioned challenge in fault diagnosis and obtain a powerful model, a convolutional network based on Bayesian optimization and channel fusion mechanism is newly developed. In the proposed network, a convolutional autoencoder network is firstly applied to extract the compressed features and reconstruct the input data. Then, the channel fusion mechanism is introduced to deduce the error of reconstructed input data. Next, a hybrid loss function is defined through summing mean square error and cross-entropy. Finally, a Bayesian optimization scheme is designed to optimize the hyper parameters of the designed network. The effectiveness of the proposed method is verified by a laboratory bearing dataset and an industrial bearing dataset, respectively. Five classical fault diagnosis methods are also tested as comparison. The experimental results indicate the proposed method can achieve the outstanding performance in fault diagnosis both in accuracy and efficiency.
AbstractList •A novel convolutional network based on Bayesian optimization and channel fusion mechanism is developed.•The proposed method is applied to extract the compressed features and reconstruct the input data.•The channel fusion mechanism is newly designed to merge features of different layers for more stable feature expression.•A hybrid loss function is creatively defined through summing the error values of mean square error and cross-entropy for model training.•The Bayesian optimization scheme is introduced to optimize the model’s hyper-parameters and obtain a powerful learning ability for fault diagnosis.•A laboratory bearing dataset and an industrial bearing dataset are both used to evaluate the performance of the proposed method on fault diagnosis. Deep learning methods are essential for the application of data driven technologies on fault diagnosis of rotating machinery. However, the generalization and performance of deep learning methods for fault diagnosis are highly dependent on the selection of hyper parameters and the design of network structure. To solve aforementioned challenge in fault diagnosis and obtain a powerful model, a convolutional network based on Bayesian optimization and channel fusion mechanism is newly developed. In the proposed network, a convolutional autoencoder network is firstly applied to extract the compressed features and reconstruct the input data. Then, the channel fusion mechanism is introduced to deduce the error of reconstructed input data. Next, a hybrid loss function is defined through summing mean square error and cross-entropy. Finally, a Bayesian optimization scheme is designed to optimize the hyper parameters of the designed network. The effectiveness of the proposed method is verified by a laboratory bearing dataset and an industrial bearing dataset, respectively. Five classical fault diagnosis methods are also tested as comparison. The experimental results indicate the proposed method can achieve the outstanding performance in fault diagnosis both in accuracy and efficiency.
ArticleNumber 115708
Author Zhou, A.
Zou, L.
Zhuang, K.J.
Hu, J.
Author_xml – sequence: 1
  givenname: L.
  surname: Zou
  fullname: Zou, L.
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, China
– sequence: 2
  givenname: K.J.
  surname: Zhuang
  fullname: Zhuang, K.J.
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: A.
  surname: Zhou
  fullname: Zhou, A.
  organization: School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
– sequence: 4
  givenname: J.
  surname: Hu
  fullname: Hu, J.
  email: junhu22@whut.edu.cn
  organization: School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
BookMark eNqNkMtOwzAQRS1UJNrCN-AfSLGTJk4WLErFS6rEBtbRxB63Lqld2U5R-_WkFLFgA6uRruZc6Z4RGVhnkZBrziac8eJmPUG7DNF3Mk5SlmYTznPByjMy5KXIEpGl2YAMGZ_yhKVVcUFGIawZY2lZsiE53MEegwFL3TaajTlANM5SsIrKFViLbaK70EdJAwH70Nmda7vjE7QUuujQSqfQU4vxw_l3qp2nGro2UmVgaV0wgTpNvYt9tV3SDciVsej3l-RcQxvw6vuOydvD_ev8KVm8PD7PZ4tEZjyPiZRYoWhSpWSJUGqd5XkhVK6mSiktUIgqhUYjcqjKokh104DAAqaNAF6xJhuT21Ov9C4Ej7qWJn7NjB5MW3NWH0XW6_pHZH0UWZ9E9rz4xW-92YDf_4OcnUjs5-0M-jpI0_tCZTz2v8qZPzs-AVHDm84
CitedBy_id crossref_primary_10_1108_EC_10_2024_0937
crossref_primary_10_1080_10589759_2024_2328750
crossref_primary_10_3390_s24030890
crossref_primary_10_1016_j_marpetgeo_2024_107010
crossref_primary_10_3390_aerospace10100826
crossref_primary_10_1016_j_jpowsour_2024_235198
crossref_primary_10_1016_j_measurement_2023_113513
crossref_primary_10_1109_JSEN_2024_3422222
crossref_primary_10_1016_j_asoc_2024_111493
crossref_primary_10_1177_01423312241280994
crossref_primary_10_3390_jmse13091638
crossref_primary_10_1016_j_aei_2024_102573
crossref_primary_10_1016_j_mechmat_2024_105109
crossref_primary_10_3390_s25123577
crossref_primary_10_1088_1361_6501_ad0e9d
crossref_primary_10_3390_electronics12132826
crossref_primary_10_1051_ijmqe_2024004
crossref_primary_10_1088_1361_6501_ad9857
crossref_primary_10_3390_electronics14173455
crossref_primary_10_1007_s11071_025_11722_y
crossref_primary_10_1016_j_isatra_2023_04_033
crossref_primary_10_3390_machines12120838
crossref_primary_10_1016_j_oceaneng_2024_117392
crossref_primary_10_1177_14759217251316623
crossref_primary_10_1088_1361_6501_ad356e
crossref_primary_10_1016_j_neucom_2025_129588
crossref_primary_10_1088_1361_6501_ad03b3
crossref_primary_10_1016_j_knosys_2023_110795
crossref_primary_10_1088_2631_8695_ade4f3
Cites_doi 10.1016/j.enconman.2019.111793
10.1109/TIE.2018.2864702
10.1109/ACCESS.2019.2953490
10.1016/j.measurement.2020.108839
10.1109/TIM.2021.3125975
10.1088/1361-665X/abc66b
10.3390/s20174965
10.1109/TIE.2020.2970677
10.1016/j.inffus.2021.03.008
10.1109/TTE.2021.3082146
10.1016/j.measurement.2021.109864
10.1016/j.measurement.2020.108636
10.1016/j.ymssp.2020.107174
10.1109/TIP.2010.2068555
10.1109/JESTPE.2020.3017923
10.1016/j.measurement.2020.107880
10.1109/TIE.2020.2994867
10.1016/j.knosys.2021.106796
10.1109/TIE.2020.2978690
10.1016/j.measurement.2020.108654
10.1016/j.measurement.2020.108469
10.1006/mssp.2002.1482
10.1177/00368504211026110
10.1016/j.anucene.2020.107934
10.1109/ACCESS.2021.3058577
10.1016/j.measurement.2020.108653
10.1109/TR.2018.2882682
10.1016/j.measurement.2021.109899
10.1016/j.ymssp.2021.107996
10.1016/j.neucom.2021.01.001
10.1109/TPEL.2021.3073774
10.1177/14759217221122266
10.1016/j.measurement.2021.109116
10.1016/j.jprocont.2021.01.009
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engstruct.2023.115708
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2023_115708
S0141029623001220
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c315t-cce9e7b2ddc8ea8ff35567d5d4dddf7e7792abfee1a98662fbba7e6a4b7a190b3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000929756500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
IngestDate Sat Nov 29 07:21:53 EST 2025
Tue Nov 18 22:51:14 EST 2025
Fri Feb 23 02:34:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Hybrid loss function
Convolutional network
Channel fusion mechanism
Bayesian optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-cce9e7b2ddc8ea8ff35567d5d4dddf7e7792abfee1a98662fbba7e6a4b7a190b3
ParticipantIDs crossref_citationtrail_10_1016_j_engstruct_2023_115708
crossref_primary_10_1016_j_engstruct_2023_115708
elsevier_sciencedirect_doi_10_1016_j_engstruct_2023_115708
PublicationCentury 2000
PublicationDate 2023-04-01
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering structures
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shao, Lin, Zhang, Galar, Kumar (b0130) 2021; 74
Lee, Shin (b0160) 2021; 68
Snoek, Larochelle, Adams (b0190) 2012; 25
Zhang (b0015) 2021; 104
Wang, Zhao, Xiang, Li, Zhu (b0060) 2021; 183
Wang, Huang, Wang (b0100) 2021; 173
Ruan, Wang, Li, Qin, Tang, Wanga (b0010) 2021
Lee, Jeong, Koo, Ban, Kim (b0075) 2021; 68
Li, Zou, Jiang, Zhou (b0120) 2019; 7
Zhang, Jiang, Chen (b0165) 2021; 68
Hang (b0150) 2021; 36
Xiao, Xue, Li, Yang (b0045) 2021; 23(8)
Xiong (b0025) 2020; 20
Wu, Jin, Li, Wang (b0090) 2021; 172
Wang, Peng, Ayodeji, Xia, Wang, Li (b0135) 2021; 151
Chen, Qi, Wang, Cui, Wu, Yang (b0140) 2021; 176
Cheng, Lin, Wu, Zhu, Shao (b0185) 2021; 216
Shi, He, Wang (b0105) 2021; 173
Huang, Zhang, Tang, Zhao, Lu (b0155) 2021
Zheng, Zhou, Yang, Liu, Liu, Zhang (b0040) 2021; 101
Zhong, Qu, Fang, Li, Wang (b0080) 2021; 436
Sun (b0085) 2021; 70
Wang, Lei, Li, Li (b0035) 2020; 69
Han, Zhu (b0005) 2021; 7
Ahmadi, Poure, Saadate, Arab Khaburi (b0030) 2021; 9
Wei, Zhang, Shang, Gu (b0095) 2021; 183
Sha, Radzienski, Soman, Wandowski, Cao, Ostachowicz (b0175) 2021; 30
Shi, Peng, Peng, Zhang, Goebel, Wu (b0020) 2022; 162
Xu, Chatterton, Pennacchi (b0055) 2021; 148
Sbert, Ancuti, Ancuti, Poch, Chen, Vila (b0180) 2021; 9
Liu, Hsaio, Tu (b0065) 2019; 66
Han, Yang, Lee (b0170) Feb 2011; 20
Zhou (b0050) 2021; 173
Zhou, Li, Tian, Jiang (b0195) 2020; 161
Y. L. He, K. Li, N. Zhang, Y. Xu, and Q. X. Zhu, Fault diagnosis using improved discrimination locality preserving projections integrated with sparse autoencoder, IEEE Trans Instrum Meas, vol. 70, 2021.
Zheng, Li, Chen (b0110) 2002; 16
Li Zou, Heung Fai Lam, Jun Hu, Adaptive resize-residual deep neural network for fault diagnosis of rotating machinery, Struct Health Monitor 2022: 14759217221122266.
Liu, Yang, Wang, Zhang (b0070) 2021
Chen, Chen, Wu, Cheng, Lin (b0200) 2019; 198
He, Wu, Gu, Jin, Ma, Qu (b0145) 2021; 173
Xiao (10.1016/j.engstruct.2023.115708_b0045) 2021; 23(8)
Sha (10.1016/j.engstruct.2023.115708_b0175) 2021; 30
Shi (10.1016/j.engstruct.2023.115708_b0105) 2021; 173
Hang (10.1016/j.engstruct.2023.115708_b0150) 2021; 36
Wang (10.1016/j.engstruct.2023.115708_b0035) 2020; 69
Shao (10.1016/j.engstruct.2023.115708_b0130) 2021; 74
Chen (10.1016/j.engstruct.2023.115708_b0140) 2021; 176
Han (10.1016/j.engstruct.2023.115708_b0005) 2021; 7
Wang (10.1016/j.engstruct.2023.115708_b0135) 2021; 151
Wang (10.1016/j.engstruct.2023.115708_b0060) 2021; 183
Snoek (10.1016/j.engstruct.2023.115708_b0190) 2012; 25
Xu (10.1016/j.engstruct.2023.115708_b0055) 2021; 148
10.1016/j.engstruct.2023.115708_b0115
Lee (10.1016/j.engstruct.2023.115708_b0160) 2021; 68
Ahmadi (10.1016/j.engstruct.2023.115708_b0030) 2021; 9
Xiong (10.1016/j.engstruct.2023.115708_b0025) 2020; 20
Zheng (10.1016/j.engstruct.2023.115708_b0040) 2021; 101
Zhou (10.1016/j.engstruct.2023.115708_b0050) 2021; 173
He (10.1016/j.engstruct.2023.115708_b0145) 2021; 173
Ruan (10.1016/j.engstruct.2023.115708_b0010) 2021
Lee (10.1016/j.engstruct.2023.115708_b0075) 2021; 68
Wei (10.1016/j.engstruct.2023.115708_b0095) 2021; 183
Zhang (10.1016/j.engstruct.2023.115708_b0165) 2021; 68
Han (10.1016/j.engstruct.2023.115708_b0170) 2011; 20
Sun (10.1016/j.engstruct.2023.115708_b0085) 2021; 70
Zhong (10.1016/j.engstruct.2023.115708_b0080) 2021; 436
Wang (10.1016/j.engstruct.2023.115708_b0100) 2021; 173
Wu (10.1016/j.engstruct.2023.115708_b0090) 2021; 172
Zhou (10.1016/j.engstruct.2023.115708_b0195) 2020; 161
Liu (10.1016/j.engstruct.2023.115708_b0065) 2019; 66
Huang (10.1016/j.engstruct.2023.115708_b0155) 2021
10.1016/j.engstruct.2023.115708_b0125
Li (10.1016/j.engstruct.2023.115708_b0120) 2019; 7
Sbert (10.1016/j.engstruct.2023.115708_b0180) 2021; 9
Zheng (10.1016/j.engstruct.2023.115708_b0110) 2002; 16
Zhang (10.1016/j.engstruct.2023.115708_b0015) 2021; 104
Liu (10.1016/j.engstruct.2023.115708_b0070) 2021
Cheng (10.1016/j.engstruct.2023.115708_b0185) 2021; 216
Shi (10.1016/j.engstruct.2023.115708_b0020) 2022; 162
Chen (10.1016/j.engstruct.2023.115708_b0200) 2019; 198
References_xml – volume: 23(8)
  year: 2021
  ident: b0045
  article-title: Low-pass filtering empirical wavelet transform machine learning based fault diagnosis for combined fault of wind turbines
  publication-title: Entropy (Basel)
– year: 2021
  ident: b0155
  article-title: A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems
  publication-title: Artif Intell Rev
– volume: 183
  year: 2021
  ident: b0095
  article-title: Extreme learning Machine-based classifier for fault diagnosis of rotating Machinery using a residual network and continuous wavelet transform
  publication-title: Measurement
– volume: 66
  start-page: 4788
  year: 2019
  end-page: 4797
  ident: b0065
  article-title: Time series classification with multivariate convolutional neural network
  publication-title: IEEE Trans Ind Electron
– volume: 173
  year: 2021
  ident: b0105
  article-title: An LSTM-based severity evaluation method for intermittent open faults of an electrical connector under a shock test
  publication-title: Measurement
– volume: 9
  start-page: 4676
  year: 2021
  end-page: 4686
  ident: b0030
  article-title: Open-switch and open-clamping diode fault diagnosis for single-phase five-level neutral-point-clamped inverters
  publication-title: IEEE J Emerg Select Top Power Electron
– volume: 9
  start-page: 28785
  year: 2021
  end-page: 28796
  ident: b0180
  article-title: Histogram ordering
  publication-title: IEEE Access
– volume: 436
  start-page: 74
  year: 2021
  end-page: 91
  ident: b0080
  article-title: The intermittent fault diagnosis of analog circuits based on EEMD-DBN
  publication-title: Neurocomputing
– volume: 74
  start-page: 65
  year: 2021
  end-page: 76
  ident: b0130
  article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance
  publication-title: Inform Fusion
– volume: 101
  start-page: 68
  year: 2021
  end-page: 77
  ident: b0040
  article-title: Multivariate/minor fault diagnosis with severity level based on Bayesian decision theory and multidimensional RBC
  publication-title: J Process Control
– volume: 162
  year: 2022
  ident: b0020
  article-title: Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks
  publication-title: Mech Syst Signal Process
– volume: 68
  start-page: 1581
  year: 2021
  end-page: 1590
  ident: b0160
  article-title: Detection and assessment of i&c cable faults using time-frequency R-CNN-based reflectometry
  publication-title: IEEE Trans Ind Electron
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0085
  article-title: Fault diagnosis of conventional circuit breaker contact system based on time-frequency analysis and improved AlexNet
  publication-title: IEEE Trans Instrum Meas
– volume: 36
  start-page: 11124
  year: 2021
  end-page: 11134
  ident: b0150
  article-title: Integration of interturn fault diagnosis and torque ripple minimization control for direct-torque-controlled SPMSM drive system
  publication-title: IEEE Trans Power Electron
– volume: 16
  start-page: 447
  year: 2002
  end-page: 457
  ident: b0110
  article-title: Gear fault diagnosis based on continuous wavelet transform
  publication-title: Mech Syst Sig Process
– volume: 25
  year: 2012
  ident: b0190
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inf Proces Syst
– volume: 20
  start-page: 506
  year: Feb 2011
  end-page: 512
  ident: b0170
  article-title: A novel 3-D color histogram equalization method with uniform 1-D gray scale histogram
  publication-title: IEEE Trans Image Process
– volume: 68
  start-page: 3445
  year: 2021
  end-page: 3453
  ident: b0075
  article-title: Attention recurrent neural network-based severity estimation method for interturn short-circuit fault in permanent magnet synchronous machines
  publication-title: IEEE Trans Ind Electron
– volume: 20
  start-page: 4965
  year: 2020
  ident: b0025
  article-title: A novel end-to-end fault diagnosis approach for rolling bearings by integrating wavelet packet transform into convolutional neural network structures
  publication-title: Sensors
– volume: 173
  year: 2021
  ident: b0050
  article-title: Fault feature extraction for rolling bearings based on parameter-adaptive variational mode decomposition and multi-point optimal minimum entropy deconvolution
  publication-title: Measurement
– volume: 172
  year: 2021
  ident: b0090
  article-title: A novel method for simultaneous-fault diagnosis based on between-class learning
  publication-title: Measurement
– volume: 7
  start-page: 165710
  year: 2019
  end-page: 165723
  ident: b0120
  article-title: Fault diagnosis of rotating machinery based on combination of deep belief network and one-dimensional convolutional neural network
  publication-title: IEEE Access
– volume: 69
  start-page: 401
  year: 2020
  end-page: 412
  ident: b0035
  article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings
  publication-title: IEEE Trans Reliab
– volume: 68
  start-page: 6257
  year: 2021
  end-page: 6266
  ident: b0165
  article-title: Multiple-model-based diagnosis of multiple faults with high-speed train applications using second-level adaptation
  publication-title: IEEE Trans Ind Electron
– reference: Y. L. He, K. Li, N. Zhang, Y. Xu, and Q. X. Zhu, Fault diagnosis using improved discrimination locality preserving projections integrated with sparse autoencoder, IEEE Trans Instrum Meas, vol. 70, 2021.
– volume: 151
  year: 2021
  ident: b0135
  article-title: Advanced fault diagnosis method for nuclear power plant based on convolutional gated recurrent network and enhanced particle swarm optimization
  publication-title: Ann Nucl Energy
– start-page: 1
  year: 2021
  ident: b0010
  article-title: A relation-based semi-supervised method for gearbox fault diagnosis with limited labeled samples
  publication-title: IEEE Trans Instrum Meas
– volume: 30
  start-page: pp
  year: 2021
  ident: b0175
  article-title: Delamination imaging in laminated composite plates using 2D wavelet analysis of guided wavefields
  publication-title: Smart Mater Struct
– volume: 104
  year: 2021
  ident: b0015
  article-title: Compressor fault diagnosis system based on PCA-PSO-LSSVM algorithm
  publication-title: Sci Prog
– volume: 173
  year: 2021
  ident: b0145
  article-title: Rolling bearing fault diagnosis based on composite multiscale permutation entropy and reverse cognitive fruit fly optimization algorithm – extreme learning machine
  publication-title: Measurement
– volume: 161
  year: 2020
  ident: b0195
  article-title: A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery
  publication-title: Measurement
– volume: 183
  year: 2021
  ident: b0060
  article-title: Information interval spectrum: a novel methodology for rolling-element bearing diagnosis
  publication-title: Measurement
– volume: 148
  year: 2021
  ident: b0055
  article-title: Rolling element bearing diagnosis based on singular value decomposition and composite squared envelope spectrum
  publication-title: Mech Syst Sig Process
– year: 2021
  ident: b0070
  article-title: Acoustic emission analysis for wind turbine blade bearing fault detection under time-varying low-speed and heavy blade load conditions
  publication-title: IEEE Trans Ind Appl
– volume: 216
  year: 2021
  ident: b0185
  article-title: Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network
  publication-title: Knowl-Based Syst
– volume: 7
  start-page: 2881
  year: 2021
  end-page: 2891
  ident: b0005
  article-title: Virtual current coefficients based power transistors fault diagnosis for small power EV-SRM drives
  publication-title: IEEE Trans Transp Electrif
– volume: 176
  year: 2021
  ident: b0140
  article-title: Fault diagnosis of rolling bearing using marine predators algorithm-based support vector machine and topology learning and out-of-sample embedding
  publication-title: Measurement
– reference: Li Zou, Heung Fai Lam, Jun Hu, Adaptive resize-residual deep neural network for fault diagnosis of rotating machinery, Struct Health Monitor 2022: 14759217221122266.
– volume: 173
  year: 2021
  ident: b0100
  article-title: Fault diagnosis of planetary gearbox using multi-criteria feature selection and heterogeneous ensemble learning classification
  publication-title: Measurement
– volume: 198
  year: 2019
  ident: b0200
  article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions
  publication-title: Energ Conver Manage
– volume: 198
  year: 2019
  ident: 10.1016/j.engstruct.2023.115708_b0200
  article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2019.111793
– volume: 66
  start-page: 4788
  issue: 6
  year: 2019
  ident: 10.1016/j.engstruct.2023.115708_b0065
  article-title: Time series classification with multivariate convolutional neural network
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2864702
– volume: 7
  start-page: 165710
  year: 2019
  ident: 10.1016/j.engstruct.2023.115708_b0120
  article-title: Fault diagnosis of rotating machinery based on combination of deep belief network and one-dimensional convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953490
– volume: 172
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0090
  article-title: A novel method for simultaneous-fault diagnosis based on between-class learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108839
– ident: 10.1016/j.engstruct.2023.115708_b0125
  doi: 10.1109/TIM.2021.3125975
– volume: 30
  start-page: pp
  issue: 1
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0175
  article-title: Delamination imaging in laminated composite plates using 2D wavelet analysis of guided wavefields
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/abc66b
– start-page: 1
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0010
  article-title: A relation-based semi-supervised method for gearbox fault diagnosis with limited labeled samples
  publication-title: IEEE Trans Instrum Meas
– volume: 20
  start-page: 4965
  issue: 17
  year: 2020
  ident: 10.1016/j.engstruct.2023.115708_b0025
  article-title: A novel end-to-end fault diagnosis approach for rolling bearings by integrating wavelet packet transform into convolutional neural network structures
  publication-title: Sensors
  doi: 10.3390/s20174965
– volume: 68
  start-page: 1581
  issue: 2
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0160
  article-title: Detection and assessment of i&c cable faults using time-frequency R-CNN-based reflectometry
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2970677
– volume: 74
  start-page: 65
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0130
  article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2021.03.008
– volume: 7
  start-page: 2881
  issue: 4
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0005
  article-title: Virtual current coefficients based power transistors fault diagnosis for small power EV-SRM drives
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2021.3082146
– volume: 183
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0095
  article-title: Extreme learning Machine-based classifier for fault diagnosis of rotating Machinery using a residual network and continuous wavelet transform
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109864
– volume: 173
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0145
  article-title: Rolling bearing fault diagnosis based on composite multiscale permutation entropy and reverse cognitive fruit fly optimization algorithm – extreme learning machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108636
– volume: 148
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0055
  article-title: Rolling element bearing diagnosis based on singular value decomposition and composite squared envelope spectrum
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2020.107174
– volume: 20
  start-page: 506
  issue: 2
  year: 2011
  ident: 10.1016/j.engstruct.2023.115708_b0170
  article-title: A novel 3-D color histogram equalization method with uniform 1-D gray scale histogram
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2068555
– volume: 9
  start-page: 4676
  issue: 4
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0030
  article-title: Open-switch and open-clamping diode fault diagnosis for single-phase five-level neutral-point-clamped inverters
  publication-title: IEEE J Emerg Select Top Power Electron
  doi: 10.1109/JESTPE.2020.3017923
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0085
  article-title: Fault diagnosis of conventional circuit breaker contact system based on time-frequency analysis and improved AlexNet
  publication-title: IEEE Trans Instrum Meas
– volume: 161
  year: 2020
  ident: 10.1016/j.engstruct.2023.115708_b0195
  article-title: A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107880
– volume: 25
  year: 2012
  ident: 10.1016/j.engstruct.2023.115708_b0190
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inf Proces Syst
– volume: 68
  start-page: 6257
  issue: 7
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0165
  article-title: Multiple-model-based diagnosis of multiple faults with high-speed train applications using second-level adaptation
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2994867
– volume: 23(8)
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0045
  article-title: Low-pass filtering empirical wavelet transform machine learning based fault diagnosis for combined fault of wind turbines
  publication-title: Entropy (Basel)
– volume: 216
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0185
  article-title: Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106796
– volume: 68
  start-page: 3445
  issue: 4
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0075
  article-title: Attention recurrent neural network-based severity estimation method for interturn short-circuit fault in permanent magnet synchronous machines
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2978690
– year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0155
  article-title: A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems
  publication-title: Artif Intell Rev
– volume: 173
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0100
  article-title: Fault diagnosis of planetary gearbox using multi-criteria feature selection and heterogeneous ensemble learning classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108654
– volume: 173
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0050
  article-title: Fault feature extraction for rolling bearings based on parameter-adaptive variational mode decomposition and multi-point optimal minimum entropy deconvolution
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108469
– volume: 16
  start-page: 447
  issue: 2–3
  year: 2002
  ident: 10.1016/j.engstruct.2023.115708_b0110
  article-title: Gear fault diagnosis based on continuous wavelet transform
  publication-title: Mech Syst Sig Process
  doi: 10.1006/mssp.2002.1482
– volume: 104
  issue: 3
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0015
  article-title: Compressor fault diagnosis system based on PCA-PSO-LSSVM algorithm
  publication-title: Sci Prog
  doi: 10.1177/00368504211026110
– volume: 151
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0135
  article-title: Advanced fault diagnosis method for nuclear power plant based on convolutional gated recurrent network and enhanced particle swarm optimization
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2020.107934
– volume: 9
  start-page: 28785
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0180
  article-title: Histogram ordering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058577
– volume: 173
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0105
  article-title: An LSTM-based severity evaluation method for intermittent open faults of an electrical connector under a shock test
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108653
– volume: 69
  start-page: 401
  issue: 1
  year: 2020
  ident: 10.1016/j.engstruct.2023.115708_b0035
  article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2018.2882682
– volume: 183
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0060
  article-title: Information interval spectrum: a novel methodology for rolling-element bearing diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109899
– volume: 162
  year: 2022
  ident: 10.1016/j.engstruct.2023.115708_b0020
  article-title: Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.107996
– volume: 436
  start-page: 74
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0080
  article-title: The intermittent fault diagnosis of analog circuits based on EEMD-DBN
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.001
– year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0070
  article-title: Acoustic emission analysis for wind turbine blade bearing fault detection under time-varying low-speed and heavy blade load conditions
  publication-title: IEEE Trans Ind Appl
– volume: 36
  start-page: 11124
  issue: 10
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0150
  article-title: Integration of interturn fault diagnosis and torque ripple minimization control for direct-torque-controlled SPMSM drive system
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2021.3073774
– ident: 10.1016/j.engstruct.2023.115708_b0115
  doi: 10.1177/14759217221122266
– volume: 176
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0140
  article-title: Fault diagnosis of rolling bearing using marine predators algorithm-based support vector machine and topology learning and out-of-sample embedding
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109116
– volume: 101
  start-page: 68
  year: 2021
  ident: 10.1016/j.engstruct.2023.115708_b0040
  article-title: Multivariate/minor fault diagnosis with severity level based on Bayesian decision theory and multidimensional RBC
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2021.01.009
SSID ssj0002880
Score 2.526513
Snippet •A novel convolutional network based on Bayesian optimization and channel fusion mechanism is developed.•The proposed method is applied to extract the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115708
SubjectTerms Bayesian optimization
Channel fusion mechanism
Convolutional network
Fault diagnosis
Hybrid loss function
Title Bayesian optimization and channel-fusion-based convolutional autoencoder network for fault diagnosis of rotating machinery
URI https://dx.doi.org/10.1016/j.engstruct.2023.115708
Volume 280
WOSCitedRecordID wos000929756500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivOQDt8pRYm9ip7cFFUFBFRIFrbhETmwXqm1SLZuq5cBvZ_zIo7BSQYhLFFlxnHi-2OPJN58Reh5nSiiTpiTNRUlmSiWkpIkiKeMzmbFK5E6J6dM7fnAgFov8_WTyo8uFOVvyuhbn5_npfzU1lIGxbersX5i7vykUwDkYHY5gdjj-keFfyAvtMiMbGA1OQpqlT1_7Ii2rhZjWhsiIncCUo52H57GyAe26sdKWVmGi9gxxR0Q0sl2ubaDW8vK8hMmqsX_x66OdE8fH_CW3eqRzuOM1atvVQFf83LQuIBANces2BK7fRvujUn_dPBrQ52AXjYMVlI04Li6C1mXRDJQlH9RMSEzzIIntB2LBGeHM5yJ3IzX1mz79Nur7AMRxpOsj_0aRbTuyOkKxGCa6nn74wbFboUFYf9lfi_E1tEU5oHWKtuZv9hb7_VxOhdt7r3_CSwzBjc1t9m9GPsvhbXQrLDbw3IPkDpro-i66OTLNPfS9gwsewwUDXPAmuOBLcMEjuOAAFwxwwQ4uuIcLbgzu4IJ7uNxHH1_tHb58TcJ-HKRiSbomVaVzzUuqVCW0FMaAr5pxlSr4xJXhmvOcytJonchcZBk1ZSm5zuSs5BL8zpI9QNO6qfVDhMFLlapSlEubCS7iUhrGUg2-fqWk5GwbZV0vFlUQq7d7piyLjpV4XPTdX9juL3z3b6O4r3jq9VqurrLbmakIbqd3JwvA11WVH_1L5cfoxvCRPEFTuEA_Rders_XXb6tnAYs_AXJPtAQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimization+and+channel-fusion-based+convolutional+autoencoder+network+for+fault+diagnosis+of+rotating+machinery&rft.jtitle=Engineering+structures&rft.au=Zou%2C+L.&rft.au=Zhuang%2C+K.J.&rft.au=Zhou%2C+A.&rft.au=Hu%2C+J.&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=280&rft_id=info:doi/10.1016%2Fj.engstruct.2023.115708&rft.externalDocID=S0141029623001220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon