Probabilistic Fatigue Life Prediction of Dissimilar Material Weld Using Accelerated Life Method and Neural Network Approach
Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the development of economical hybrid structures to be used in different engineering applications. The differences in the physical and metallurgical...
Uloženo v:
| Vydáno v: | Computation Ročník 7; číslo 1; s. 10 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
02.02.2019
|
| Témata: | |
| ISSN: | 2079-3197, 2079-3197 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the development of economical hybrid structures to be used in different engineering applications. The differences in the physical and metallurgical properties of dissimilar materials to be welded usually result in weaker structures. Fatigue failure is one of the most common failure modes of dissimilar material welded structures. In this study, fatigue life prediction of dissimilar material weld was evaluated by the accelerated life method and artificial neural network approach (ANN). The accelerated life testing approach was evaluated for different distributions. Weibull distribution was the most appropriate distribution that fits the fatigue data very well. Acceleration of fatigue life test data was attained with 95% reliability for Weibull distribution. The probability plot verified that accelerating variables at each level were appropriate. Experimental test data and predicted fatigue life were in good agreement with each other. Two training algorithms, Bayesian regularization (BR) and Levenberg–Marquardt (LM), were employed for training ANN. The Bayesian regularization training algorithm exhibited a better performance than the Levenberg–Marquardt algorithm. The results confirmed that the assessment methods are effective for lifetime prediction of dissimilar material welded joints. |
|---|---|
| AbstractList | Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the development of economical hybrid structures to be used in different engineering applications. The differences in the physical and metallurgical properties of dissimilar materials to be welded usually result in weaker structures. Fatigue failure is one of the most common failure modes of dissimilar material welded structures. In this study, fatigue life prediction of dissimilar material weld was evaluated by the accelerated life method and artificial neural network approach (ANN). The accelerated life testing approach was evaluated for different distributions. Weibull distribution was the most appropriate distribution that fits the fatigue data very well. Acceleration of fatigue life test data was attained with 95% reliability for Weibull distribution. The probability plot verified that accelerating variables at each level were appropriate. Experimental test data and predicted fatigue life were in good agreement with each other. Two training algorithms, Bayesian regularization (BR) and Levenberg⁻Marquardt (LM), were employed for training ANN. The Bayesian regularization training algorithm exhibited a better performance than the Levenberg⁻Marquardt algorithm. The results confirmed that the assessment methods are effective for lifetime prediction of dissimilar material welded joints. Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the development of economical hybrid structures to be used in different engineering applications. The differences in the physical and metallurgical properties of dissimilar materials to be welded usually result in weaker structures. Fatigue failure is one of the most common failure modes of dissimilar material welded structures. In this study, fatigue life prediction of dissimilar material weld was evaluated by the accelerated life method and artificial neural network approach (ANN). The accelerated life testing approach was evaluated for different distributions. Weibull distribution was the most appropriate distribution that fits the fatigue data very well. Acceleration of fatigue life test data was attained with 95% reliability for Weibull distribution. The probability plot verified that accelerating variables at each level were appropriate. Experimental test data and predicted fatigue life were in good agreement with each other. Two training algorithms, Bayesian regularization (BR) and Levenberg–Marquardt (LM), were employed for training ANN. The Bayesian regularization training algorithm exhibited a better performance than the Levenberg–Marquardt algorithm. The results confirmed that the assessment methods are effective for lifetime prediction of dissimilar material welded joints. |
| Author | Ahmad, Hafiz Waqar Bae, Dong Ho Javed, Kamran Hwang, Jeong Ho Chaudry, Umer Masood |
| Author_xml | – sequence: 1 givenname: Hafiz Waqar orcidid: 0000-0002-2413-9555 surname: Ahmad fullname: Ahmad, Hafiz Waqar – sequence: 2 givenname: Jeong Ho surname: Hwang fullname: Hwang, Jeong Ho – sequence: 3 givenname: Kamran orcidid: 0000-0002-4277-9943 surname: Javed fullname: Javed, Kamran – sequence: 4 givenname: Umer Masood surname: Chaudry fullname: Chaudry, Umer Masood – sequence: 5 givenname: Dong Ho surname: Bae fullname: Bae, Dong Ho |
| BookMark | eNp9kV9rFDEUxYNUsNZ-AZ8CPq9mkplJ8rhUq4Xtn4eWPoY7yc026-xkTTIU8cubOgqi0BBISM75cQ_nNTma4oSEvG3YeyE0-2Dj_jAXKCFOkjWs7hfkmDOpV6LR8uiv-ytymvOO1aUboTg7Jj9uUhxgCGPIJVh6XinbGekmeKQ3CV2wT1gaPf0Ycg77MEKil1AwBRjpPY6O3uUwbenaWhwx1R-3uC-xPERHYXL0CudU1VdYHmP6SteHQ4pgH96Qlx7GjKe_zxNyd_7p9uzLanP9-eJsvVlZ0XRlZaHXVgipBscQegWiF1JoLb1UgLpxTGDNPEgvOi8H3XfgFXqNzLUorRcn5GLhugg7c0hhD-m7iRDMr4eYtgZSTT-iaVTLtZW2l9y23FZY2zLsGB_6TivVVda7hVUjfJsxF7OLc5rq-IZ3rRK9klxVlVpUNsWcE3pjw1JQSRBG0zDz1Jz5v7lq5f9Y_wz8jOknfw6iqA |
| CitedBy_id | crossref_primary_10_1016_j_engfracmech_2023_109103 crossref_primary_10_1111_ffe_13343 crossref_primary_10_1111_ffe_13640 crossref_primary_10_1016_j_engfracmech_2023_109242 crossref_primary_10_3390_app14010398 crossref_primary_10_3390_app12168236 crossref_primary_10_1016_j_jmapro_2020_02_038 crossref_primary_10_1111_ffe_13816 |
| Cites_doi | 10.1080/07408170500208362 10.1080/00207720500160084 10.1016/0013-7944(90)90262-F 10.5038/2326-3652.6.2.4865 10.1016/j.geothermics.2013.11.001 10.1214/088342306000000321 10.3390/met6100242 10.1007/978-1-4612-4380-9_37 10.1017/S0071368600005164 10.1016/j.marstruc.2017.10.004 10.1016/S0304-4076(96)01818-0 10.1002/pip.3040 10.1016/S0261-3069(89)80019-6 10.3390/met8010021 10.1016/j.oceaneng.2018.04.070 10.5772/61139 10.1016/j.matdes.2010.10.017 10.1080/03610928508828940 10.3390/mca21020020 10.1109/TR.2012.2194190 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.3390/computation7010010 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 2079-3197 |
| ExternalDocumentID | oai_doaj_org_article_18429c7c672c42cb96440e502b659885 10_3390_computation7010010 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c315t-ca69c3378bd0ea68a36373997f78ae91d03e010b7f35f7b965af8ef9e0d4e7cf3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464131100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-3197 |
| IngestDate | Fri Oct 03 12:42:35 EDT 2025 Sat Jul 26 00:30:26 EDT 2025 Sat Nov 29 07:17:55 EST 2025 Tue Nov 18 22:17:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c315t-ca69c3378bd0ea68a36373997f78ae91d03e010b7f35f7b965af8ef9e0d4e7cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2413-9555 0000-0002-4277-9943 |
| OpenAccessLink | https://www.proquest.com/docview/2548368728?pq-origsite=%requestingapplication% |
| PQID | 2548368728 |
| PQPubID | 2032414 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_18429c7c672c42cb96440e502b659885 proquest_journals_2548368728 crossref_citationtrail_10_3390_computation7010010 crossref_primary_10_3390_computation7010010 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-02 |
| PublicationDateYYYYMMDD | 2019-02-02 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Computation |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Seidel (ref_24) 1995; Volume 94 Green (ref_2) 2018; 26 Yakup (ref_5) 2018; 8 Brass (ref_15) 1974; 33 ref_11 Ciampi (ref_12) 1985; 14 Meetham (ref_18) 1989; 10 ref_19 ref_16 Weldments (ref_17) 1992; 29 Escobar (ref_9) 2006; 21 Corigliano (ref_6) 2018; 57 Elsayed (ref_13) 2006; 38 Elsayed (ref_10) 2012; 61 Fehim (ref_8) 2011; 32 Cameron (ref_26) 1997; 77 Moon (ref_3) 2014; 51 Gowda (ref_23) 2017; 14 Zhao (ref_14) 2005; 36 ref_21 ref_20 Sibi (ref_25) 2013; 47 ref_28 ref_27 Pasqualino (ref_7) 2018; 160 Sudarshan (ref_22) 1990; 36 ref_4 Blackwood (ref_1) 2016; 6 |
| References_xml | – volume: 38 start-page: 329 year: 2006 ident: ref_13 article-title: An extended linear hazard regression model with application to time-dependent dielectric breakdown of thermal oxides publication-title: IIE Trans. doi: 10.1080/07408170500208362 – volume: 36 start-page: 689 year: 2005 ident: ref_14 article-title: International Journal of Systems Science Modelling accelerated life testing based on mean residual life Modelling accelerated life testing based on mean residual life publication-title: Int. J. Syst. Sci. doi: 10.1080/00207720500160084 – volume: 36 start-page: 827 year: 1990 ident: ref_22 article-title: Fatigue processes in metals—role of aqueous environments publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(90)90262-F – volume: 6 start-page: 2 year: 2016 ident: ref_1 article-title: Maximum efficiency of a wind turbine publication-title: UJMM doi: 10.5038/2326-3652.6.2.4865 – volume: 51 start-page: 142 year: 2014 ident: ref_3 article-title: Efficiency of Geothermal Power Plants: A Worldwide Review publication-title: Geothermics doi: 10.1016/j.geothermics.2013.11.001 – volume: 21 start-page: 552 year: 2006 ident: ref_9 article-title: A Review of Accelerated Test Models publication-title: Stat. Sci. doi: 10.1214/088342306000000321 – ident: ref_16 doi: 10.3390/met6100242 – volume: 47 start-page: 1264 year: 2013 ident: ref_25 article-title: Analysis of different activation functions using back propagation neural networks publication-title: J. Theor. Appl. Inf. Technol. – ident: ref_11 doi: 10.1007/978-1-4612-4380-9_37 – volume: 33 start-page: 123 year: 1974 ident: ref_15 article-title: Mortality models and their uses in demography publication-title: Trans. Fac. Actuar. doi: 10.1017/S0071368600005164 – volume: 57 start-page: 207 year: 2018 ident: ref_6 article-title: Full-field analysis of Al-Fe explosive welded joints for shipbuilding applications publication-title: Mar. Struc. doi: 10.1016/j.marstruc.2017.10.004 – volume: 77 start-page: 329 year: 1997 ident: ref_26 article-title: An R-squared measure of goodness of fit for some common nonlinear regression models publication-title: J. Econom. doi: 10.1016/S0304-4076(96)01818-0 – volume: Volume 94 start-page: 229 year: 1995 ident: ref_24 article-title: Pre-crack fatigue damage and crack initiation under corrosion fatigue conditions publication-title: Proceedings of the HH Uhlig Memorial Symposium – ident: ref_27 – volume: 26 start-page: 427 year: 2018 ident: ref_2 article-title: Solar cell efficiency tables (version 52) publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.3040 – volume: 14 start-page: 124 year: 2017 ident: ref_23 article-title: Influence of exposure to an aggressive environment on cyclic fatigue response and life of an alloy steel publication-title: J. Eng. Res. – volume: 10 start-page: 77 year: 1989 ident: ref_18 article-title: Steel and Nickel Alloys at High Temperatures publication-title: Mater. Des. doi: 10.1016/S0261-3069(89)80019-6 – ident: ref_21 doi: 10.3390/met8010021 – volume: 160 start-page: 346 year: 2018 ident: ref_7 article-title: Non linear finite element simulation of explosise welded joints of dissimilar metals for shipbuilding applications publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.04.070 – ident: ref_4 doi: 10.5772/61139 – volume: 32 start-page: 1081 year: 2011 ident: ref_8 article-title: Recent developments in explosive welding publication-title: Mat. Des. doi: 10.1016/j.matdes.2010.10.017 – ident: ref_19 – volume: 14 start-page: 651 year: 1985 ident: ref_12 article-title: A general model for testing the proportional hazards and the accelerated failure time hypotheses in the analysis of censored survival data with covariates publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610928508828940 – volume: 8 start-page: 554 year: 2018 ident: ref_5 article-title: Microstructral, Mechanical and corrosion investigations of ship steel-Aluminium bimetal composites produced by explosive welding publication-title: Metals – volume: 29 start-page: 305 year: 1992 ident: ref_17 article-title: Determination of Residual Stresses in Structural Shapes publication-title: Weld. J. – ident: ref_20 – ident: ref_28 doi: 10.3390/mca21020020 – volume: 61 start-page: 282 year: 2012 ident: ref_10 article-title: Overview of reliability testing publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2012.2194190 |
| SSID | ssj0000913820 |
| Score | 2.1060236 |
| Snippet | Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 10 |
| SubjectTerms | accelerated life testing Accelerated life tests Algorithms Alternative energy sources artificial neural network Artificial neural networks Bayesian analysis bayesian regularization algorithm Carbon dioxide Climate change Corrosion Dissimilar material joining dissimilar material weld Dissimilar materials Dissimilar metals Efficiency Environmental impact Failure modes Fatigue failure Fatigue life fatigue life prediction Fatigue tests Hybrid structures Industrial plant emissions Life prediction Load Metal fatigue Metallurgy Neural networks Nickel base alloys Power plants Regularization Renewable resources Solar energy Statistical analysis Steel alloys Superalloys Weibull distribution Welded joints Welded structures |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEIAthBhgQLSAKC95YAChCCdO_BjLo2KAqgOvLbIvNqoELWoLC3-esxMqEBIsZIzOedydfT7l8h0hBwK4yl1uk8JLl-Qu9YmFVCSmEtYyoQsbQdp3V7LfVw8PevCl1VeoCavxwLXiTjADyTRIEDKDPAOrMYAzV7DMikIrFemluOv5kkzFNVgHth6r_5LhmNefQGySEN9WsgAeYt8iUQT2_1iPY5DprZHVZndIu_VTtciCG7XJyvUcrTptk1YzG6f0sEFGH62T98EE52Wocw3YZdpD2cdXR6-G3tHBJHyLCU9Ex56eo6KHz0PMZyleNrofvXdPFY21A7QLgHEo4COqevR17DBNzaiigeOB0v26cJx2Gxr5BrntXdycXSZNW4UEeFrMEjBCA-dS2Yo5I5Thgkvcp0gvlXE6rRh3qB4rPUcDosIL45Xz2rEqdxI83ySLo_HIbREqOAc8pCqsyVVuFTMh5_KGc-sL0B2Sfqq4hIY5HlpfPJWYewSzlD_N0iHH8zEvNXHjV-nTYLm5ZKBlxxPoQ2XjQ-VfPtQhu592L5spPC0xc1ZcKJmp7f-4xw5Zxr2WjgXf2S5ZnE1e3R5ZgrfZcDrZj977ATpp9eI priority: 102 providerName: Directory of Open Access Journals |
| Title | Probabilistic Fatigue Life Prediction of Dissimilar Material Weld Using Accelerated Life Method and Neural Network Approach |
| URI | https://www.proquest.com/docview/2548368728 https://doaj.org/article/18429c7c672c42cb96440e502b659885 |
| Volume | 7 |
| WOSCitedRecordID | wos000464131100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: P5Z dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2079-3197 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913820 issn: 2079-3197 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAHSgsVC-3KBw4gFNWJ49cJbdtdgeiuIsSjcIlsx65WKrsl2XJB4rczdryLUKVeyMGHeBzFmfGMZzz5BqEX3FJZutJkzAuXlS73mbE5z3TDjSFcMROBtD-fidlMnp-rKgXcupRWudaJUVE3Sxti5EfgyEjKpSjkm6sfWagaFU5XUwmNu2g7L4o8yPl7kW1iLAHzEixc_68MBe_-yMZSCXHOggT4IfKPPYqw_Te0cjQ1k53_fclH6GHaZOJRLxW76I5b7KEH0w1Ca7eHdtOi7vDLhDz96jH6VbWwvEO6bEBvxhOgvbh2-GzuHa7acKQTpoSXHp8Cv-bf5-AWY3hslGL8xV02OKYg4JG1YM4CCkXTj57GQtVYLxoc4ECAetbnn-NRAjV_gj5Nxh9P3mapOkNmac5WmdVcWUqFNA1xmktNORWw3RFeSO1U3hDq4Psa4SnIgVGcaS-dV440pRPW0320tVgu3FOEOaUWLiGZ0aUsjSQ6uG5eU2o8s2qA8jWPapugy0MFjcsaXJjA1_omXwfo9WbMVQ_ccSv1cWD9hjKAbscby_aiTmu4Bme4UFZYLgpbFhamVJbEMVIYzpSUbIAO1lJRJ03Q1X9F4tnt3c_RfdiMqZgRXhygrVV77Q7RPftzNe_aIdo-Hs-qD8MYMxhGMYd2-nsMbcW-QX_1blp9_QOLGAv8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKiwQcKC0gFgr4ABIIRXXi7wNCC2XVqrurPRSouATbsauVym5JtiDEf-I3Mnayi1Cl3nogx2RsJZPnGY89foPQM-GoYp7ZjAfpM-bzkFmXi8xUwloiNLeJSPvjUI7H6vhYT9bQ7-VZmJhWubSJyVBXcxfXyHchkFFUKFmoN2ffslg1Ku6uLktotLA49D9_QMjWvD7Yg__7vCgG74_e7WddVYHM0ZwvMmeEdpRKZSvijVCGCirBTcsglfE6rwj1EKRYGSi8v9WCm6B80J5UzEsXKPR7DW0wBsESjJ8J_7xa04kcm-BR27M5lGqy61JphqRjSSLdEfnH_6UyARe8QHJtg83_TSl30O1uEo37Leq30JqfbaNboxUDbbONtjqj1eAXHbP2y7vo16QG8xXTgSM7NR6A7Mm5x8Np8HhSxy2rqEI8D3gP8Dj9OoWwH0O3aZTiT_60winFAvedA3cdWTaqtvUoFeLGZlbhSHcC0uM2vx73O9L2e-jDlajkPlqfzWf-AcKCUgeXVNwapphVxMTQNBhKbeBO91C-xETpOmr2WCHktIQQLeKovIijHnq1anPWEpNcKv02Qm0lGUnF0415fVJ2NqqEYL_QTjohC8cKB5_EGPGcFFZwrRTvoZ0lCsvO0jXlXwg-vPzxU3Rj_2g0LIcH48NH6CZMPHXKfi920PqiPveP0XX3fTFt6idpUGH05aoB-wdfCmP_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQgOQAuIhQI-gARC0Tpx_DogtLCsqLpd5cCj4hJsx65WWnZLsgUh_hm_jrGTLEKVeuuBHJOxJU8-z3js8TcIPeGWytzlJmFeuCR3qU-MTXmiK24M4YqZSKT9cSpmM3l0pIot9Lu_CxPSKnubGA11tbJhj3wIgYykXIpMDn2XFlGMJ69OviWhglQ4ae3LabQQOXA_f0D41rzcH8O_fpplk7fv37xLugoDiaUpWydWc2UpFdJUxGkuNeVUgMsWXkjtVFoR6iBgMcJTGItRnGkvnVeOVLkT1lPo9xK6LCDGDIFfwT5v9ncC3yZ41_aeDqWKDG0s0xD1LUigPiL_-MJYMuCMR4hubnLzf1bQLXSjW1zjUTsbdtCWW-6i64cbZtpmF-10xqzBzzrG7ee30a-iBrMW0oQDazWegOzxqcPTuXe4qMNRVlAnXnk8BpzOv84XusbQbZy9-JNbVDimXuCRteDGA_tG1bY-jAW6sV5WONCggPSszbvHo47M_Q76cCEquYu2l6ulu4cwp9TCIyQzOpe5kUSHkNVrSo1nVg1Q2uOjtB1le6gcsighdAuYKs9iaoBebNqctIQl50q_DrDbSAay8fhiVR-Xne0qUwmLFissF5nNMwtDynPiGMkMZ0pKNkB7PSLLzgI25V843j__82N0FXBaTvdnBw_QNViPqpgUn-2h7XV96h6iK_b7et7Uj-L8wujLReP1Dw7NbNM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Fatigue+Life+Prediction+of+Dissimilar+Material+Weld+Using+Accelerated+Life+Method+and+Neural+Network+Approach&rft.jtitle=Computation&rft.au=Hafiz%2C+Waqar+Ahmad&rft.au=Jeong+Ho+Hwang&rft.au=Javed%2C+Kamran&rft.au=Umer+Masood+Chaudry&rft.date=2019-02-02&rft.pub=MDPI+AG&rft.eissn=2079-3197&rft.volume=7&rft.issue=1&rft.spage=10&rft_id=info:doi/10.3390%2Fcomputation7010010&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon |