Probabilistic Fatigue Life Prediction of Dissimilar Material Weld Using Accelerated Life Method and Neural Network Approach

Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the development of economical hybrid structures to be used in different engineering applications. The differences in the physical and metallurgical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computation Ročník 7; číslo 1; s. 10
Hlavní autoři: Ahmad, Hafiz Waqar, Hwang, Jeong Ho, Javed, Kamran, Chaudry, Umer Masood, Bae, Dong Ho
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 02.02.2019
Témata:
ISSN:2079-3197, 2079-3197
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the development of economical hybrid structures to be used in different engineering applications. The differences in the physical and metallurgical properties of dissimilar materials to be welded usually result in weaker structures. Fatigue failure is one of the most common failure modes of dissimilar material welded structures. In this study, fatigue life prediction of dissimilar material weld was evaluated by the accelerated life method and artificial neural network approach (ANN). The accelerated life testing approach was evaluated for different distributions. Weibull distribution was the most appropriate distribution that fits the fatigue data very well. Acceleration of fatigue life test data was attained with 95% reliability for Weibull distribution. The probability plot verified that accelerating variables at each level were appropriate. Experimental test data and predicted fatigue life were in good agreement with each other. Two training algorithms, Bayesian regularization (BR) and Levenberg–Marquardt (LM), were employed for training ANN. The Bayesian regularization training algorithm exhibited a better performance than the Levenberg–Marquardt algorithm. The results confirmed that the assessment methods are effective for lifetime prediction of dissimilar material welded joints.
AbstractList Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the development of economical hybrid structures to be used in different engineering applications. The differences in the physical and metallurgical properties of dissimilar materials to be welded usually result in weaker structures. Fatigue failure is one of the most common failure modes of dissimilar material welded structures. In this study, fatigue life prediction of dissimilar material weld was evaluated by the accelerated life method and artificial neural network approach (ANN). The accelerated life testing approach was evaluated for different distributions. Weibull distribution was the most appropriate distribution that fits the fatigue data very well. Acceleration of fatigue life test data was attained with 95% reliability for Weibull distribution. The probability plot verified that accelerating variables at each level were appropriate. Experimental test data and predicted fatigue life were in good agreement with each other. Two training algorithms, Bayesian regularization (BR) and Levenberg⁻Marquardt (LM), were employed for training ANN. The Bayesian regularization training algorithm exhibited a better performance than the Levenberg⁻Marquardt algorithm. The results confirmed that the assessment methods are effective for lifetime prediction of dissimilar material welded joints.
Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the development of economical hybrid structures to be used in different engineering applications. The differences in the physical and metallurgical properties of dissimilar materials to be welded usually result in weaker structures. Fatigue failure is one of the most common failure modes of dissimilar material welded structures. In this study, fatigue life prediction of dissimilar material weld was evaluated by the accelerated life method and artificial neural network approach (ANN). The accelerated life testing approach was evaluated for different distributions. Weibull distribution was the most appropriate distribution that fits the fatigue data very well. Acceleration of fatigue life test data was attained with 95% reliability for Weibull distribution. The probability plot verified that accelerating variables at each level were appropriate. Experimental test data and predicted fatigue life were in good agreement with each other. Two training algorithms, Bayesian regularization (BR) and Levenberg–Marquardt (LM), were employed for training ANN. The Bayesian regularization training algorithm exhibited a better performance than the Levenberg–Marquardt algorithm. The results confirmed that the assessment methods are effective for lifetime prediction of dissimilar material welded joints.
Author Ahmad, Hafiz Waqar
Bae, Dong Ho
Javed, Kamran
Hwang, Jeong Ho
Chaudry, Umer Masood
Author_xml – sequence: 1
  givenname: Hafiz Waqar
  orcidid: 0000-0002-2413-9555
  surname: Ahmad
  fullname: Ahmad, Hafiz Waqar
– sequence: 2
  givenname: Jeong Ho
  surname: Hwang
  fullname: Hwang, Jeong Ho
– sequence: 3
  givenname: Kamran
  orcidid: 0000-0002-4277-9943
  surname: Javed
  fullname: Javed, Kamran
– sequence: 4
  givenname: Umer Masood
  surname: Chaudry
  fullname: Chaudry, Umer Masood
– sequence: 5
  givenname: Dong Ho
  surname: Bae
  fullname: Bae, Dong Ho
BookMark eNp9kV9rFDEUxYNUsNZ-AZ8CPq9mkplJ8rhUq4Xtn4eWPoY7yc026-xkTTIU8cubOgqi0BBISM75cQ_nNTma4oSEvG3YeyE0-2Dj_jAXKCFOkjWs7hfkmDOpV6LR8uiv-ytymvOO1aUboTg7Jj9uUhxgCGPIJVh6XinbGekmeKQ3CV2wT1gaPf0Ycg77MEKil1AwBRjpPY6O3uUwbenaWhwx1R-3uC-xPERHYXL0CudU1VdYHmP6SteHQ4pgH96Qlx7GjKe_zxNyd_7p9uzLanP9-eJsvVlZ0XRlZaHXVgipBscQegWiF1JoLb1UgLpxTGDNPEgvOi8H3XfgFXqNzLUorRcn5GLhugg7c0hhD-m7iRDMr4eYtgZSTT-iaVTLtZW2l9y23FZY2zLsGB_6TivVVda7hVUjfJsxF7OLc5rq-IZ3rRK9klxVlVpUNsWcE3pjw1JQSRBG0zDz1Jz5v7lq5f9Y_wz8jOknfw6iqA
CitedBy_id crossref_primary_10_1016_j_engfracmech_2023_109103
crossref_primary_10_1111_ffe_13343
crossref_primary_10_1111_ffe_13640
crossref_primary_10_1016_j_engfracmech_2023_109242
crossref_primary_10_3390_app14010398
crossref_primary_10_3390_app12168236
crossref_primary_10_1016_j_jmapro_2020_02_038
crossref_primary_10_1111_ffe_13816
Cites_doi 10.1080/07408170500208362
10.1080/00207720500160084
10.1016/0013-7944(90)90262-F
10.5038/2326-3652.6.2.4865
10.1016/j.geothermics.2013.11.001
10.1214/088342306000000321
10.3390/met6100242
10.1007/978-1-4612-4380-9_37
10.1017/S0071368600005164
10.1016/j.marstruc.2017.10.004
10.1016/S0304-4076(96)01818-0
10.1002/pip.3040
10.1016/S0261-3069(89)80019-6
10.3390/met8010021
10.1016/j.oceaneng.2018.04.070
10.5772/61139
10.1016/j.matdes.2010.10.017
10.1080/03610928508828940
10.3390/mca21020020
10.1109/TR.2012.2194190
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/computation7010010
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 2079-3197
ExternalDocumentID oai_doaj_org_article_18429c7c672c42cb96440e502b659885
10_3390_computation7010010
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c315t-ca69c3378bd0ea68a36373997f78ae91d03e010b7f35f7b965af8ef9e0d4e7cf3
IEDL.DBID K7-
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464131100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-3197
IngestDate Fri Oct 03 12:42:35 EDT 2025
Sat Jul 26 00:30:26 EDT 2025
Sat Nov 29 07:17:55 EST 2025
Tue Nov 18 22:17:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-ca69c3378bd0ea68a36373997f78ae91d03e010b7f35f7b965af8ef9e0d4e7cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2413-9555
0000-0002-4277-9943
OpenAccessLink https://www.proquest.com/docview/2548368728?pq-origsite=%requestingapplication%
PQID 2548368728
PQPubID 2032414
ParticipantIDs doaj_primary_oai_doaj_org_article_18429c7c672c42cb96440e502b659885
proquest_journals_2548368728
crossref_citationtrail_10_3390_computation7010010
crossref_primary_10_3390_computation7010010
PublicationCentury 2000
PublicationDate 2019-02-02
PublicationDateYYYYMMDD 2019-02-02
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-02
  day: 02
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Computation
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Seidel (ref_24) 1995; Volume 94
Green (ref_2) 2018; 26
Yakup (ref_5) 2018; 8
Brass (ref_15) 1974; 33
ref_11
Ciampi (ref_12) 1985; 14
Meetham (ref_18) 1989; 10
ref_19
ref_16
Weldments (ref_17) 1992; 29
Escobar (ref_9) 2006; 21
Corigliano (ref_6) 2018; 57
Elsayed (ref_13) 2006; 38
Elsayed (ref_10) 2012; 61
Fehim (ref_8) 2011; 32
Cameron (ref_26) 1997; 77
Moon (ref_3) 2014; 51
Gowda (ref_23) 2017; 14
Zhao (ref_14) 2005; 36
ref_21
ref_20
Sibi (ref_25) 2013; 47
ref_28
ref_27
Pasqualino (ref_7) 2018; 160
Sudarshan (ref_22) 1990; 36
ref_4
Blackwood (ref_1) 2016; 6
References_xml – volume: 38
  start-page: 329
  year: 2006
  ident: ref_13
  article-title: An extended linear hazard regression model with application to time-dependent dielectric breakdown of thermal oxides
  publication-title: IIE Trans.
  doi: 10.1080/07408170500208362
– volume: 36
  start-page: 689
  year: 2005
  ident: ref_14
  article-title: International Journal of Systems Science Modelling accelerated life testing based on mean residual life Modelling accelerated life testing based on mean residual life
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207720500160084
– volume: 36
  start-page: 827
  year: 1990
  ident: ref_22
  article-title: Fatigue processes in metals—role of aqueous environments
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(90)90262-F
– volume: 6
  start-page: 2
  year: 2016
  ident: ref_1
  article-title: Maximum efficiency of a wind turbine
  publication-title: UJMM
  doi: 10.5038/2326-3652.6.2.4865
– volume: 51
  start-page: 142
  year: 2014
  ident: ref_3
  article-title: Efficiency of Geothermal Power Plants: A Worldwide Review
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2013.11.001
– volume: 21
  start-page: 552
  year: 2006
  ident: ref_9
  article-title: A Review of Accelerated Test Models
  publication-title: Stat. Sci.
  doi: 10.1214/088342306000000321
– ident: ref_16
  doi: 10.3390/met6100242
– volume: 47
  start-page: 1264
  year: 2013
  ident: ref_25
  article-title: Analysis of different activation functions using back propagation neural networks
  publication-title: J. Theor. Appl. Inf. Technol.
– ident: ref_11
  doi: 10.1007/978-1-4612-4380-9_37
– volume: 33
  start-page: 123
  year: 1974
  ident: ref_15
  article-title: Mortality models and their uses in demography
  publication-title: Trans. Fac. Actuar.
  doi: 10.1017/S0071368600005164
– volume: 57
  start-page: 207
  year: 2018
  ident: ref_6
  article-title: Full-field analysis of Al-Fe explosive welded joints for shipbuilding applications
  publication-title: Mar. Struc.
  doi: 10.1016/j.marstruc.2017.10.004
– volume: 77
  start-page: 329
  year: 1997
  ident: ref_26
  article-title: An R-squared measure of goodness of fit for some common nonlinear regression models
  publication-title: J. Econom.
  doi: 10.1016/S0304-4076(96)01818-0
– volume: Volume 94
  start-page: 229
  year: 1995
  ident: ref_24
  article-title: Pre-crack fatigue damage and crack initiation under corrosion fatigue conditions
  publication-title: Proceedings of the HH Uhlig Memorial Symposium
– ident: ref_27
– volume: 26
  start-page: 427
  year: 2018
  ident: ref_2
  article-title: Solar cell efficiency tables (version 52)
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.3040
– volume: 14
  start-page: 124
  year: 2017
  ident: ref_23
  article-title: Influence of exposure to an aggressive environment on cyclic fatigue response and life of an alloy steel
  publication-title: J. Eng. Res.
– volume: 10
  start-page: 77
  year: 1989
  ident: ref_18
  article-title: Steel and Nickel Alloys at High Temperatures
  publication-title: Mater. Des.
  doi: 10.1016/S0261-3069(89)80019-6
– ident: ref_21
  doi: 10.3390/met8010021
– volume: 160
  start-page: 346
  year: 2018
  ident: ref_7
  article-title: Non linear finite element simulation of explosise welded joints of dissimilar metals for shipbuilding applications
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.04.070
– ident: ref_4
  doi: 10.5772/61139
– volume: 32
  start-page: 1081
  year: 2011
  ident: ref_8
  article-title: Recent developments in explosive welding
  publication-title: Mat. Des.
  doi: 10.1016/j.matdes.2010.10.017
– ident: ref_19
– volume: 14
  start-page: 651
  year: 1985
  ident: ref_12
  article-title: A general model for testing the proportional hazards and the accelerated failure time hypotheses in the analysis of censored survival data with covariates
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610928508828940
– volume: 8
  start-page: 554
  year: 2018
  ident: ref_5
  article-title: Microstructral, Mechanical and corrosion investigations of ship steel-Aluminium bimetal composites produced by explosive welding
  publication-title: Metals
– volume: 29
  start-page: 305
  year: 1992
  ident: ref_17
  article-title: Determination of Residual Stresses in Structural Shapes
  publication-title: Weld. J.
– ident: ref_20
– ident: ref_28
  doi: 10.3390/mca21020020
– volume: 61
  start-page: 282
  year: 2012
  ident: ref_10
  article-title: Overview of reliability testing
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2012.2194190
SSID ssj0000913820
Score 2.1060236
Snippet Welding alloy 617 with other metals and alloys has been receiving significant attention in the last few years. It is considered to be the benchmark for the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 10
SubjectTerms accelerated life testing
Accelerated life tests
Algorithms
Alternative energy sources
artificial neural network
Artificial neural networks
Bayesian analysis
bayesian regularization algorithm
Carbon dioxide
Climate change
Corrosion
Dissimilar material joining
dissimilar material weld
Dissimilar materials
Dissimilar metals
Efficiency
Environmental impact
Failure modes
Fatigue failure
Fatigue life
fatigue life prediction
Fatigue tests
Hybrid structures
Industrial plant emissions
Life prediction
Load
Metal fatigue
Metallurgy
Neural networks
Nickel base alloys
Power plants
Regularization
Renewable resources
Solar energy
Statistical analysis
Steel alloys
Superalloys
Weibull distribution
Welded joints
Welded structures
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEIAthBhgQLSAKC95YAChCCdO_BjLo2KAqgOvLbIvNqoELWoLC3-esxMqEBIsZIzOedydfT7l8h0hBwK4yl1uk8JLl-Qu9YmFVCSmEtYyoQsbQdp3V7LfVw8PevCl1VeoCavxwLXiTjADyTRIEDKDPAOrMYAzV7DMikIrFemluOv5kkzFNVgHth6r_5LhmNefQGySEN9WsgAeYt8iUQT2_1iPY5DprZHVZndIu_VTtciCG7XJyvUcrTptk1YzG6f0sEFGH62T98EE52Wocw3YZdpD2cdXR6-G3tHBJHyLCU9Ex56eo6KHz0PMZyleNrofvXdPFY21A7QLgHEo4COqevR17DBNzaiigeOB0v26cJx2Gxr5BrntXdycXSZNW4UEeFrMEjBCA-dS2Yo5I5Thgkvcp0gvlXE6rRh3qB4rPUcDosIL45Xz2rEqdxI83ySLo_HIbREqOAc8pCqsyVVuFTMh5_KGc-sL0B2Sfqq4hIY5HlpfPJWYewSzlD_N0iHH8zEvNXHjV-nTYLm5ZKBlxxPoQ2XjQ-VfPtQhu592L5spPC0xc1ZcKJmp7f-4xw5Zxr2WjgXf2S5ZnE1e3R5ZgrfZcDrZj977ATpp9eI
  priority: 102
  providerName: Directory of Open Access Journals
Title Probabilistic Fatigue Life Prediction of Dissimilar Material Weld Using Accelerated Life Method and Neural Network Approach
URI https://www.proquest.com/docview/2548368728
https://doaj.org/article/18429c7c672c42cb96440e502b659885
Volume 7
WOSCitedRecordID wos000464131100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: P5Z
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAHSgsVC-3KBw4gFNWJ49cJbdtdgeiuIsSjcIlsx65WKrsl2XJB4rczdryLUKVeyMGHeBzFmfGMZzz5BqEX3FJZutJkzAuXlS73mbE5z3TDjSFcMROBtD-fidlMnp-rKgXcupRWudaJUVE3Sxti5EfgyEjKpSjkm6sfWagaFU5XUwmNu2g7L4o8yPl7kW1iLAHzEixc_68MBe_-yMZSCXHOggT4IfKPPYqw_Te0cjQ1k53_fclH6GHaZOJRLxW76I5b7KEH0w1Ca7eHdtOi7vDLhDz96jH6VbWwvEO6bEBvxhOgvbh2-GzuHa7acKQTpoSXHp8Cv-bf5-AWY3hslGL8xV02OKYg4JG1YM4CCkXTj57GQtVYLxoc4ECAetbnn-NRAjV_gj5Nxh9P3mapOkNmac5WmdVcWUqFNA1xmktNORWw3RFeSO1U3hDq4Psa4SnIgVGcaS-dV440pRPW0320tVgu3FOEOaUWLiGZ0aUsjSQ6uG5eU2o8s2qA8jWPapugy0MFjcsaXJjA1_omXwfo9WbMVQ_ccSv1cWD9hjKAbscby_aiTmu4Bme4UFZYLgpbFhamVJbEMVIYzpSUbIAO1lJRJ03Q1X9F4tnt3c_RfdiMqZgRXhygrVV77Q7RPftzNe_aIdo-Hs-qD8MYMxhGMYd2-nsMbcW-QX_1blp9_QOLGAv8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKiwQcKC0gFgr4ABIIRXXi7wNCC2XVqrurPRSouATbsauVym5JtiDEf-I3Mnayi1Cl3nogx2RsJZPnGY89foPQM-GoYp7ZjAfpM-bzkFmXi8xUwloiNLeJSPvjUI7H6vhYT9bQ7-VZmJhWubSJyVBXcxfXyHchkFFUKFmoN2ffslg1Ku6uLktotLA49D9_QMjWvD7Yg__7vCgG74_e7WddVYHM0ZwvMmeEdpRKZSvijVCGCirBTcsglfE6rwj1EKRYGSi8v9WCm6B80J5UzEsXKPR7DW0wBsESjJ8J_7xa04kcm-BR27M5lGqy61JphqRjSSLdEfnH_6UyARe8QHJtg83_TSl30O1uEo37Leq30JqfbaNboxUDbbONtjqj1eAXHbP2y7vo16QG8xXTgSM7NR6A7Mm5x8Np8HhSxy2rqEI8D3gP8Dj9OoWwH0O3aZTiT_60winFAvedA3cdWTaqtvUoFeLGZlbhSHcC0uM2vx73O9L2e-jDlajkPlqfzWf-AcKCUgeXVNwapphVxMTQNBhKbeBO91C-xETpOmr2WCHktIQQLeKovIijHnq1anPWEpNcKv02Qm0lGUnF0415fVJ2NqqEYL_QTjohC8cKB5_EGPGcFFZwrRTvoZ0lCsvO0jXlXwg-vPzxU3Rj_2g0LIcH48NH6CZMPHXKfi920PqiPveP0XX3fTFt6idpUGH05aoB-wdfCmP_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQgOQAuIhQI-gARC0Tpx_DogtLCsqLpd5cCj4hJsx65WWnZLsgUh_hm_jrGTLEKVeuuBHJOxJU8-z3js8TcIPeGWytzlJmFeuCR3qU-MTXmiK24M4YqZSKT9cSpmM3l0pIot9Lu_CxPSKnubGA11tbJhj3wIgYykXIpMDn2XFlGMJ69OviWhglQ4ae3LabQQOXA_f0D41rzcH8O_fpplk7fv37xLugoDiaUpWydWc2UpFdJUxGkuNeVUgMsWXkjtVFoR6iBgMcJTGItRnGkvnVeOVLkT1lPo9xK6LCDGDIFfwT5v9ncC3yZ41_aeDqWKDG0s0xD1LUigPiL_-MJYMuCMR4hubnLzf1bQLXSjW1zjUTsbdtCWW-6i64cbZtpmF-10xqzBzzrG7ee30a-iBrMW0oQDazWegOzxqcPTuXe4qMNRVlAnXnk8BpzOv84XusbQbZy9-JNbVDimXuCRteDGA_tG1bY-jAW6sV5WONCggPSszbvHo47M_Q76cCEquYu2l6ulu4cwp9TCIyQzOpe5kUSHkNVrSo1nVg1Q2uOjtB1le6gcsighdAuYKs9iaoBebNqctIQl50q_DrDbSAay8fhiVR-Xne0qUwmLFissF5nNMwtDynPiGMkMZ0pKNkB7PSLLzgI25V843j__82N0FXBaTvdnBw_QNViPqpgUn-2h7XV96h6iK_b7et7Uj-L8wujLReP1Dw7NbNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Fatigue+Life+Prediction+of+Dissimilar+Material+Weld+Using+Accelerated+Life+Method+and+Neural+Network+Approach&rft.jtitle=Computation&rft.au=Hafiz%2C+Waqar+Ahmad&rft.au=Jeong+Ho+Hwang&rft.au=Javed%2C+Kamran&rft.au=Umer+Masood+Chaudry&rft.date=2019-02-02&rft.pub=MDPI+AG&rft.eissn=2079-3197&rft.volume=7&rft.issue=1&rft.spage=10&rft_id=info:doi/10.3390%2Fcomputation7010010&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon