Single-pixel imaging with untrained convolutional autoencoder network

•We propose a physical model-driven untrained deep convolutional autoencoder network for SPI and validate its performance from simulations and experiments.•We designed an end-to-end SPI reconstruction network, which can better reconstruct high-quality images from under-sampled measurements.•We perfo...

Full description

Saved in:
Bibliographic Details
Published in:Optics and laser technology Vol. 167; p. 109710
Main Authors: Li, Zhicai, Huang, Jian, Shi, Dongfeng, Chen, Yafeng, Yuan, Kee, Hu, Shunxing, Wang, Yingjian
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2023
Subjects:
ISSN:0030-3992, 1879-2545
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We propose a physical model-driven untrained deep convolutional autoencoder network for SPI and validate its performance from simulations and experiments.•We designed an end-to-end SPI reconstruction network, which can better reconstruct high-quality images from under-sampled measurements.•We perform a comparative study through the simulations and experiments. The results demonstrate that UCAN outperforms other existed SPI methods, including DGI, TVAL3, and GIDC. Single-pixel imaging (SPI) is a novel imaging modality which captures the images with a single-pixel detector by using a lot of time-varying modulation patterns. Nowadays, SPI reconstructions with data-driven deep learning had been verified for high-quality reconstructions under low sampling ratios. However, it faces a dilemma of hard-to-get sufficient training sets in many practical applications, e.g., long-range single-pixel imaging fields. Here, a model-driven SPI reconstruction method based on untrained convolutional autoencoder network (UCAN) is proposed. This framework does not need to pre-train on any dataset and can be automatically optimized, then eventually produce the restored images through the interplay between the neural network and the SPI physical model. Simulations confirm the superiorities of the proposed method over many other existed algorithms in the SPI field. Also, the reconstructions for long-range single-pixel imaging in real urban atmospheric environments demonstrate that our method has better denoising performance. We believe that the present work provides an alternative framework for SPI and paves the way for practical applications, e.g., long-range optical remote sensing and low-irradiative biological imaging.
AbstractList •We propose a physical model-driven untrained deep convolutional autoencoder network for SPI and validate its performance from simulations and experiments.•We designed an end-to-end SPI reconstruction network, which can better reconstruct high-quality images from under-sampled measurements.•We perform a comparative study through the simulations and experiments. The results demonstrate that UCAN outperforms other existed SPI methods, including DGI, TVAL3, and GIDC. Single-pixel imaging (SPI) is a novel imaging modality which captures the images with a single-pixel detector by using a lot of time-varying modulation patterns. Nowadays, SPI reconstructions with data-driven deep learning had been verified for high-quality reconstructions under low sampling ratios. However, it faces a dilemma of hard-to-get sufficient training sets in many practical applications, e.g., long-range single-pixel imaging fields. Here, a model-driven SPI reconstruction method based on untrained convolutional autoencoder network (UCAN) is proposed. This framework does not need to pre-train on any dataset and can be automatically optimized, then eventually produce the restored images through the interplay between the neural network and the SPI physical model. Simulations confirm the superiorities of the proposed method over many other existed algorithms in the SPI field. Also, the reconstructions for long-range single-pixel imaging in real urban atmospheric environments demonstrate that our method has better denoising performance. We believe that the present work provides an alternative framework for SPI and paves the way for practical applications, e.g., long-range optical remote sensing and low-irradiative biological imaging.
ArticleNumber 109710
Author Shi, Dongfeng
Huang, Jian
Li, Zhicai
Wang, Yingjian
Hu, Shunxing
Chen, Yafeng
Yuan, Kee
Author_xml – sequence: 1
  givenname: Zhicai
  orcidid: 0000-0002-2946-4496
  surname: Li
  fullname: Li, Zhicai
  organization: Institute of Material Science and Information Technology, Anhui University, Hefei 230601, China
– sequence: 2
  givenname: Jian
  orcidid: 0000-0002-6114-5815
  surname: Huang
  fullname: Huang, Jian
  email: jhuang@aiofm.ac.cn
  organization: Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 3
  givenname: Dongfeng
  surname: Shi
  fullname: Shi, Dongfeng
  organization: Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 4
  givenname: Yafeng
  surname: Chen
  fullname: Chen, Yafeng
  organization: Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 5
  givenname: Kee
  surname: Yuan
  fullname: Yuan, Kee
  organization: Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 6
  givenname: Shunxing
  surname: Hu
  fullname: Hu, Shunxing
  organization: Institute of Material Science and Information Technology, Anhui University, Hefei 230601, China
– sequence: 7
  givenname: Yingjian
  surname: Wang
  fullname: Wang, Yingjian
  organization: Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
BookMark eNqNkMtOwzAQRS1UJErhG8gPpIzjOLEXLKqqPKRKLIC15djT4hLsynFb-HsSFbFgA6vRjHSu5p5zMvLBIyFXFKYUaHW9mYZtanWX0EwLKFh_lTWFEzKmopZ5wUs-ImMABjmTsjgj5123AYCy4mxMFk_Or1vMt-4D28y963W_ZweXXrOdT1E7jzYzwe9Du0sueN1mepcCehMsxsxjOoT4dkFOV7rt8PJ7TsjL7eJ5fp8vH-8e5rNlbhjlKTelNKJBKlHIckWpFqKwKAxCVVGwALqGBnndaGml1aIWmhdUcF2yRkCBbELqY66JoesirtQ29j_HT0VBDTbURv3YUIMNdbTRkze_SOOSHhoNJdt_8LMjj329vcOoOuN6C2hdRJOUDe7PjC-22YVE
CitedBy_id crossref_primary_10_3390_electronics14071355
crossref_primary_10_3390_photonics12020164
crossref_primary_10_3390_app15147717
crossref_primary_10_3390_s24248139
crossref_primary_10_3788_LOP250831
crossref_primary_10_1088_0256_307X_41_12_124202
Cites_doi 10.1109/CVPR.2018.00984
10.1016/j.optlastec.2022.108140
10.1103/PhysRevLett.104.253603
10.1007/978-3-319-24574-4_28
10.1016/j.optlaseng.2022.107101
10.1038/s41377-020-0302-3
10.1364/OPTICA.389314
10.1016/j.optlaseng.2021.106744
10.1364/OPTICA.1.000285
10.1038/s41598-020-68401-8
10.1364/OE.25.019619
10.1364/OE.472171
10.1103/PhysRevA.52.R3429
10.3390/s19194190
10.1038/s41598-017-03725-6
10.1016/j.optcom.2017.12.041
10.1038/s41377-021-00680-w
10.1364/OE.27.025560
10.1364/OE.385233
10.1364/OE.421354
10.1109/TIP.2012.2188033
10.3390/s19030732
10.1103/PhysRevA.78.061802
10.1364/PRJ.440123
10.1126/science.1234454
10.1103/PhysRevLett.117.113901
10.1016/j.optlaseng.2020.106183
10.1016/j.optlaseng.2023.107580
10.1016/j.optlaseng.2022.107141
10.1364/OE.24.026080
10.1063/1.3238296
10.1016/j.optlastec.2015.12.009
10.1364/OE.25.022859
10.1364/OE.471036
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlastec.2023.109710
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
ExternalDocumentID 10_1016_j_optlastec_2023_109710
S0030399223006035
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c315t-c49c8be19e894f11a882de8ce06610d00a70be57ba9d9da878a52185a43b802e3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001026404500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-3992
IngestDate Tue Nov 18 20:41:46 EST 2025
Sat Nov 29 07:31:37 EST 2025
Fri Feb 23 02:37:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Single-pixel imaging
Long-range imaging
Convolutional neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-c49c8be19e894f11a882de8ce06610d00a70be57ba9d9da878a52185a43b802e3
ORCID 0000-0002-6114-5815
0000-0002-2946-4496
ParticipantIDs crossref_primary_10_1016_j_optlastec_2023_109710
crossref_citationtrail_10_1016_j_optlastec_2023_109710
elsevier_sciencedirect_doi_10_1016_j_optlastec_2023_109710
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Optics and laser technology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rizvi, Cao, Zhang, Hao (b0100) 2020; 10
Zhang, Wang, Zheng, Zhong (b0060) 2017; 25
Gong (b0015) 2022; 152
Zhou, Liu, Feng, Li, Wang, Sun, Huang, Song (b0095) 2022; 156
Brás, Bioucas-Dias, Martins, Serra (b0165) 2012; 21
Rizvi, Cao, Zhang, Hao (b0075) 2019; 19
Wang, Bian, Wang, Lyu, Pedrini, Osten, Barbastathis, Situ (b0115) 2020; 9
Wang, Wang, Deng, Han, Situ (b0150) 2022; 10
Katz, Bromberg, Silberberg (b0055) 2009; 95
Chen, Wei, Chen, Dong (b0145) 2021; 29
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In
Liu, Meng, Yin, Wu, Jiang (b0160) 2021; 147
Rizvi, Cao, Zhang, Hao (b0105) 2020; 28
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
Wu, Wang, Zhao, Xiao, Liang, Wang, Tian, Cheng, Zhang (b0090) 2020; 134
Ferri, Magatti, Lugiato, Gatti (b0130) 2010; 104
Sun, Edgar, Bowman, Vittert, Welsh, Bowman, Padgett (b0045) 2013; 340
Cao, Xiao, Pan, Zhou, Chen (b0040) 2022; 158
Huang, Li, Shi, Chen, Yuan, Hu, Wang (b0175) 2022; 30
Shapiro (b0010) 2008; 78
(pp. 234-241). Springer International Publishing.
Vasile, Damian, Coltuc, Petrovici (b0030) 2016; 79
Sun, Zhang (b0050) 2019; 19
Le, Wang, Zheng, Liu, Zhou, Xu (b0035) 2017; 25
Sun, Meng, Edgar, Padgett, Radwell (b0170) 2017; 7
Yu, Lu, Han, Xie, Du, Xiao, Zhu (b0020) 2016; 117
Bostan, Heckel, Chen, Kellman, Waller (b0140) 2020; 7
Li, Wu, Liu, Zhang (b0155) 2023; 166
Pittman, Shih, Strekalov, Sergienko (b0005) 1995; 52
Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep image prior. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9446-9454).
Zhang, Ma, Zhong (b0065) 2015; 6
Chen, Huang, Chen (b0135) 2022; 30
Shimobaba, Endo, Nishitsuji, Takahashi, Nagahama, Hasegawa, Sano, Hirayama, Kakue, Shiraki (b0080) 2018; 413
Wang, Wang, Wang, Li, Situ (b0085) 2019; 27
Radwell, Mitchell, Gibson, Edgar, Bowman, Padgett (b0025) 2014; 1
Dai, Gu, He, Ye, Mao, Chen (b0070) 2016; 24
Wang, Wang, Chen, Gong, Zhang, Han, Situ (b0120) 2022; 11
Cao (10.1016/j.optlastec.2023.109710_b0040) 2022; 158
Wu (10.1016/j.optlastec.2023.109710_b0090) 2020; 134
Chen (10.1016/j.optlastec.2023.109710_b0145) 2021; 29
Li (10.1016/j.optlastec.2023.109710_b0155) 2023; 166
Shapiro (10.1016/j.optlastec.2023.109710_b0010) 2008; 78
Huang (10.1016/j.optlastec.2023.109710_b0175) 2022; 30
Yu (10.1016/j.optlastec.2023.109710_b0020) 2016; 117
Zhang (10.1016/j.optlastec.2023.109710_b0060) 2017; 25
Radwell (10.1016/j.optlastec.2023.109710_b0025) 2014; 1
Le (10.1016/j.optlastec.2023.109710_b0035) 2017; 25
Shimobaba (10.1016/j.optlastec.2023.109710_b0080) 2018; 413
Katz (10.1016/j.optlastec.2023.109710_b0055) 2009; 95
10.1016/j.optlastec.2023.109710_b0125
Rizvi (10.1016/j.optlastec.2023.109710_b0100) 2020; 10
Wang (10.1016/j.optlastec.2023.109710_b0115) 2020; 9
Ferri (10.1016/j.optlastec.2023.109710_b0130) 2010; 104
Pittman (10.1016/j.optlastec.2023.109710_b0005) 1995; 52
Rizvi (10.1016/j.optlastec.2023.109710_b0075) 2019; 19
Wang (10.1016/j.optlastec.2023.109710_b0085) 2019; 27
Sun (10.1016/j.optlastec.2023.109710_b0170) 2017; 7
Sun (10.1016/j.optlastec.2023.109710_b0050) 2019; 19
Zhou (10.1016/j.optlastec.2023.109710_b0095) 2022; 156
Wang (10.1016/j.optlastec.2023.109710_b0120) 2022; 11
Liu (10.1016/j.optlastec.2023.109710_b0160) 2021; 147
Gong (10.1016/j.optlastec.2023.109710_b0015) 2022; 152
Bostan (10.1016/j.optlastec.2023.109710_b0140) 2020; 7
Brás (10.1016/j.optlastec.2023.109710_b0165) 2012; 21
Vasile (10.1016/j.optlastec.2023.109710_b0030) 2016; 79
Chen (10.1016/j.optlastec.2023.109710_b0135) 2022; 30
Dai (10.1016/j.optlastec.2023.109710_b0070) 2016; 24
10.1016/j.optlastec.2023.109710_b0110
Sun (10.1016/j.optlastec.2023.109710_b0045) 2013; 340
Zhang (10.1016/j.optlastec.2023.109710_b0065) 2015; 6
Wang (10.1016/j.optlastec.2023.109710_b0150) 2022; 10
Rizvi (10.1016/j.optlastec.2023.109710_b0105) 2020; 28
References_xml – volume: 21
  start-page: 3004
  year: 2012
  end-page: 3016
  ident: b0165
  article-title: An alternating direction algorithm for total variation reconstruction of distributed parameters
  publication-title: IEEE Trans. Image Process.
– volume: 104
  year: 2010
  ident: b0130
  article-title: Differential ghost imaging
  publication-title: Phys. Rev. Lett.
– volume: 147
  year: 2021
  ident: b0160
  article-title: Computational ghost imaging based on an untrained neural network
  publication-title: Opt. Lasers Eng.
– volume: 30
  start-page: 39597
  year: 2022
  end-page: 39612
  ident: b0135
  article-title: Fourier ptychographic microscopy with untrained deep neural network priors
  publication-title: Opt. Express
– volume: 166
  year: 2023
  ident: b0155
  article-title: URNet: High-quality single-pixel imaging with untrained reconstruction network
  publication-title: Opt. Lasers Eng.
– volume: 52
  start-page: R3429
  year: 1995
  ident: b0005
  article-title: Optical imaging by means of two-photon quantum entanglement
  publication-title: Phys. Rev. A
– volume: 78
  year: 2008
  ident: b0010
  article-title: Computational ghost imaging
  publication-title: Phys. Rev. A
– volume: 152
  year: 2022
  ident: b0015
  article-title: Performance comparison of computational ghost imaging versus single-pixel camera in light disturbance environment
  publication-title: Opt. Laser Technol.
– volume: 95
  year: 2009
  ident: b0055
  article-title: Compressive ghost imaging
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 25560
  year: 2019
  end-page: 25572
  ident: b0085
  article-title: Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging
  publication-title: Opt. Express
– volume: 10
  start-page: 104
  year: 2022
  end-page: 110
  ident: b0150
  article-title: Single-pixel imaging using physics enhanced deep learning
  publication-title: Photonics Res.
– volume: 19
  start-page: 4190
  year: 2019
  ident: b0075
  article-title: Improving imaging quality of real-time Fourier single-pixel imaging via deep learning
  publication-title: Sensors
– volume: 134
  year: 2020
  ident: b0090
  article-title: Deep-learning denoising computational ghost imaging
  publication-title: Opt. Lasers Eng.
– volume: 24
  start-page: 26080
  year: 2016
  end-page: 26096
  ident: b0070
  article-title: Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation
  publication-title: Opt. Express
– volume: 30
  start-page: 37484
  year: 2022
  end-page: 37492
  ident: b0175
  article-title: Scanning single-pixel imaging lidar
  publication-title: Opt. Express
– reference: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
– volume: 340
  start-page: 844
  year: 2013
  end-page: 847
  ident: b0045
  article-title: 3D computational imaging with single-pixel detectors
  publication-title: Science
– volume: 28
  start-page: 7360
  year: 2020
  end-page: 7374
  ident: b0105
  article-title: Deringing and denoising in extremely under-sampled Fourier single pixel imaging
  publication-title: Opt. Express
– reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In
– reference: (pp. 234-241). Springer International Publishing.
– volume: 158
  year: 2022
  ident: b0040
  article-title: Direct generation of 2D arrays of random numbers for high-fidelity optical ghost diffraction and information transmission through scattering media
  publication-title: Opt. Lasers Eng.
– volume: 7
  start-page: 559
  year: 2020
  end-page: 562
  ident: b0140
  article-title: Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network
  publication-title: Optica
– volume: 10
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0100
  article-title: DeepGhost: real-time computational ghost imaging via deep learning
  publication-title: Sci. Rep.
– volume: 156
  year: 2022
  ident: b0095
  article-title: Real-time physical compression computational ghost imaging based on array spatial light field modulation and deep learning
  publication-title: Opt. Lasers Eng.
– volume: 25
  start-page: 19619
  year: 2017
  end-page: 19639
  ident: b0060
  article-title: Hadamard single-pixel imaging versus Fourier single-pixel imaging
  publication-title: Opt. Express
– reference: Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep image prior. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9446-9454).
– volume: 11
  start-page: 1
  year: 2022
  ident: b0120
  article-title: Far-field super-resolution ghost imaging with a deep neural network constraint
  publication-title: Light Sci. Appl.
– volume: 79
  start-page: 173
  year: 2016
  end-page: 178
  ident: b0030
  article-title: Single pixel sensing for THz laser beam profiler based on Hadamard Transform
  publication-title: Opt. Laser Technol.
– volume: 7
  start-page: 3464
  year: 2017
  ident: b0170
  article-title: A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging
  publication-title: Sci. Rep.
– volume: 413
  start-page: 147
  year: 2018
  end-page: 151
  ident: b0080
  article-title: Computational ghost imaging using deep learning
  publication-title: Opt. Commun.
– volume: 1
  start-page: 285
  year: 2014
  end-page: 289
  ident: b0025
  article-title: Single-pixel infrared and visible microscope
  publication-title: Optica
– volume: 117
  year: 2016
  ident: b0020
  article-title: Fourier-transform ghost imaging with hard X rays
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 6
  ident: b0065
  article-title: Single-pixel imaging by means of Fourier spectrum acquisition
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1
  year: 2020
  end-page: 7
  ident: b0115
  article-title: Phase imaging with an untrained neural network
  publication-title: Light Sci. Appl.
– volume: 25
  start-page: 22859
  year: 2017
  end-page: 22868
  ident: b0035
  article-title: Underwater computational ghost imaging
  publication-title: Opt. Express
– volume: 19
  start-page: 732
  year: 2019
  ident: b0050
  article-title: Single-pixel imaging and its application in three-dimensional reconstruction: A brief review
  publication-title: Sensors
– volume: 29
  start-page: 13011
  year: 2021
  end-page: 13024
  ident: b0145
  article-title: Focus shaping of high numerical aperture lens using physics-assisted artificial neural networks
  publication-title: Opt. Express
– ident: 10.1016/j.optlastec.2023.109710_b0110
  doi: 10.1109/CVPR.2018.00984
– volume: 152
  year: 2022
  ident: 10.1016/j.optlastec.2023.109710_b0015
  article-title: Performance comparison of computational ghost imaging versus single-pixel camera in light disturbance environment
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2022.108140
– volume: 104
  year: 2010
  ident: 10.1016/j.optlastec.2023.109710_b0130
  article-title: Differential ghost imaging
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.253603
– ident: 10.1016/j.optlastec.2023.109710_b0125
  doi: 10.1007/978-3-319-24574-4_28
– volume: 156
  year: 2022
  ident: 10.1016/j.optlastec.2023.109710_b0095
  article-title: Real-time physical compression computational ghost imaging based on array spatial light field modulation and deep learning
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2022.107101
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2023.109710_b0115
  article-title: Phase imaging with an untrained neural network
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-0302-3
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.optlastec.2023.109710_b0065
  article-title: Single-pixel imaging by means of Fourier spectrum acquisition
  publication-title: Nat. Commun.
– volume: 7
  start-page: 559
  year: 2020
  ident: 10.1016/j.optlastec.2023.109710_b0140
  article-title: Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network
  publication-title: Optica
  doi: 10.1364/OPTICA.389314
– volume: 147
  year: 2021
  ident: 10.1016/j.optlastec.2023.109710_b0160
  article-title: Computational ghost imaging based on an untrained neural network
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2021.106744
– volume: 1
  start-page: 285
  year: 2014
  ident: 10.1016/j.optlastec.2023.109710_b0025
  article-title: Single-pixel infrared and visible microscope
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000285
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.optlastec.2023.109710_b0100
  article-title: DeepGhost: real-time computational ghost imaging via deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-68401-8
– volume: 25
  start-page: 19619
  year: 2017
  ident: 10.1016/j.optlastec.2023.109710_b0060
  article-title: Hadamard single-pixel imaging versus Fourier single-pixel imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.25.019619
– volume: 30
  start-page: 39597
  year: 2022
  ident: 10.1016/j.optlastec.2023.109710_b0135
  article-title: Fourier ptychographic microscopy with untrained deep neural network priors
  publication-title: Opt. Express
  doi: 10.1364/OE.472171
– volume: 52
  start-page: R3429
  year: 1995
  ident: 10.1016/j.optlastec.2023.109710_b0005
  article-title: Optical imaging by means of two-photon quantum entanglement
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.R3429
– volume: 19
  start-page: 4190
  issue: 19
  year: 2019
  ident: 10.1016/j.optlastec.2023.109710_b0075
  article-title: Improving imaging quality of real-time Fourier single-pixel imaging via deep learning
  publication-title: Sensors
  doi: 10.3390/s19194190
– volume: 7
  start-page: 3464
  issue: 1
  year: 2017
  ident: 10.1016/j.optlastec.2023.109710_b0170
  article-title: A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03725-6
– volume: 413
  start-page: 147
  year: 2018
  ident: 10.1016/j.optlastec.2023.109710_b0080
  article-title: Computational ghost imaging using deep learning
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2017.12.041
– volume: 11
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.optlastec.2023.109710_b0120
  article-title: Far-field super-resolution ghost imaging with a deep neural network constraint
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-021-00680-w
– volume: 27
  start-page: 25560
  year: 2019
  ident: 10.1016/j.optlastec.2023.109710_b0085
  article-title: Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.27.025560
– volume: 28
  start-page: 7360
  year: 2020
  ident: 10.1016/j.optlastec.2023.109710_b0105
  article-title: Deringing and denoising in extremely under-sampled Fourier single pixel imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.385233
– volume: 29
  start-page: 13011
  year: 2021
  ident: 10.1016/j.optlastec.2023.109710_b0145
  article-title: Focus shaping of high numerical aperture lens using physics-assisted artificial neural networks
  publication-title: Opt. Express
  doi: 10.1364/OE.421354
– volume: 21
  start-page: 3004
  year: 2012
  ident: 10.1016/j.optlastec.2023.109710_b0165
  article-title: An alternating direction algorithm for total variation reconstruction of distributed parameters
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2188033
– volume: 19
  start-page: 732
  year: 2019
  ident: 10.1016/j.optlastec.2023.109710_b0050
  article-title: Single-pixel imaging and its application in three-dimensional reconstruction: A brief review
  publication-title: Sensors
  doi: 10.3390/s19030732
– volume: 78
  year: 2008
  ident: 10.1016/j.optlastec.2023.109710_b0010
  article-title: Computational ghost imaging
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.061802
– volume: 10
  start-page: 104
  issue: 1
  year: 2022
  ident: 10.1016/j.optlastec.2023.109710_b0150
  article-title: Single-pixel imaging using physics enhanced deep learning
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.440123
– volume: 340
  start-page: 844
  year: 2013
  ident: 10.1016/j.optlastec.2023.109710_b0045
  article-title: 3D computational imaging with single-pixel detectors
  publication-title: Science
  doi: 10.1126/science.1234454
– volume: 117
  year: 2016
  ident: 10.1016/j.optlastec.2023.109710_b0020
  article-title: Fourier-transform ghost imaging with hard X rays
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.113901
– volume: 134
  year: 2020
  ident: 10.1016/j.optlastec.2023.109710_b0090
  article-title: Deep-learning denoising computational ghost imaging
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2020.106183
– volume: 166
  year: 2023
  ident: 10.1016/j.optlastec.2023.109710_b0155
  article-title: URNet: High-quality single-pixel imaging with untrained reconstruction network
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2023.107580
– volume: 158
  year: 2022
  ident: 10.1016/j.optlastec.2023.109710_b0040
  article-title: Direct generation of 2D arrays of random numbers for high-fidelity optical ghost diffraction and information transmission through scattering media
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2022.107141
– volume: 24
  start-page: 26080
  year: 2016
  ident: 10.1016/j.optlastec.2023.109710_b0070
  article-title: Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation
  publication-title: Opt. Express
  doi: 10.1364/OE.24.026080
– volume: 95
  year: 2009
  ident: 10.1016/j.optlastec.2023.109710_b0055
  article-title: Compressive ghost imaging
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3238296
– volume: 79
  start-page: 173
  year: 2016
  ident: 10.1016/j.optlastec.2023.109710_b0030
  article-title: Single pixel sensing for THz laser beam profiler based on Hadamard Transform
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2015.12.009
– volume: 25
  start-page: 22859
  year: 2017
  ident: 10.1016/j.optlastec.2023.109710_b0035
  article-title: Underwater computational ghost imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.25.022859
– volume: 30
  start-page: 37484
  year: 2022
  ident: 10.1016/j.optlastec.2023.109710_b0175
  article-title: Scanning single-pixel imaging lidar
  publication-title: Opt. Express
  doi: 10.1364/OE.471036
SSID ssj0004653
Score 2.4425032
Snippet •We propose a physical model-driven untrained deep convolutional autoencoder network for SPI and validate its performance from simulations and experiments.•We...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109710
SubjectTerms Convolutional neural network
Deep learning
Long-range imaging
Single-pixel imaging
Title Single-pixel imaging with untrained convolutional autoencoder network
URI https://dx.doi.org/10.1016/j.optlastec.2023.109710
Volume 167
WOSCitedRecordID wos001026404500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004653
  issn: 0030-3992
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH6CAhI7TMCGgA2Uw25TqiROiM0NTZ0GQjCpMBUuUew4UFTSiKaof_6efzRNAQkQ4hJVVlw7fp-fn63P3wP4IRATmeAUwRvtu2HOcc6FNHVxaeYhriiSaDmGfyfx6Snt9dhfy58f6XQCcVHQyYSVH2pqLENjq6uzbzB3_adYgL_R6PhEs-PzVYbv4mI0kG7Zn8jBz_6dyUKkj1vHhU4IITPNNbedUFoB42qo9CyVrERhaOHNmPWsrKWcMdTGd6onx_EnmhNwpWgd_RlQ7FH0cQOB3RtzsX1YXOfSLpqaXGC832Val9qTiIA8YnXUV2RmfCTtcgk6emYS3rWl8bI0Zi7uTKM5N2zScjxx6eZ04bY9LCv8SPzCtmpbS29aQuy8XnZXtajldokSmyHRIiwFccRoC5YOjzq948a1WStSans4R_97trnng5dGQHK-Bp_tTsI5NAhYhwVZbMCnhr7kBqxofq8YfYFOExWORYWjUOHUqHDmUOE0UOFYVHyFi9-d819_XJtBwxXEjypXhExQLn0mKQtz309xP5VJKiQGmr6XeV4ae1xGMU9ZxrKUxjTFcI5GKc5U6gWSbEKrGBZyC5yQ-nkeBZmX4yTmfsB5HgdhxhknRHAmtmF_OjSJsPLyqvuDZMojvE3qMU3UmCZmTLfBqyuWRmHl5SoH07FPbKBoAsAEQfNS5Z33VP4GqzPkf4dWdT-Wu7AsHqr-6H7PAuw_036T1A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-pixel+imaging+with+untrained+convolutional+autoencoder+network&rft.jtitle=Optics+and+laser+technology&rft.au=Li%2C+Zhicai&rft.au=Huang%2C+Jian&rft.au=Shi%2C+Dongfeng&rft.au=Chen%2C+Yafeng&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=167&rft_id=info:doi/10.1016%2Fj.optlastec.2023.109710&rft.externalDocID=S0030399223006035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon