The YOLO-based Multi-Pulse Lidar (YMPL) for target detection in hazy weather

•YMPL can accurately detect targets in fog and expand the detection range.•New data preprocessing for creating bitmaps from multiple pulses.•The data preprocessing can clearly demonstrate the position of the target in the fog.•The YOLO and preprocessing combo improve target recognition in harsh weat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optics and lasers in engineering Ročník 177; s. 108131
Hlavní autoři: Wu, Long, Gong, Fuxiang, Yang, Xu, Xu, Lu, Chen, Shuyu, Zhang, Yong, Zhang, Jianlong, Yang, Chenghua, Zhang, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2024
Témata:
ISSN:0143-8166, 1873-0302
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •YMPL can accurately detect targets in fog and expand the detection range.•New data preprocessing for creating bitmaps from multiple pulses.•The data preprocessing can clearly demonstrate the position of the target in the fog.•The YOLO and preprocessing combo improve target recognition in harsh weather. As one of the essential sensing technologies for autonomous driving, Lidar has not been widely adopted due to the significant impact of foggy and hazy weather leading to inaccurate target detection and distance measurement. In this paper, a YOLO-based Multi-Pulse Lidar system (YMPL) is proposed for accurate target detection in foggy conditions. The system integrates multiple one-dimensional pulse detection courses into a two-dimensional image and utilizes the YOLO target recognition algorithm to identify real target echoes and measure the distance of the target. The simulation and experimental results demonstrate that the YMPL system effectively mitigates the interference of fog and noise on pulse detection. Thereby the detection probability improves and the detection range extends. The system also shows the excellent anti-jitter ability. Under the circumstance of a 40 % backscattering coefficient, the system achieves a mean absolute error (MAE) of only 0.013 m within the range of 45.5 m, significantly outperforming the traditional threshold detection and ResNet, SVD-CNN and VIT algorithm. This lays a solid foundation for the all-weather practical application of lidar.
AbstractList •YMPL can accurately detect targets in fog and expand the detection range.•New data preprocessing for creating bitmaps from multiple pulses.•The data preprocessing can clearly demonstrate the position of the target in the fog.•The YOLO and preprocessing combo improve target recognition in harsh weather. As one of the essential sensing technologies for autonomous driving, Lidar has not been widely adopted due to the significant impact of foggy and hazy weather leading to inaccurate target detection and distance measurement. In this paper, a YOLO-based Multi-Pulse Lidar system (YMPL) is proposed for accurate target detection in foggy conditions. The system integrates multiple one-dimensional pulse detection courses into a two-dimensional image and utilizes the YOLO target recognition algorithm to identify real target echoes and measure the distance of the target. The simulation and experimental results demonstrate that the YMPL system effectively mitigates the interference of fog and noise on pulse detection. Thereby the detection probability improves and the detection range extends. The system also shows the excellent anti-jitter ability. Under the circumstance of a 40 % backscattering coefficient, the system achieves a mean absolute error (MAE) of only 0.013 m within the range of 45.5 m, significantly outperforming the traditional threshold detection and ResNet, SVD-CNN and VIT algorithm. This lays a solid foundation for the all-weather practical application of lidar.
ArticleNumber 108131
Author Wu, Long
Xu, Lu
Yang, Chenghua
Zhang, Wei
Yang, Xu
Gong, Fuxiang
Chen, Shuyu
Zhang, Jianlong
Zhang, Yong
Author_xml – sequence: 1
  givenname: Long
  surname: Wu
  fullname: Wu, Long
  organization: School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
– sequence: 2
  givenname: Fuxiang
  surname: Gong
  fullname: Gong, Fuxiang
  organization: School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
– sequence: 3
  givenname: Xu
  surname: Yang
  fullname: Yang, Xu
  email: yangxu@zstu.edu.cn
  organization: School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
– sequence: 4
  givenname: Lu
  surname: Xu
  fullname: Xu, Lu
  organization: School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
– sequence: 5
  givenname: Shuyu
  surname: Chen
  fullname: Chen, Shuyu
  organization: Keyi College of Zhejiang Sci-Tech University, Shaoxing 312369, China
– sequence: 6
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  organization: Institute of Optical Target Simulation and Test Technology, Harbin Institute of Technology, Harbin 150001, China
– sequence: 7
  givenname: Jianlong
  surname: Zhang
  fullname: Zhang, Jianlong
  organization: Institute of Optical Target Simulation and Test Technology, Harbin Institute of Technology, Harbin 150001, China
– sequence: 8
  givenname: Chenghua
  surname: Yang
  fullname: Yang, Chenghua
  organization: Beijing Institute of Remote Sensing Equipment, Beijing 110000, China
– sequence: 9
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Beijing Institute of Remote Sensing Equipment, Beijing 110000, China
BookMark eNqNkD1PwzAQQC1UJNrCb8AjDCm-2ImTgaGq-JJStUMZOlmufWldhaRyXFD59aQqYmCB6aST3tPdG5Be3dRIyDWwETBI77ajZhcq3WK9HsUsFt02Aw5npA-Z5BHjLO6RPgPBowzS9IIM2nbLOlIA9Emx2CBdzopZtOoUlk73VXDRfF-1SAtntac3y-m8uKVl42nQfo2BWgxogmtq6mq60Z8H-oE6bNBfkvNSd-TV9xyS18eHxeQ5KmZPL5NxERkOSYhWmWbGWpHEqzjBlCeY8zK3ZY6Ci9xaKcHGeRYjSMFkxgVIK9Dm3EiL3CR8SO5PXuObtvVYKuOCPl4UvHaVAqaOadRW_aRRxzTqlKbj5S9-592b9od_kOMTid177w69ao3D2qB1vmuibOP-dHwB5GaEqg
CitedBy_id crossref_primary_10_1016_j_infrared_2025_105956
crossref_primary_10_1016_j_optlastec_2025_113951
crossref_primary_10_1364_AO_570214
crossref_primary_10_1016_j_measurement_2025_117875
crossref_primary_10_1038_s41598_025_92112_7
crossref_primary_10_1016_j_infrared_2024_105639
crossref_primary_10_1016_j_aej_2025_04_105
Cites_doi 10.3390/rs14194960
10.3390/fractalfract2010008
10.1016/j.infrared.2023.104613
10.1080/15481603.2023.2227394
10.1364/OL.487477
10.1109/JPHOT.2022.3185304
10.1016/j.measurement.2021.110313
10.1016/j.optlastec.2023.109807
10.1109/TAP.2022.3172759
10.1109/TPAMI.2022.3152247
10.1016/j.optlastec.2022.108749
10.1109/MVT.2019.2892497
10.1109/LRA.2020.2972865
10.1109/18.382009
10.3390/app13063772
10.1016/j.optlaseng.2023.107658
10.1002/spe.2325
10.1109/LSENS.2020.3018708
10.3390/sym11080997
10.1109/LRA.2023.3311371
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlaseng.2024.108131
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
ExternalDocumentID 10_1016_j_optlaseng_2024_108131
S0143816624001106
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c315t-b8a0cdd452b25e635e93f9df9e4349dd771d2982e1740783417d4ed93c7de3c53
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001199823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Sat Nov 29 07:27:52 EST 2025
Tue Nov 18 22:41:42 EST 2025
Sat Mar 30 16:18:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Lidar
Foggy detection
YOLO target recognition algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-b8a0cdd452b25e635e93f9df9e4349dd771d2982e1740783417d4ed93c7de3c53
ParticipantIDs crossref_citationtrail_10_1016_j_optlaseng_2024_108131
crossref_primary_10_1016_j_optlaseng_2024_108131
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2024_108131
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Optics and lasers in engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Pan, Shen (bib0022) 2023; 157
Zhang, Zhou, Wang (bib0024) 2019; 11
Sang, Tsai, Yu (bib0008) 2020; 4
Han, Wang, Chen (bib0027) 2022; 45
Wang, Liu, Yang (bib0007) 2023; 8
Wang, Liu, Jia (bib0011) 2020; 11567
Zou, Huang, Liu (bib0012) 2023; 167
Liu, Jin, Que (bib0004) 2023; 168
Casasanta, Garra (bib0016) 2018; 2
Luo, Liu, Hua (bib0028) 2021
Liu, Li, Chen (bib0001) 2023; 48
Piovan, Hodgson, Mozzi (bib0002) 2023; 60
Donoho (bib0010) 1995; 41
Wang, Li, Yang (bib0026) 2022; 70
Redmon, Divvala, Girshick (bib0021) 2016
Jiang, Zhu, Jiang (bib0023) 2023; 13
He, Zhang, Ren (bib0025) 2016
Mau, Trumpf, Day (bib0009) 2022; 12274
Zang, Ding, Smith (bib0005) 2019; 14
Dai, Zhao, Li (bib0019) 2022; 14
Xu, Wang, Wu (bib0017) 2023; 130
Hahner, Sakaridis, Dai (bib0018) 2021
Chambi, Lemire, Kaser (bib0020) 2016; 46
Robin, Florian, Philipp (bib0014) 2020; 5
Ren, Zhao, Liu (bib0003) 2022; 187
Szegedy, Vanhoucke, Ioffe (bib0013) 2016
Li, Li, Mao (bib0006) 2022; 14
Ren, Haishan, Huo (bib0015) 2015; 37
Li (10.1016/j.optlaseng.2024.108131_bib0006) 2022; 14
Hahner (10.1016/j.optlaseng.2024.108131_bib0018) 2021
He (10.1016/j.optlaseng.2024.108131_bib0025) 2016
Mau (10.1016/j.optlaseng.2024.108131_bib0009) 2022; 12274
Li (10.1016/j.optlaseng.2024.108131_bib0022) 2023; 157
Piovan (10.1016/j.optlaseng.2024.108131_bib0002) 2023; 60
Donoho (10.1016/j.optlaseng.2024.108131_bib0010) 1995; 41
Redmon (10.1016/j.optlaseng.2024.108131_bib0021) 2016
Chambi (10.1016/j.optlaseng.2024.108131_bib0020) 2016; 46
Luo (10.1016/j.optlaseng.2024.108131_bib0028) 2021
Sang (10.1016/j.optlaseng.2024.108131_bib0008) 2020; 4
Liu (10.1016/j.optlaseng.2024.108131_bib0004) 2023; 168
Jiang (10.1016/j.optlaseng.2024.108131_bib0023) 2023; 13
Robin (10.1016/j.optlaseng.2024.108131_bib0014) 2020; 5
Zang (10.1016/j.optlaseng.2024.108131_bib0005) 2019; 14
Han (10.1016/j.optlaseng.2024.108131_bib0027) 2022; 45
Zou (10.1016/j.optlaseng.2024.108131_bib0012) 2023; 167
Szegedy (10.1016/j.optlaseng.2024.108131_bib0013) 2016
Ren (10.1016/j.optlaseng.2024.108131_bib0015) 2015; 37
Wang (10.1016/j.optlaseng.2024.108131_bib0026) 2022; 70
Wang (10.1016/j.optlaseng.2024.108131_bib0007) 2023; 8
Ren (10.1016/j.optlaseng.2024.108131_bib0003) 2022; 187
Liu (10.1016/j.optlaseng.2024.108131_bib0001) 2023; 48
Casasanta (10.1016/j.optlaseng.2024.108131_bib0016) 2018; 2
Dai (10.1016/j.optlaseng.2024.108131_bib0019) 2022; 14
Wang (10.1016/j.optlaseng.2024.108131_bib0011) 2020; 11567
Zhang (10.1016/j.optlaseng.2024.108131_bib0024) 2019; 11
Xu (10.1016/j.optlaseng.2024.108131_bib0017) 2023; 130
References_xml – start-page: 770
  year: 2016
  end-page: 778
  ident: bib0025
  article-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  publication-title: Deep residual learning for image recognition
– volume: 167
  year: 2023
  ident: bib0012
  article-title: Target recognition based on pre-processing in computational ghost imaging with deep learning
  publication-title: Opt Laser Technol
– volume: 48
  start-page: 2587
  year: 2023
  end-page: 2590
  ident: bib0001
  article-title: Scale-adaptive three-dimensional imaging using Risley-prism-based coherent lidar
  publication-title: Opt Lett
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib0021
  article-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
  publication-title: You only look once: unified, real-time object detection
– volume: 60
  year: 2023
  ident: bib0002
  article-title: LiDAR-change-based map** of sediment movement from an extreme rainfall event
  publication-title: GIsci Remote Sens
– volume: 14
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib0019
  article-title: GCD-YOLOv5: an armored target recognition algorithm in complex environments based on array Lidar
  publication-title: IEEE Photonics J
– volume: 37
  start-page: 1
  year: 2015
  end-page: 4
  ident: bib0015
  article-title: Anti-interference of dual-wavelength laser fuze[J]
  publication-title: J Detect Control
– volume: 14
  start-page: 103
  year: 2019
  end-page: 111
  ident: bib0005
  article-title: The impact of adverse weather conditions on autonomous vehicles: how rain, snow, fog, and hail affect the performance of a self-driving car
  publication-title: IEEE Veh Technol Mag
– volume: 46
  start-page: 709
  year: 2016
  end-page: 719
  ident: bib0020
  article-title: Better bitmap performance with roaring bitmaps
  publication-title: Softw Pract Exp
– start-page: 15283
  year: 2021
  end-page: 15292
  ident: bib0018
  article-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  publication-title: Fog simulation on real LiDAR point clouds for 3D object detection in adverse weather
– volume: 168
  year: 2023
  ident: bib0004
  article-title: Polarised full-waveform warning LIDAR with dust backscattering suppression
  publication-title: Opt Lasers Eng
– volume: 11567
  start-page: 811
  year: 2020
  end-page: 816
  ident: bib0011
  article-title: Laser detection technology based on wavefront measurement
  publication-title: Proceedings of the conference on optical sensing and imaging technology
– volume: 41
  start-page: 613
  year: 1995
  end-page: 627
  ident: bib0010
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans Inf Theory
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0013
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 14
  start-page: 4960
  year: 2022
  ident: bib0006
  article-title: A novel lidar signal-denoising algorithm based on sparrow search algorithm for optimal variational modal decomposition
  publication-title: Remote Sens
– volume: 70
  start-page: 5217
  year: 2022
  end-page: 5226
  ident: bib0026
  article-title: Cone-shaped space target inertia characteristics identification by deep learning with compressed dataset
  publication-title: IEEE Trans Antennas Propag
– volume: 12274
  start-page: 23
  year: 2022
  end-page: 32
  ident: bib0009
  article-title: An image feature-based approach to improving SPAD flash lidar imaging through fog
  publication-title: Proceedings of the emerging imaging and sensing technologies for security and defence VII
– volume: 11
  start-page: 997
  year: 2019
  ident: bib0024
  article-title: A novel noise suppression channel estimation method based on adaptive weighted averaging for OFDM systems
  publication-title: Symmetry
– volume: 187
  year: 2022
  ident: bib0003
  article-title: Adaptive Doppler compensation method for coherent LIDAR based on optical phase-locked loop
  publication-title: Measurement
– volume: 130
  start-page: 104613
  year: 2023
  ident: bib0017
  article-title: Full-waveform LiDAR echo decomposition method based on deep learning and sparrow search algorithm
  publication-title: Infrared Phys Technol
– volume: 13
  start-page: 3772
  year: 2023
  ident: bib0023
  article-title: Adaptive suppression method of lidar background noise based on threshold detection
  publication-title: Appl Sci
– start-page: 638
  year: 2021
  end-page: 645
  ident: bib0028
  article-title: A single-photon lidar ranging accuracy evaluation model
  publication-title: Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, 11763
– volume: 5
  start-page: 2514
  year: 2020
  end-page: 2521
  ident: bib0014
  article-title: CNN-based Lidar point cloud de-noising in adverse weather
  publication-title: IEEE Robot Autom Lett
– volume: 2
  start-page: 8
  year: 2018
  ident: bib0016
  article-title: Towards a generalized Beer-Lambert law
  publication-title: Fractal Fract
– volume: 8
  start-page: 6675
  year: 2023
  end-page: 6682
  ident: bib0007
  article-title: SW-LIO: a sliding window based tightly coupled LiDAR-inertial odometry
  publication-title: IEEE Robot Autom Lett
– volume: 157
  start-page: 108749
  year: 2023
  ident: bib0022
  article-title: Single-photon Lidar for canopy detection with a multi-channel Si SPAD at 1064 nm
  publication-title: Opt Laser Technol
– volume: 45
  start-page: 87
  year: 2022
  end-page: 110
  ident: bib0027
  article-title: A survey on vision transformer
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 4
  start-page: 1
  year: 2020
  end-page: 4
  ident: bib0008
  article-title: Mitigating effects of uniform fog on SPAD lidars
  publication-title: IEEE Sens Lett
– start-page: 779
  year: 2016
  ident: 10.1016/j.optlaseng.2024.108131_bib0021
  article-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
  publication-title: You only look once: unified, real-time object detection
– volume: 14
  start-page: 4960
  issue: 19
  year: 2022
  ident: 10.1016/j.optlaseng.2024.108131_bib0006
  article-title: A novel lidar signal-denoising algorithm based on sparrow search algorithm for optimal variational modal decomposition
  publication-title: Remote Sens
  doi: 10.3390/rs14194960
– volume: 2
  start-page: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.optlaseng.2024.108131_bib0016
  article-title: Towards a generalized Beer-Lambert law
  publication-title: Fractal Fract
  doi: 10.3390/fractalfract2010008
– volume: 130
  start-page: 104613
  year: 2023
  ident: 10.1016/j.optlaseng.2024.108131_bib0017
  article-title: Full-waveform LiDAR echo decomposition method based on deep learning and sparrow search algorithm
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2023.104613
– start-page: 15283
  year: 2021
  ident: 10.1016/j.optlaseng.2024.108131_bib0018
  article-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 60
  issue: 1
  year: 2023
  ident: 10.1016/j.optlaseng.2024.108131_bib0002
  article-title: LiDAR-change-based map** of sediment movement from an extreme rainfall event
  publication-title: GIsci Remote Sens
  doi: 10.1080/15481603.2023.2227394
– volume: 48
  start-page: 2587
  issue: 10
  year: 2023
  ident: 10.1016/j.optlaseng.2024.108131_bib0001
  article-title: Scale-adaptive three-dimensional imaging using Risley-prism-based coherent lidar
  publication-title: Opt Lett
  doi: 10.1364/OL.487477
– volume: 14
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.optlaseng.2024.108131_bib0019
  article-title: GCD-YOLOv5: an armored target recognition algorithm in complex environments based on array Lidar
  publication-title: IEEE Photonics J
  doi: 10.1109/JPHOT.2022.3185304
– volume: 187
  year: 2022
  ident: 10.1016/j.optlaseng.2024.108131_bib0003
  article-title: Adaptive Doppler compensation method for coherent LIDAR based on optical phase-locked loop
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110313
– volume: 12274
  start-page: 23
  year: 2022
  ident: 10.1016/j.optlaseng.2024.108131_bib0009
  article-title: An image feature-based approach to improving SPAD flash lidar imaging through fog
– volume: 167
  year: 2023
  ident: 10.1016/j.optlaseng.2024.108131_bib0012
  article-title: Target recognition based on pre-processing in computational ghost imaging with deep learning
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2023.109807
– volume: 70
  start-page: 5217
  issue: 7
  year: 2022
  ident: 10.1016/j.optlaseng.2024.108131_bib0026
  article-title: Cone-shaped space target inertia characteristics identification by deep learning with compressed dataset
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/TAP.2022.3172759
– volume: 45
  start-page: 87
  issue: 1
  year: 2022
  ident: 10.1016/j.optlaseng.2024.108131_bib0027
  article-title: A survey on vision transformer
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3152247
– volume: 157
  start-page: 108749
  year: 2023
  ident: 10.1016/j.optlaseng.2024.108131_bib0022
  article-title: Single-photon Lidar for canopy detection with a multi-channel Si SPAD at 1064 nm
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2022.108749
– volume: 14
  start-page: 103
  issue: 2
  year: 2019
  ident: 10.1016/j.optlaseng.2024.108131_bib0005
  article-title: The impact of adverse weather conditions on autonomous vehicles: how rain, snow, fog, and hail affect the performance of a self-driving car
  publication-title: IEEE Veh Technol Mag
  doi: 10.1109/MVT.2019.2892497
– volume: 5
  start-page: 2514
  issue: 2
  year: 2020
  ident: 10.1016/j.optlaseng.2024.108131_bib0014
  article-title: CNN-based Lidar point cloud de-noising in adverse weather
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.2972865
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  ident: 10.1016/j.optlaseng.2024.108131_bib0010
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.382009
– volume: 13
  start-page: 3772
  issue: 6
  year: 2023
  ident: 10.1016/j.optlaseng.2024.108131_bib0023
  article-title: Adaptive suppression method of lidar background noise based on threshold detection
  publication-title: Appl Sci
  doi: 10.3390/app13063772
– start-page: 2818
  year: 2016
  ident: 10.1016/j.optlaseng.2024.108131_bib0013
  article-title: Rethinking the inception architecture for computer vision
– volume: 11567
  start-page: 811
  year: 2020
  ident: 10.1016/j.optlaseng.2024.108131_bib0011
  article-title: Laser detection technology based on wavefront measurement
– volume: 168
  year: 2023
  ident: 10.1016/j.optlaseng.2024.108131_bib0004
  article-title: Polarised full-waveform warning LIDAR with dust backscattering suppression
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2023.107658
– start-page: 638
  year: 2021
  ident: 10.1016/j.optlaseng.2024.108131_bib0028
  article-title: A single-photon lidar ranging accuracy evaluation model
– volume: 46
  start-page: 709
  issue: 5
  year: 2016
  ident: 10.1016/j.optlaseng.2024.108131_bib0020
  article-title: Better bitmap performance with roaring bitmaps
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.2325
– volume: 4
  start-page: 1
  issue: 9
  year: 2020
  ident: 10.1016/j.optlaseng.2024.108131_bib0008
  article-title: Mitigating effects of uniform fog on SPAD lidars
  publication-title: IEEE Sens Lett
  doi: 10.1109/LSENS.2020.3018708
– volume: 11
  start-page: 997
  issue: 8
  year: 2019
  ident: 10.1016/j.optlaseng.2024.108131_bib0024
  article-title: A novel noise suppression channel estimation method based on adaptive weighted averaging for OFDM systems
  publication-title: Symmetry
  doi: 10.3390/sym11080997
– start-page: 770
  year: 2016
  ident: 10.1016/j.optlaseng.2024.108131_bib0025
  article-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 8
  start-page: 6675
  issue: 10
  year: 2023
  ident: 10.1016/j.optlaseng.2024.108131_bib0007
  article-title: SW-LIO: a sliding window based tightly coupled LiDAR-inertial odometry
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2023.3311371
– volume: 37
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.optlaseng.2024.108131_bib0015
  article-title: Anti-interference of dual-wavelength laser fuze[J]
  publication-title: J Detect Control
SSID ssj0016411
Score 2.4395785
Snippet •YMPL can accurately detect targets in fog and expand the detection range.•New data preprocessing for creating bitmaps from multiple pulses.•The data...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108131
SubjectTerms Foggy detection
Lidar
YOLO target recognition algorithm
Title The YOLO-based Multi-Pulse Lidar (YMPL) for target detection in hazy weather
URI https://dx.doi.org/10.1016/j.optlaseng.2024.108131
Volume 177
WOSCitedRecordID wos001199823400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELagAwkeEAwQg4H8wAOoctUkTmLzNk0bP1TWPgwpfYoS2xmbUFqtCZT99TvHjpPCpLIHXqLopHOa3Nfz5_P5DqG3io0jXYaO5IUUhLJCEJYXjLAsLiKfU-UJ0TSbiE9OWJLwmd2KWTXtBOKyZOs1X_5XU4MMjK2Pzt7C3G5QEMA9GB2uYHa4_rPh59PJlOgJSg6bE7ZkVsMUCAtwmel-Gmz-dTbR8YAmx7DJBR9KVSnRZj5-z65-D38Zdtinr9Olq-oMrFuf_dUVR7qShs7F1816f9FJPtrU3-N6DYB04rkNVyd1K0mMat0PR_i0S5tyEcqA6M3IDRdrW7UYJ-kBDTGu_y__bUIJF6PFstKvUZ6N9DNGncZmxew_ZjKXX9imrl2kbqBUD5Sage6iHT8OORugnYPPR8kXt-0UUc80sLTvsJEQeONvupnO9CjK6WP0yK4t8IHBxBN0R5W76GGv4uQuut9k_IrVUzQBnOAOJ7iHE9zgBL_TKHmPASPYYAQ7jODzEmuMYIuRZ-jb8dHp4SdiW2sQEXhhRXKWjYWUNPRzP1RAOhUPCi4LrmhAuZRx7EmfM1_BglVv9FIvllRJHohYqkCEwXM0KBeleoEwpZFkmndKxWjuZ1lEx5IJFcH308ek91DUfqFU2Lrzuv3Jj3SLlfbQ2CkuTemV7SofWhOklkEaZpgCwLYpv7z9816hB91_YB8NqstavUb3xM_qfHX5xqLrGl6DksY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+YOLO-based+Multi-Pulse+Lidar+%28YMPL%29+for+target+detection+in+hazy+weather&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Wu%2C+Long&rft.au=Gong%2C+Fuxiang&rft.au=Yang%2C+Xu&rft.au=Xu%2C+Lu&rft.date=2024-06-01&rft.issn=0143-8166&rft.volume=177&rft.spage=108131&rft_id=info:doi/10.1016%2Fj.optlaseng.2024.108131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlaseng_2024_108131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon