Safe sets and in-dominating sets in digraphs

A non-empty subset S of the vertices of a digraph D is a safe set if (i) for every strongly connected component M of D−S, there exists a strongly connected component N of D[S] such that there exists an arc from M to N; and (ii) for every strongly connected component M of D−S and every strongly conne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 346; S. 215 - 227
Hauptverfasser: Bai, Yandong, Bang-Jensen, Jørgen, Fujita, Shinya, Ono, Hirotaka, Yeo, Anders
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 31.03.2024
Schlagworte:
ISSN:0166-218X, 1872-6771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A non-empty subset S of the vertices of a digraph D is a safe set if (i) for every strongly connected component M of D−S, there exists a strongly connected component N of D[S] such that there exists an arc from M to N; and (ii) for every strongly connected component M of D−S and every strongly connected component N of D[S], we have |M|≤|N| whenever there exists an arc from M to N. In the case of acyclic digraphs a set X of vertices is a safe set precisely when X is an in-dominating set, that is, every vertex not in X has at least one arc to X. We prove that, even for acyclic digraphs which are traceable (have a hamiltonian path) it is NP-hard to find a minimum cardinality safe (in-dominating) set. Then we show that the problem is also NP-hard for tournaments and give, for every positive constant c, a polynomial algorithm for finding a minimum cardinality safe set in a tournament on n vertices in which no strong component has size more than clog(n). Under the so called Exponential Time Hypothesis (ETH) this is close to best possible in the following sense: If ETH holds, then, for every ϵ>0 there is no polynomial time algorithm for finding a minimum cardinality safe set for the class of tournaments in which the largest strong component has size at most log1+ϵ(n). We also discuss bounds on the cardinality of safe sets in tournaments.
AbstractList A non-empty subset S of the vertices of a digraph D is a safe set if (i) for every strongly connected component M of D−S, there exists a strongly connected component N of D[S] such that there exists an arc from M to N; and (ii) for every strongly connected component M of D−S and every strongly connected component N of D[S], we have |M|≤|N| whenever there exists an arc from M to N. In the case of acyclic digraphs a set X of vertices is a safe set precisely when X is an in-dominating set, that is, every vertex not in X has at least one arc to X. We prove that, even for acyclic digraphs which are traceable (have a hamiltonian path) it is NP-hard to find a minimum cardinality safe (in-dominating) set. Then we show that the problem is also NP-hard for tournaments and give, for every positive constant c, a polynomial algorithm for finding a minimum cardinality safe set in a tournament on n vertices in which no strong component has size more than clog(n). Under the so called Exponential Time Hypothesis (ETH) this is close to best possible in the following sense: If ETH holds, then, for every ϵ>0 there is no polynomial time algorithm for finding a minimum cardinality safe set for the class of tournaments in which the largest strong component has size at most log1+ϵ(n). We also discuss bounds on the cardinality of safe sets in tournaments.
Author Fujita, Shinya
Ono, Hirotaka
Yeo, Anders
Bai, Yandong
Bang-Jensen, Jørgen
Author_xml – sequence: 1
  givenname: Yandong
  surname: Bai
  fullname: Bai, Yandong
  email: bai@nwpu.edu.cn
  organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, China
– sequence: 2
  givenname: Jørgen
  surname: Bang-Jensen
  fullname: Bang-Jensen, Jørgen
  email: jbj@imada.sdu.dk
  organization: Department of Mathematics and Computer Science, University of Southern Denmark, Denmark
– sequence: 3
  givenname: Shinya
  surname: Fujita
  fullname: Fujita, Shinya
  email: fujita@yokohama-cu.ac.jp
  organization: School of Data Science, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
– sequence: 4
  givenname: Hirotaka
  surname: Ono
  fullname: Ono, Hirotaka
  email: ono@nagoya-u.jp
  organization: Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 465-0055, Japan
– sequence: 5
  givenname: Anders
  surname: Yeo
  fullname: Yeo, Anders
  email: yeo@imada.sdu.dk
  organization: Department of Mathematics and Computer Science, University of Southern Denmark, Denmark
BookMark eNp9j81KxDAUhYOMYGf0Adz1AWzNvbFtBlcy-AcDLlRwF_JzO6bYdEiK4NubYVy7unA43-F-S7YIUyDGLoHXwKG9Hmqnxxo5ihqw5oAnrADZYdV2HSxYkTtthSA_ztgypYHzXAFZsKtX3VOZaE6lDq70oXLT6IOefdgdYx9K53dR7z_TOTvt9Veii7-7Yu8P92-bp2r78vi8udtWVkAzV6axom8M9Vo6kDe27VoJDXamF2u0gI3TZAUK4to4a7iR2LTWroUBjjkTKwbHXRunlCL1ah_9qOOPAq4OumpQWVcddBWgyi6ZuT0ylB_79hRVsp6CJecj2Vm5yf9D_wJb9F6S
Cites_doi 10.1016/j.cor.2023.106311
10.1006/jctb.1993.1002
10.1016/j.dam.2018.03.074
10.1002/net.21794
10.1007/11821069_21
10.1007/s10878-017-0205-2
10.1016/j.dam.2013.10.038
10.1109/FOCS.2018.00062
10.1145/2591796.2591884
10.1016/j.procs.2021.11.061
10.1002/net.22140
10.1007/s11590-020-01540-z
10.1002/jgt.20646
10.1007/s10878-018-0316-4
10.1145/237814.237991
10.1016/j.ipl.2008.02.009
10.1016/j.dam.2016.07.020
10.1016/j.dam.2019.11.017
10.1007/s00453-020-00700-y
10.1137/0405027
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2023.12.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 227
ExternalDocumentID 10_1016_j_dam_2023_12_012
S0166218X2300481X
GrantInformation_xml – fundername: Shaanxi Fundamental Science Research Project for Mathematics and Physics, China
  grantid: 22JSZ009
– fundername: Danish research council for independent research, Denmark
  grantid: DFF 7014-00037B
– fundername: JSPS, Japan
  grantid: JP20H05967; JP21K19765; JP22H00513
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Fundamental Research Funds for the Central Universities, China
  grantid: G2023KY0606
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: JSPS, Japan
  grantid: JP19K03603; JP23K03202
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: National Natural Science Foundation of China
  grantid: 12311540140; 12242111; 12131013; 11601430
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Guangdong Basic & Applied Basic Research Foundation, China
  grantid: 2023A1515030208; 2022A1515010899
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c315t-b5c3f5befa8d184c67681527bf392c125daec323e0abdcb0b8256cc93b1020ab3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001165776100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Sat Nov 29 07:23:55 EST 2025
Sat Feb 17 16:12:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NP-complete
Safe set
In-dominating set
Polynomial algorithm
Tournament
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-b5c3f5befa8d184c67681527bf392c125daec323e0abdcb0b8256cc93b1020ab3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_dam_2023_12_012
elsevier_sciencedirect_doi_10_1016_j_dam_2023_12_012
PublicationCentury 2000
PublicationDate 2024-03-31
PublicationDateYYYYMMDD 2024-03-31
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-31
  day: 31
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References K. Subhash, D. Minzer, M. Safra, Pseudorandom sets in grassmann graph have near-perfect expansion, in: Proceedings of 2018 IEEE 59th Annual Symposium on Foundations of Computer Science, FOCS, 2018, pp. 592–601.
Fujita, Jensen, Park, Sakuma (b14) 2019; 37
Fujita, MacGillivray, Sakuma (b15) 2016; 215
Speckenmeyer (b27) 1989; vol. 411
Ganian, Hlineny, Kneis, Langer, Obdrzalek, Rossmanith (b16) 2014; 168
Bang-Jensen, Gutin (b2) 2008
I. Dinur, D. Steure, Analytical approach to parallel repetition, in: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, 2014, pp. 624—633.
Liedloff (b22) 2008; 107
J. Chen, I.A. Kanj, G. Xia, Improved parameterized upper bounds for vertex cover, in: International Symposium on Mathematical Foundations of Computer Science, MFCS2006, 2006, pp. 238–249.
Hosteins (b19) 2020; 14
Fujita, Furuya (b13) 2018; 247
Boggio Tomasaz, Cordone, Hosteins (b7) 2023; 159
Reid (b24) 1985; 27
Cormen, Leiserson, Rivest, Stein (b9) 2009
Bang-Jensen, Thomassen (b3) 1992; 5
Gyárfás, Simonyi, Tóth (b17) 2012; 71
Häggkvist, Thomassen, digraphs (b18) 1976; 20
Malaguti, Pedrotti (b23) 2021; 195
Bapat, Fujita, Legay, Manoussakis, Matsui, Sakuma, Tuza (b4) 2018; 71
Ehard, Rautenbach (b12) 2020; 281
Cygan, Fomin, L.Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (b10) 2016
Boggio Tomasaz, Cordone, Hosteins (b6) 2023; 81
Kang, Kim, Park (b20) 2018; 141
P. Slavik, A tight analysis of the greedy algorithm for set cover, in: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, 1996, pp. 435–441.
Águeda, Cohen, Fujita, Legay, Manoussakis, Matsui, Montero, Naserasr, Ono, Otachi, Sakuma, Tuza, Xu (b1) 2018; 36
Belmonte, Hanaka, Katsikarelis, Lampis, Ono, Otachi (b5) 2020; 82–9
Song (b26) 1993; 57
Karp (b21) 1972
Cygan (10.1016/j.dam.2023.12.012_b10) 2016
Häggkvist (10.1016/j.dam.2023.12.012_b18) 1976; 20
Kang (10.1016/j.dam.2023.12.012_b20) 2018; 141
Boggio Tomasaz (10.1016/j.dam.2023.12.012_b6) 2023; 81
Fujita (10.1016/j.dam.2023.12.012_b13) 2018; 247
Reid (10.1016/j.dam.2023.12.012_b24) 1985; 27
Cormen (10.1016/j.dam.2023.12.012_b9) 2009
Belmonte (10.1016/j.dam.2023.12.012_b5) 2020; 82–9
Boggio Tomasaz (10.1016/j.dam.2023.12.012_b7) 2023; 159
10.1016/j.dam.2023.12.012_b8
10.1016/j.dam.2023.12.012_b25
10.1016/j.dam.2023.12.012_b28
Ehard (10.1016/j.dam.2023.12.012_b12) 2020; 281
Karp (10.1016/j.dam.2023.12.012_b21) 1972
Gyárfás (10.1016/j.dam.2023.12.012_b17) 2012; 71
Bapat (10.1016/j.dam.2023.12.012_b4) 2018; 71
Bang-Jensen (10.1016/j.dam.2023.12.012_b2) 2008
Malaguti (10.1016/j.dam.2023.12.012_b23) 2021; 195
Song (10.1016/j.dam.2023.12.012_b26) 1993; 57
Liedloff (10.1016/j.dam.2023.12.012_b22) 2008; 107
Fujita (10.1016/j.dam.2023.12.012_b15) 2016; 215
10.1016/j.dam.2023.12.012_b11
Fujita (10.1016/j.dam.2023.12.012_b14) 2019; 37
Bang-Jensen (10.1016/j.dam.2023.12.012_b3) 1992; 5
Águeda (10.1016/j.dam.2023.12.012_b1) 2018; 36
Hosteins (10.1016/j.dam.2023.12.012_b19) 2020; 14
Ganian (10.1016/j.dam.2023.12.012_b16) 2014; 168
Speckenmeyer (10.1016/j.dam.2023.12.012_b27) 1989; vol. 411
References_xml – volume: 71
  start-page: 81
  year: 2018
  end-page: 92
  ident: b4
  article-title: Weighted safe set problem on trees
  publication-title: Networks
– reference: K. Subhash, D. Minzer, M. Safra, Pseudorandom sets in grassmann graph have near-perfect expansion, in: Proceedings of 2018 IEEE 59th Annual Symposium on Foundations of Computer Science, FOCS, 2018, pp. 592–601.
– reference: J. Chen, I.A. Kanj, G. Xia, Improved parameterized upper bounds for vertex cover, in: International Symposium on Mathematical Foundations of Computer Science, MFCS2006, 2006, pp. 238–249.
– year: 2009
  ident: b9
  article-title: Introduction to Algorithms
– volume: 195
  start-page: 508
  year: 2021
  end-page: 515
  ident: b23
  article-title: A new formulation for the weighted safe set problem
  publication-title: Procedia Comput. Sci.
– reference: I. Dinur, D. Steure, Analytical approach to parallel repetition, in: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, 2014, pp. 624—633.
– volume: 159
  year: 2023
  ident: b7
  article-title: Constructive–destructive heuristics for the Safe Set Problem
  publication-title: Comput. Oper. Res.
– volume: 247
  start-page: 398
  year: 2018
  end-page: 406
  ident: b13
  article-title: Safe number and integrity of graphs
  publication-title: Discrete Appl. Math.
– volume: 20
  start-page: 20
  year: 1976
  end-page: 40
  ident: b18
  article-title: J. combin. theory ser.
  publication-title: B
– volume: 5
  start-page: 366
  year: 1992
  end-page: 376
  ident: b3
  article-title: A polynomial algorithm for the 2-path problem for semicomplete digraphs
  publication-title: SIAM J. Discrete Math.
– volume: 281
  start-page: 216
  year: 2020
  end-page: 223
  ident: b12
  article-title: Approximating connected safe sets in weighted trees
  publication-title: Discrete Appl. Math.
– volume: 215
  start-page: 106
  year: 2016
  end-page: 111
  ident: b15
  article-title: Safe set problem on graphs
  publication-title: Discrete Appl. Math.
– volume: 27
  start-page: 321
  year: 1985
  end-page: 334
  ident: b24
  article-title: Two complementary circuits in two-connected tournaments
  publication-title: Ann. Discrete Math.
– volume: 141
  start-page: 243
  year: 2018
  end-page: 257
  ident: b20
  article-title: On the safe sets of Cartesian product of two complete graphs
  publication-title: Ars Combin.
– volume: 37
  start-page: 685
  year: 2019
  end-page: 701
  ident: b14
  article-title: On weighted safe set problem on paths and cycles
  publication-title: J. Combin. Optim.
– start-page: 85
  year: 1972
  end-page: 103
  ident: b21
  article-title: Reducibility among combinatorial problems
  publication-title: Complexity of Computer Computations
– volume: 71
  start-page: 278
  year: 2012
  end-page: 292
  ident: b17
  article-title: Gallai colorings and domination in multipartite digraphs
  publication-title: J. Graph Theory
– reference: P. Slavik, A tight analysis of the greedy algorithm for set cover, in: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, 1996, pp. 435–441.
– volume: 36
  start-page: 1221
  year: 2018
  end-page: 1242
  ident: b1
  article-title: Safe sets in graphs: Graph classes and structural parameters
  publication-title: J. Combin. Optim.
– volume: 57
  start-page: 18
  year: 1993
  end-page: 25
  ident: b26
  article-title: Complementary cycles of all lengths in tournaments
  publication-title: J. Combin. Theory Ser. B
– volume: 81
  start-page: 445
  year: 2023
  end-page: 464
  ident: b6
  article-title: A combinatorial branch and bound for the safe set problem
  publication-title: Networks
– volume: 14
  start-page: 2127
  year: 2020
  end-page: 2148
  ident: b19
  article-title: A compact mixed integer linear formulation for safe set problems
  publication-title: Optim. Lett.
– volume: 168
  start-page: 88
  year: 2014
  end-page: 107
  ident: b16
  article-title: Digraph width measures in parametrized algorithmics
  publication-title: Discrete Appl. Math.
– volume: vol. 411
  start-page: 218
  year: 1989
  end-page: 231
  ident: b27
  article-title: On feedback problems in digraphs
  publication-title: Proc. 15 WG 89
– year: 2008
  ident: b2
  publication-title: Digraphs: Theory, Algorithms and Applications
– year: 2016
  ident: b10
  article-title: Parameterized Algorithms
– volume: 82–9
  start-page: 2586
  year: 2020
  end-page: 2605
  ident: b5
  article-title: Parameterized complexity of safe set
  publication-title: Algorithmica
– volume: 107
  start-page: 154
  year: 2008
  end-page: 157
  ident: b22
  article-title: Finding a dominating set on bipartite graphs
  publication-title: Inform. Process. Lett.
– volume: 141
  start-page: 243
  year: 2018
  ident: 10.1016/j.dam.2023.12.012_b20
  article-title: On the safe sets of Cartesian product of two complete graphs
  publication-title: Ars Combin.
– volume: 159
  year: 2023
  ident: 10.1016/j.dam.2023.12.012_b7
  article-title: Constructive–destructive heuristics for the Safe Set Problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106311
– year: 2016
  ident: 10.1016/j.dam.2023.12.012_b10
– volume: 57
  start-page: 18
  year: 1993
  ident: 10.1016/j.dam.2023.12.012_b26
  article-title: Complementary cycles of all lengths in tournaments
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1006/jctb.1993.1002
– volume: 247
  start-page: 398
  year: 2018
  ident: 10.1016/j.dam.2023.12.012_b13
  article-title: Safe number and integrity of graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.03.074
– year: 2008
  ident: 10.1016/j.dam.2023.12.012_b2
– volume: 20
  start-page: 20
  year: 1976
  ident: 10.1016/j.dam.2023.12.012_b18
  article-title: J. combin. theory ser.
  publication-title: B
– volume: 71
  start-page: 81
  year: 2018
  ident: 10.1016/j.dam.2023.12.012_b4
  article-title: Weighted safe set problem on trees
  publication-title: Networks
  doi: 10.1002/net.21794
– ident: 10.1016/j.dam.2023.12.012_b8
  doi: 10.1007/11821069_21
– volume: 36
  start-page: 1221
  year: 2018
  ident: 10.1016/j.dam.2023.12.012_b1
  article-title: Safe sets in graphs: Graph classes and structural parameters
  publication-title: J. Combin. Optim.
  doi: 10.1007/s10878-017-0205-2
– start-page: 85
  year: 1972
  ident: 10.1016/j.dam.2023.12.012_b21
  article-title: Reducibility among combinatorial problems
– volume: 168
  start-page: 88
  year: 2014
  ident: 10.1016/j.dam.2023.12.012_b16
  article-title: Digraph width measures in parametrized algorithmics
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2013.10.038
– volume: 27
  start-page: 321
  year: 1985
  ident: 10.1016/j.dam.2023.12.012_b24
  article-title: Two complementary circuits in two-connected tournaments
  publication-title: Ann. Discrete Math.
– ident: 10.1016/j.dam.2023.12.012_b28
  doi: 10.1109/FOCS.2018.00062
– ident: 10.1016/j.dam.2023.12.012_b11
  doi: 10.1145/2591796.2591884
– volume: 195
  start-page: 508
  year: 2021
  ident: 10.1016/j.dam.2023.12.012_b23
  article-title: A new formulation for the weighted safe set problem
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.11.061
– volume: 81
  start-page: 445
  year: 2023
  ident: 10.1016/j.dam.2023.12.012_b6
  article-title: A combinatorial branch and bound for the safe set problem
  publication-title: Networks
  doi: 10.1002/net.22140
– volume: 14
  start-page: 2127
  year: 2020
  ident: 10.1016/j.dam.2023.12.012_b19
  article-title: A compact mixed integer linear formulation for safe set problems
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-020-01540-z
– volume: 71
  start-page: 278
  year: 2012
  ident: 10.1016/j.dam.2023.12.012_b17
  article-title: Gallai colorings and domination in multipartite digraphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20646
– volume: 37
  start-page: 685
  year: 2019
  ident: 10.1016/j.dam.2023.12.012_b14
  article-title: On weighted safe set problem on paths and cycles
  publication-title: J. Combin. Optim.
  doi: 10.1007/s10878-018-0316-4
– ident: 10.1016/j.dam.2023.12.012_b25
  doi: 10.1145/237814.237991
– volume: 107
  start-page: 154
  year: 2008
  ident: 10.1016/j.dam.2023.12.012_b22
  article-title: Finding a dominating set on bipartite graphs
  publication-title: Inform. Process. Lett.
  doi: 10.1016/j.ipl.2008.02.009
– volume: vol. 411
  start-page: 218
  year: 1989
  ident: 10.1016/j.dam.2023.12.012_b27
  article-title: On feedback problems in digraphs
– year: 2009
  ident: 10.1016/j.dam.2023.12.012_b9
– volume: 215
  start-page: 106
  year: 2016
  ident: 10.1016/j.dam.2023.12.012_b15
  article-title: Safe set problem on graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2016.07.020
– volume: 281
  start-page: 216
  year: 2020
  ident: 10.1016/j.dam.2023.12.012_b12
  article-title: Approximating connected safe sets in weighted trees
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2019.11.017
– volume: 82–9
  start-page: 2586
  year: 2020
  ident: 10.1016/j.dam.2023.12.012_b5
  article-title: Parameterized complexity of safe set
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00700-y
– volume: 5
  start-page: 366
  year: 1992
  ident: 10.1016/j.dam.2023.12.012_b3
  article-title: A polynomial algorithm for the 2-path problem for semicomplete digraphs
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0405027
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.3803406
Snippet A non-empty subset S of the vertices of a digraph D is a safe set if (i) for every strongly connected component M of D−S, there exists a strongly connected...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 215
SubjectTerms In-dominating set
NP-complete
Polynomial algorithm
Safe set
Tournament
Title Safe sets and in-dominating sets in digraphs
URI https://dx.doi.org/10.1016/j.dam.2023.12.012
Volume 346
WOSCitedRecordID wos001165776100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20220331
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA9658P5IH7i-UUffPIMdJOmaR9PPTkXPIU9oT6VJE3OrpA9tj05_3snSdPtegoq-BLKQEKaGSa_TCa_Qei5JKaROk2xaqiBA4qhuFAiw7wUhWGGZ5JLX2yCn5wUVVV-HFKCOl9OgFtbXF6W5_9V1SADZbuns3-h7nFQEMA3KB1aUDu0f6T4hTD6oNN9NxAr4Wbl0l18erMXu_zX1hNVd1No-qYFDwIQegSm70dG100oPRSv_ixcDZCzjdSe4bm2QzBn7i7fXxXuVedoHRfLNsDUxZfWfh-3gg--8PfBcbte9eKrmIYgSBbf5MW42JW3MSFUmecYAEQVdprgXgtOcM5D0ZXof2m27UHZZDMmgTjgip8PIYclTMmxCRDqQ7pDPvY2ffbCzcNNg1DPjVNdR7uEsxI84O7hu6NqPiEbc0x6ezE8t7mNAlSWDRzx4Y_i7bjPE_xpCr_GNxPMcnob3RoOG8lhMJI76Jq2d9HNiV7voZfOXBJnFwkoNdkylyBubRLN5T769Pbo9PUxHipoYEVnrMeSKWqY1EYUDRzlVQ6HS1fHWBqAxQqwbSO0ooTqVMhGyVQWgICVKqkE3Aky-gDt2JXVD1Ey42kmjNCp1mnWMAdrsxnJZcGYyWGcffQi_nd9HohS6phBuKxhkWq3SPWM1LBI-yiLK1MPSC8guBoU_Ptuj_6t22O0t7HaJ2inX1_op-iG-ta33frZYAY_AEqScSI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safe+sets+and+in-dominating+sets+in+digraphs&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Bai%2C+Yandong&rft.au=Bang-Jensen%2C+J%C3%B8rgen&rft.au=Fujita%2C+Shinya&rft.au=Ono%2C+Hirotaka&rft.date=2024-03-31&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=346&rft.spage=215&rft.epage=227&rft_id=info:doi/10.1016%2Fj.dam.2023.12.012&rft.externalDocID=S0166218X2300481X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon