Efficient GPU-Accelerated MultiSource Global Fit Pipeline for LISA Data Analysis

The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D Jg. 111; H. 2
Hauptverfasser: Katz, Michael L, Karnesis, Nikolaos, Korsakova, Natalia, Gair, Jonathan, Stergioulas, Nikolaos
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Marshall Space Flight Center American Physical Society 24.01.2025
Schlagworte:
ISSN:2470-0010, 2470-0029
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile require a global fit to all parameters and input models simultaneously. In this work, we detail our global fit algorithm, called “Erebor,” designed to accomplish this challenging task. It is capable of analyzing current state-of-the-art datasets and then growing into the future as more pieces of the pipeline are completed and added. We describe our pipeline strategy, the algorithmic setup, and the results from our analysis of the LDC2A Sangria dataset, which contains massive black hole binaries, compact galactic binaries, and a parametrized noise spectrum whose parameters are unknown to the user. The Erebor algorithm includes three unique and very useful contributions: GPU acceleration for enhanced computational efficiency; ensemble Markov Chain Monte Carlo (MCMC) sampling with multiple MCMC walkers per temperature for better mixing and parallelized sample creation; and special online updates to reversible-jump (or transdimensional) sampling distributions to ensure sampler mixing and accurate initial estimates for detectable sources in the data.We recover posterior distributions for all 15 (6) of the injected massive black hole binaries (MBHB) in the LDC2A training (hidden) dataset. We catalog ∼12000 galactic binaries (∼8000 as high confidence detections) for both the training and hidden datasets. All of the sources and their posterior distributions are provided in publicly available catalogs.
AbstractList The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile require a global fit to all parameters and input models simultaneously. In this work, we detail our global fit algorithm, called “Erebor,” designed to accomplish this challenging task. It is capable of analyzing current state-of-the-art datasets and then growing into the future as more pieces of the pipeline are completed and added. We describe our pipeline strategy, the algorithmic setup, and the results from our analysis of the LDC2A Sangria dataset, which contains massive black hole binaries, compact galactic binaries, and a parametrized noise spectrum whose parameters are unknown to the user. The Erebor algorithm includes three unique and very useful contributions: GPU acceleration for enhanced computational efficiency; ensemble Markov Chain Monte Carlo (MCMC) sampling with multiple MCMC walkers per temperature for better mixing and parallelized sample creation; and special online updates to reversible-jump (or transdimensional) sampling distributions to ensure sampler mixing and accurate initial estimates for detectable sources in the data.We recover posterior distributions for all 15 (6) of the injected massive black hole binaries (MBHB) in the LDC2A training (hidden) dataset. We catalog ∼12000 galactic binaries (∼8000 as high confidence detections) for both the training and hidden datasets. All of the sources and their posterior distributions are provided in publicly available catalogs.
The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile require a global fit to all parameters and input models simultaneously. In this work, we detail our global fit algorithm, called “Erebor,” designed to accomplish this challenging task. It is capable of analyzing current state-of-the-art datasets and then growing into the future as more pieces of the pipeline are completed and added. We describe our pipeline strategy, the algorithmic setup, and the results from our analysis of the LDC2A Sangria dataset, which contains massive black hole binaries, compact galactic binaries, and a parametrized noise spectrum whose parameters are unknown to the user. The Erebor algorithm includes three unique and very useful contributions: GPU acceleration for enhanced computational efficiency; ensemble Markov Chain Monte Carlo (MCMC) sampling with multiple MCMC walkers per temperature for better mixing and parallelized sample creation; and special online updates to reversible-jump (or transdimensional) sampling distributions to ensure sampler mixing and accurate initial estimates for detectable sources in the data. We recover posterior distributions for all 15 (6) of the injected massive black hole binaries (MBHB) in the LDC2A training (hidden) dataset. We catalog ∼ 12000 galactic binaries ( ∼ 8000 as high confidence detections) for both the training and hidden datasets. All of the sources and their posterior distributions are provided in publicly available catalogs.
ArticleNumber 024060
Audience PUBLIC
Author Stergioulas, Nikolaos
Korsakova, Natalia
Katz, Michael L
Gair, Jonathan
Karnesis, Nikolaos
Author_xml – sequence: 1
  givenname: Michael L
  orcidid: 0000-0002-7605-5767
  surname: Katz
  fullname: Katz, Michael L
  organization: Marshall Space Flight Center
– sequence: 2
  givenname: Nikolaos
  surname: Karnesis
  fullname: Karnesis, Nikolaos
  organization: Aristotle University of Thessaloniki
– sequence: 3
  givenname: Natalia
  orcidid: 0000-0002-1112-8830
  surname: Korsakova
  fullname: Korsakova, Natalia
  organization: Astroparticle and Cosmology Laboratory
– sequence: 4
  givenname: Jonathan
  orcidid: 0000-0002-1671-3668
  surname: Gair
  fullname: Gair, Jonathan
  organization: Max Planck Institute for Gravitational Physics
– sequence: 5
  givenname: Nikolaos
  surname: Stergioulas
  fullname: Stergioulas, Nikolaos
  organization: Aristotle University of Thessaloniki
BookMark eNqFkMtOwzAURC1UJErpF8DCP5BybedRL6u-qFREROk6unFsYWSSynaR-vcEFViwYTUzizOLc00GbddqQm4ZTBgDcV--nsKz_lj0i02Ap5DDBRnytIAEgMvBb2dwRcYhvEFfc5AFY0NSLo2xyuo20nW5T2ZKaac9Rt3Qx6OLdtcdvdJ07boaHV3ZSEt70M62mprO0-1mN6MLjEhnLbpTsOGGXBp0QY-_c0T2q-XL_CHZPq0389k2UYJlMcEaclnUWTHFQslmKjXKRnHIuTS5RmMwA1aLJsU0k00Kqalznk17jPFM1UKMiDj_Kt-F4LWpDt6-oz9VDKovL9WPl36x6uylp-QfStmI0XZt9GjdP-zdmW0xYNUDoeLAs94mByHEJ6WydE4
CitedBy_id crossref_primary_10_1103_PhysRevD_111_104044
crossref_primary_10_1103_7f8h_w4yz
crossref_primary_10_1103_PhysRevD_111_104079
crossref_primary_10_1088_1475_7516_2025_06_030
crossref_primary_10_1103_PhysRevD_111_044039
crossref_primary_10_3390_universe11090313
crossref_primary_10_1103_5jr8_k2ss
crossref_primary_10_1103_PhysRevD_111_064079
crossref_primary_10_3847_1538_4357_ada9e2
crossref_primary_10_1103_nfn4_pgr5
crossref_primary_10_1140_epjc_s10052_025_14616_w
crossref_primary_10_1103_PhysRevD_111_042009
crossref_primary_10_1103_PhysRevD_111_062003
crossref_primary_10_1103_PhysRevD_111_084006
crossref_primary_10_1088_1475_7516_2025_05_062
crossref_primary_10_1103_PhysRevD_111_102006
crossref_primary_10_1103_95c5_sblc
crossref_primary_10_3390_app15158370
crossref_primary_10_1088_1475_7516_2025_04_052
crossref_primary_10_1103_1sj2_219n
crossref_primary_10_1103_6bjw_xjj2
crossref_primary_10_1103_PhysRevD_111_103014
crossref_primary_10_1088_1475_7516_2025_04_022
crossref_primary_10_1103_lk4h_lz7y
Cites_doi 10.1088/1674-4527/acdfa5
10.1103/PhysRevD.105.044055
10.1103/PhysRevD.100.022003
10.1103/PhysRevD.104.043019
10.3847/1538-4357/ad2068
10.1093/mnras/stac2555
10.1038/s42254-021-00364-9
10.1093/mnras/stz903
10.1017/pasa.2023.36
10.1038/287307a0
10.1093/mnras/stad554
10.1111/j.1365-246X.2006.03155.x
10.1103/PhysRevD.110.104069
10.1103/PhysRevD.108.103018
10.1093/biomet/82.4.711
10.1093/mnras/stae1283
10.1103/PhysRevD.108.082004
10.1103/PhysRevLett.120.161102
10.1103/PhysRevD.108.022008
10.1103/PhysRevD.105.044035
10.1103/PhysRevD.101.123021
10.1051/0004-6361/202346844
10.1103/PhysRevD.108.044065
10.1103/PhysRevD.66.122002
10.1103/PhysRevD.106.103001
10.1103/PhysRevD.107.063004
10.1093/mnras/stab113
10.1080/01621459.1992.10475289
10.1103/PhysRevD.59.102003
10.1103/PhysRevD.68.061303
10.1103/PhysRevD.104.084037
10.1093/mnras/stv2422
10.1103/PhysRevD.110.022003
10.3847/1538-4357/ac9139
10.1103/PhysRevD.95.103012
10.1103/PhysRevX.13.041039
10.1007/s41114-020-00029-6
10.1103/PhysRevD.105.122008
10.1051/0004-6361/202347222
10.1093/mnras/stad2939
10.1007/s41114-022-00041-y
10.1016/j.advwatres.2011.04.013
10.1109/MCSE.2007.55
10.1088/0004-637X/758/2/131
10.1103/PhysRevD.106.042005
10.1038/s41586-020-2649-2
10.1103/PhysRevD.109.042001
10.1103/PhysRevD.93.044006
10.1103/PhysRevD.106.022003
10.3847/2041-8213/acdac6
10.1016/j.jpdc.2005.03.010
10.1103/PhysRevD.105.042002
10.1086/670067
10.1038/s41592-019-0686-2
10.1103/PhysRevD.76.083006
10.1103/PhysRevD.109.022004
10.1103/PhysRevD.93.044007
10.2140/camcos.2010.5.65
10.1103/PhysRevD.108.123029
10.1103/PhysRevD.110.024005
10.1103/PhysRevD.104.104054
10.1103/PhysRevD.71.022001
10.1016/j.jpdc.2007.09.005
10.1109/MCSE.2021.3083216
ContentType Journal Article
Copyright Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL
Copyright_xml – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL
DBID CYE
CYI
AAYXX
CITATION
DOI 10.1103/PhysRevD.111.024060
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2470-0029
ExternalDocumentID 10_1103_PhysRevD_111_024060
20250002033
GrantInformation 244904.04.09.07.01
101065596
GroupedDBID 3MX
5VS
ABSSX
AECSF
AEQTI
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CYE
CYI
EBS
EJD
ER.
NPBMV
ROL
S7W
AAYXX
CITATION
ID FETCH-LOGICAL-c315t-ab0697b578a7c9d89ea9dc20629f6eaffa501b3d4a459d404fb6258ab0125cb33
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001410609500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-0010
IngestDate Sat Nov 29 07:36:34 EST 2025
Tue Nov 18 22:14:56 EST 2025
Fri Nov 21 15:42:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Data Analysis
Gpus
Lisa Global Fit
Lisa
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-ab0697b578a7c9d89ea9dc20629f6eaffa501b3d4a459d404fb6258ab0125cb33
Notes Marshall Space Flight Center
MSFC
ORCID 0000-0002-1112-8830
0000-0002-7605-5767
0000-0002-1671-3668
OpenAccessLink https://ntrs.nasa.gov/citations/20250002033
ParticipantIDs crossref_primary_10_1103_PhysRevD_111_024060
crossref_citationtrail_10_1103_PhysRevD_111_024060
nasa_ntrs_20250002033
PublicationCentury 2000
PublicationDate 2025-01-24
PublicationDateYYYYMMDD 2025-01-24
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-24
  day: 24
PublicationDecade 2020
PublicationPlace Marshall Space Flight Center
PublicationPlace_xml – name: Marshall Space Flight Center
PublicationTitle Physical review. D
PublicationYear 2025
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevD.111.024060Cc26R1
PhysRevD.111.024060Cc24R1
PhysRevD.111.024060Cc68R1
J.-B. Bayle (PhysRevD.111.024060Cc23R1) 2023
PhysRevD.111.024060Cc28R1
PhysRevD.111.024060Cc49R1
PhysRevD.111.024060Cc66R1
PhysRevD.111.024060Cc22R1
PhysRevD.111.024060Cc43R1
PhysRevD.111.024060Cc60R1
PhysRevD.111.024060Cc20R1
PhysRevD.111.024060Cc62R1
PhysRevD.111.024060Cc14R1
PhysRevD.111.024060Cc37R1
PhysRevD.111.024060Cc12R1
PhysRevD.111.024060Cc35R1
PhysRevD.111.024060Cc18R1
PhysRevD.111.024060Cc56R1
PhysRevD.111.024060Cc79R1
PhysRevD.111.024060Cc16R1
PhysRevD.111.024060Cc39R1
PhysRevD.111.024060Cc58R1
PhysRevD.111.024060Cc3R1
PhysRevD.111.024060Cc7R1
PhysRevD.111.024060Cc5R1
PhysRevD.111.024060Cc52R1
PhysRevD.111.024060Cc75R1
PhysRevD.111.024060Cc54R1
PhysRevD.111.024060Cc77R1
PhysRevD.111.024060Cc9R1
PhysRevD.111.024060Cc10R1
PhysRevD.111.024060Cc71R1
PhysRevD.111.024060Cc31R1
PhysRevD.111.024060Cc50R1
PhysRevD.111.024060Cc73R1
PhysRevD.111.024060Cc25R1
PhysRevD.111.024060Cc48R1
PhysRevD.111.024060Cc46R1
W. R. Gilks (PhysRevD.111.024060Cc41R1) 1992; 41
PhysRevD.111.024060Cc29R1
PhysRevD.111.024060Cc67R1
PhysRevD.111.024060Cc27R1
PhysRevD.111.024060Cc65R1
PhysRevD.111.024060Cc21R1
PhysRevD.111.024060Cc44R1
PhysRevD.111.024060Cc15R1
PhysRevD.111.024060Cc36R1
PhysRevD.111.024060Cc13R1
PhysRevD.111.024060Cc19R1
PhysRevD.111.024060Cc57R1
PhysRevD.111.024060Cc78R1
PhysRevD.111.024060Cc17R1
PhysRevD.111.024060Cc38R1
PhysRevD.111.024060Cc59R1
F. Pedregosa (PhysRevD.111.024060Cc63R1) 2011; 12
PhysRevD.111.024060Cc4R1
PhysRevD.111.024060Cc8R1
PhysRevD.111.024060Cc6R1
PhysRevD.111.024060Cc53R1
PhysRevD.111.024060Cc74R1
PhysRevD.111.024060Cc55R1
PhysRevD.111.024060Cc76R1
PhysRevD.111.024060Cc11R1
PhysRevD.111.024060Cc32R1
PhysRevD.111.024060Cc30R1
PhysRevD.111.024060Cc51R1
PhysRevD.111.024060Cc72R1
References_xml – ident: PhysRevD.111.024060Cc6R1
  doi: 10.1088/1674-4527/acdfa5
– ident: PhysRevD.111.024060Cc51R1
  doi: 10.1103/PhysRevD.105.044055
– ident: PhysRevD.111.024060Cc17R1
  doi: 10.1103/PhysRevD.100.022003
– ident: PhysRevD.111.024060Cc57R1
  doi: 10.1103/PhysRevD.104.043019
– ident: PhysRevD.111.024060Cc9R1
  doi: 10.3847/1538-4357/ad2068
– ident: PhysRevD.111.024060Cc55R1
  doi: 10.1093/mnras/stac2555
– ident: PhysRevD.111.024060Cc13R1
  doi: 10.1038/s42254-021-00364-9
– volume: 41
  start-page: 337
  year: 1992
  ident: PhysRevD.111.024060Cc41R1
  publication-title: J. R. Stat. Soc. C (Appl. Stat.)
– ident: PhysRevD.111.024060Cc15R1
  doi: 10.1093/mnras/stz903
– ident: PhysRevD.111.024060Cc7R1
  doi: 10.1017/pasa.2023.36
– ident: PhysRevD.111.024060Cc12R1
  doi: 10.1038/287307a0
– ident: PhysRevD.111.024060Cc10R1
  doi: 10.1093/mnras/stad554
– ident: PhysRevD.111.024060Cc58R1
  doi: 10.1111/j.1365-246X.2006.03155.x
– volume: 12
  start-page: 2825
  issn: 1532-4435
  year: 2011
  ident: PhysRevD.111.024060Cc63R1
  publication-title: J. Mach. Learn. Res.
– ident: PhysRevD.111.024060Cc74R1
  doi: 10.1103/PhysRevD.110.104069
– ident: PhysRevD.111.024060Cc71R1
  doi: 10.1103/PhysRevD.108.103018
– ident: PhysRevD.111.024060Cc38R1
  doi: 10.1093/biomet/82.4.711
– ident: PhysRevD.111.024060Cc11R1
  doi: 10.1093/mnras/stae1283
– ident: PhysRevD.111.024060Cc56R1
  doi: 10.1103/PhysRevD.108.082004
– ident: PhysRevD.111.024060Cc75R1
  doi: 10.1103/PhysRevLett.120.161102
– ident: PhysRevD.111.024060Cc28R1
  doi: 10.1103/PhysRevD.108.022008
– ident: PhysRevD.111.024060Cc76R1
  doi: 10.1103/PhysRevD.105.044035
– ident: PhysRevD.111.024060Cc35R1
  doi: 10.1103/PhysRevD.101.123021
– ident: PhysRevD.111.024060Cc5R1
  doi: 10.1051/0004-6361/202346844
– ident: PhysRevD.111.024060Cc25R1
  doi: 10.1103/PhysRevD.108.044065
– ident: PhysRevD.111.024060Cc49R1
  doi: 10.1103/PhysRevD.66.122002
– ident: PhysRevD.111.024060Cc22R1
  doi: 10.1103/PhysRevD.106.103001
– ident: PhysRevD.111.024060Cc21R1
  doi: 10.1103/PhysRevD.107.063004
– ident: PhysRevD.111.024060Cc14R1
  doi: 10.1093/mnras/stab113
– ident: PhysRevD.111.024060Cc39R1
  doi: 10.1080/01621459.1992.10475289
– ident: PhysRevD.111.024060Cc46R1
  doi: 10.1103/PhysRevD.59.102003
– ident: PhysRevD.111.024060Cc48R1
  doi: 10.1103/PhysRevD.68.061303
– ident: PhysRevD.111.024060Cc24R1
  doi: 10.1103/PhysRevD.104.084037
– ident: PhysRevD.111.024060Cc60R1
  doi: 10.1093/mnras/stv2422
– ident: PhysRevD.111.024060Cc29R1
  doi: 10.1103/PhysRevD.110.022003
– ident: PhysRevD.111.024060Cc20R1
  doi: 10.3847/1538-4357/ac9139
– ident: PhysRevD.111.024060Cc16R1
  doi: 10.1103/PhysRevD.95.103012
– ident: PhysRevD.111.024060Cc3R1
  doi: 10.1103/PhysRevX.13.041039
– volume-title: 57th Rencontres de Moriond on Gravitation
  year: 2023
  ident: PhysRevD.111.024060Cc23R1
– ident: PhysRevD.111.024060Cc30R1
  doi: 10.1007/s41114-020-00029-6
– ident: PhysRevD.111.024060Cc31R1
  doi: 10.1103/PhysRevD.105.122008
– ident: PhysRevD.111.024060Cc36R1
  doi: 10.1051/0004-6361/202347222
– ident: PhysRevD.111.024060Cc44R1
  doi: 10.1093/mnras/stad2939
– ident: PhysRevD.111.024060Cc8R1
  doi: 10.1007/s41114-022-00041-y
– ident: PhysRevD.111.024060Cc66R1
  doi: 10.1016/j.advwatres.2011.04.013
– ident: PhysRevD.111.024060Cc78R1
  doi: 10.1109/MCSE.2007.55
– ident: PhysRevD.111.024060Cc72R1
  doi: 10.1088/0004-637X/758/2/131
– ident: PhysRevD.111.024060Cc27R1
  doi: 10.1103/PhysRevD.106.042005
– ident: PhysRevD.111.024060Cc77R1
  doi: 10.1038/s41586-020-2649-2
– ident: PhysRevD.111.024060Cc73R1
  doi: 10.1103/PhysRevD.109.042001
– ident: PhysRevD.111.024060Cc53R1
  doi: 10.1103/PhysRevD.93.044006
– ident: PhysRevD.111.024060Cc26R1
  doi: 10.1103/PhysRevD.106.022003
– ident: PhysRevD.111.024060Cc4R1
  doi: 10.3847/2041-8213/acdac6
– ident: PhysRevD.111.024060Cc68R1
  doi: 10.1016/j.jpdc.2005.03.010
– ident: PhysRevD.111.024060Cc18R1
  doi: 10.1103/PhysRevD.105.042002
– ident: PhysRevD.111.024060Cc43R1
  doi: 10.1086/670067
– ident: PhysRevD.111.024060Cc79R1
  doi: 10.1038/s41592-019-0686-2
– ident: PhysRevD.111.024060Cc54R1
  doi: 10.1103/PhysRevD.76.083006
– ident: PhysRevD.111.024060Cc32R1
  doi: 10.1103/PhysRevD.109.022004
– ident: PhysRevD.111.024060Cc52R1
  doi: 10.1103/PhysRevD.93.044007
– ident: PhysRevD.111.024060Cc59R1
  doi: 10.2140/camcos.2010.5.65
– ident: PhysRevD.111.024060Cc19R1
  doi: 10.1103/PhysRevD.108.123029
– ident: PhysRevD.111.024060Cc37R1
  doi: 10.1103/PhysRevD.110.024005
– ident: PhysRevD.111.024060Cc62R1
  doi: 10.1103/PhysRevD.104.104054
– ident: PhysRevD.111.024060Cc50R1
  doi: 10.1103/PhysRevD.71.022001
– ident: PhysRevD.111.024060Cc67R1
  doi: 10.1016/j.jpdc.2007.09.005
– ident: PhysRevD.111.024060Cc65R1
  doi: 10.1109/MCSE.2021.3083216
SSID ssj0001609711
Score 2.5862849
Snippet The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational...
SourceID crossref
nasa
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Astrophysics
Computer Programming and Software
Numerical Analysis
Title Efficient GPU-Accelerated MultiSource Global Fit Pipeline for LISA Data Analysis
URI https://ntrs.nasa.gov/citations/20250002033
Volume 111
WOSCitedRecordID wos001410609500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 2470-0029
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001609711
  issn: 2470-0010
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbtIVeSh8pSfpAh95cuV4_ZOsY2jQtXZZlm0BuRpYlMAnexbtd8hPysztjWbabltAcejFGtgdL8zGaGY0-EfK-4IAbmYSMm4yz2Kgpk2YaMVxH1FxnsShadv1ZOp9nFxdiMZncuL0wu6u0rrPra7H-r6qGNlA2bp29h7p7odAA96B0uILa4fpPij9pSSFwif90cc6kUjCxIB9EaYsHbbbeEYGYauutq7VunU2sOJx9-3HsYdmoJzu6krH7unBatTte_KFe-LtsD4Z1ZfjezB-eNGBOLZXBvLqEUHo1LCCtmo28XO2kNfTIxthPE6eyasb5fW_pj1MUIVYDMrsz2lqyMMbTbYKuflWP27p0hzPFneGthpD4TxMfINUE9nepd5_R5PvI08aDYUZzq_i3Jrq-_LANfIIod0IwDMqtkAfkYZgmog1Blv6QrePItYXRe9-XjsIK5Hz8y8_85ubs1dLxpbduy9kz8rSLN-ixxclzMtH1C_LY6nHzkix6tNBbaKEjtFCLFgpooQ4tFNBCES0U0UIdWvbJ-ZeTs09fWXfIBlPRNNkyWQRcpAUYbpkqUWZCS1GqMOChMFxLY2QSTIuojGWciDIOYlNAyJzBZ-AaqyKKXkH3VrU-IFSHSsEMIlSa6pgnpQDv3kQaQgidSXj7kIRuTHLVMdDjQShX-R0KOSQf-o_WloDl7tf3cbBzELzJEYt2rT06up-Y1-TJAOQ3ZG_b_NRvySO1g4Fv3rXY-AWPrYPm
linkProvider SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+GPU-accelerated+multisource+global+fit+pipeline+for+LISA+data+analysis&rft.jtitle=Physical+review.+D&rft.au=Katz%2C+Michael+L.&rft.au=Karnesis%2C+Nikolaos&rft.au=Korsakova%2C+Natalia&rft.au=Gair%2C+Jonathan+R.&rft.date=2025-01-24&rft.issn=2470-0010&rft.eissn=2470-0029&rft.volume=111&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevD.111.024060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevD_111_024060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0010&client=summon