Efficient GPU-Accelerated MultiSource Global Fit Pipeline for LISA Data Analysis
The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile requ...
Uloženo v:
| Vydáno v: | Physical review. D Ročník 111; číslo 2 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Marshall Space Flight Center
American Physical Society
24.01.2025
|
| Témata: | |
| ISSN: | 2470-0010, 2470-0029 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile require a global fit to all parameters and input models simultaneously. In this work, we detail our global fit algorithm, called “Erebor,” designed to accomplish this challenging task. It is capable of analyzing current state-of-the-art datasets and then growing into the future as more pieces of the pipeline are completed and added. We describe our pipeline strategy, the algorithmic setup, and the results from our analysis of the LDC2A Sangria dataset, which contains massive black hole binaries, compact galactic binaries, and a parametrized noise spectrum whose parameters are unknown to the user. The Erebor algorithm includes three unique and very useful contributions: GPU acceleration for enhanced computational efficiency; ensemble Markov Chain Monte Carlo (MCMC) sampling with multiple MCMC walkers per temperature for better mixing and parallelized sample creation; and special online updates to reversible-jump (or transdimensional) sampling distributions to ensure sampler mixing and accurate initial estimates for detectable sources in the data.We recover posterior distributions for all 15 (6) of the injected massive black hole binaries (MBHB) in the LDC2A training (hidden) dataset. We catalog ∼12000 galactic binaries (∼8000 as high confidence detections) for both the training and hidden datasets. All of the sources and their posterior distributions are provided in publicly available catalogs. |
|---|---|
| AbstractList | The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile require a global fit to all parameters and input models simultaneously. In this work, we detail our global fit algorithm, called “Erebor,” designed to accomplish this challenging task. It is capable of analyzing current state-of-the-art datasets and then growing into the future as more pieces of the pipeline are completed and added. We describe our pipeline strategy, the algorithmic setup, and the results from our analysis of the LDC2A Sangria dataset, which contains massive black hole binaries, compact galactic binaries, and a parametrized noise spectrum whose parameters are unknown to the user. The Erebor algorithm includes three unique and very useful contributions: GPU acceleration for enhanced computational efficiency; ensemble Markov Chain Monte Carlo (MCMC) sampling with multiple MCMC walkers per temperature for better mixing and parallelized sample creation; and special online updates to reversible-jump (or transdimensional) sampling distributions to ensure sampler mixing and accurate initial estimates for detectable sources in the data.We recover posterior distributions for all 15 (6) of the injected massive black hole binaries (MBHB) in the LDC2A training (hidden) dataset. We catalog ∼12000 galactic binaries (∼8000 as high confidence detections) for both the training and hidden datasets. All of the sources and their posterior distributions are provided in publicly available catalogs. The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile require a global fit to all parameters and input models simultaneously. In this work, we detail our global fit algorithm, called “Erebor,” designed to accomplish this challenging task. It is capable of analyzing current state-of-the-art datasets and then growing into the future as more pieces of the pipeline are completed and added. We describe our pipeline strategy, the algorithmic setup, and the results from our analysis of the LDC2A Sangria dataset, which contains massive black hole binaries, compact galactic binaries, and a parametrized noise spectrum whose parameters are unknown to the user. The Erebor algorithm includes three unique and very useful contributions: GPU acceleration for enhanced computational efficiency; ensemble Markov Chain Monte Carlo (MCMC) sampling with multiple MCMC walkers per temperature for better mixing and parallelized sample creation; and special online updates to reversible-jump (or transdimensional) sampling distributions to ensure sampler mixing and accurate initial estimates for detectable sources in the data. We recover posterior distributions for all 15 (6) of the injected massive black hole binaries (MBHB) in the LDC2A training (hidden) dataset. We catalog ∼ 12000 galactic binaries ( ∼ 8000 as high confidence detections) for both the training and hidden datasets. All of the sources and their posterior distributions are provided in publicly available catalogs. |
| ArticleNumber | 024060 |
| Audience | PUBLIC |
| Author | Stergioulas, Nikolaos Korsakova, Natalia Katz, Michael L Gair, Jonathan Karnesis, Nikolaos |
| Author_xml | – sequence: 1 givenname: Michael L orcidid: 0000-0002-7605-5767 surname: Katz fullname: Katz, Michael L organization: Marshall Space Flight Center – sequence: 2 givenname: Nikolaos surname: Karnesis fullname: Karnesis, Nikolaos organization: Aristotle University of Thessaloniki – sequence: 3 givenname: Natalia orcidid: 0000-0002-1112-8830 surname: Korsakova fullname: Korsakova, Natalia organization: Astroparticle and Cosmology Laboratory – sequence: 4 givenname: Jonathan orcidid: 0000-0002-1671-3668 surname: Gair fullname: Gair, Jonathan organization: Max Planck Institute for Gravitational Physics – sequence: 5 givenname: Nikolaos surname: Stergioulas fullname: Stergioulas, Nikolaos organization: Aristotle University of Thessaloniki |
| BookMark | eNqFkMtOwzAURC1UJErpF8DCP5BybedRL6u-qFREROk6unFsYWSSynaR-vcEFViwYTUzizOLc00GbddqQm4ZTBgDcV--nsKz_lj0i02Ap5DDBRnytIAEgMvBb2dwRcYhvEFfc5AFY0NSLo2xyuo20nW5T2ZKaac9Rt3Qx6OLdtcdvdJ07boaHV3ZSEt70M62mprO0-1mN6MLjEhnLbpTsOGGXBp0QY-_c0T2q-XL_CHZPq0389k2UYJlMcEaclnUWTHFQslmKjXKRnHIuTS5RmMwA1aLJsU0k00Kqalznk17jPFM1UKMiDj_Kt-F4LWpDt6-oz9VDKovL9WPl36x6uylp-QfStmI0XZt9GjdP-zdmW0xYNUDoeLAs94mByHEJ6WydE4 |
| CitedBy_id | crossref_primary_10_1103_PhysRevD_111_104044 crossref_primary_10_1103_7f8h_w4yz crossref_primary_10_1103_PhysRevD_111_104079 crossref_primary_10_1088_1475_7516_2025_06_030 crossref_primary_10_1103_PhysRevD_111_044039 crossref_primary_10_3390_universe11090313 crossref_primary_10_1103_5jr8_k2ss crossref_primary_10_1103_PhysRevD_111_064079 crossref_primary_10_3847_1538_4357_ada9e2 crossref_primary_10_1103_nfn4_pgr5 crossref_primary_10_1140_epjc_s10052_025_14616_w crossref_primary_10_1103_PhysRevD_111_042009 crossref_primary_10_1103_PhysRevD_111_062003 crossref_primary_10_1103_PhysRevD_111_084006 crossref_primary_10_1088_1475_7516_2025_05_062 crossref_primary_10_1103_PhysRevD_111_102006 crossref_primary_10_1103_95c5_sblc crossref_primary_10_3390_app15158370 crossref_primary_10_1088_1475_7516_2025_04_052 crossref_primary_10_1103_1sj2_219n crossref_primary_10_1103_6bjw_xjj2 crossref_primary_10_1103_PhysRevD_111_103014 crossref_primary_10_1088_1475_7516_2025_04_022 crossref_primary_10_1103_lk4h_lz7y |
| Cites_doi | 10.1088/1674-4527/acdfa5 10.1103/PhysRevD.105.044055 10.1103/PhysRevD.100.022003 10.1103/PhysRevD.104.043019 10.3847/1538-4357/ad2068 10.1093/mnras/stac2555 10.1038/s42254-021-00364-9 10.1093/mnras/stz903 10.1017/pasa.2023.36 10.1038/287307a0 10.1093/mnras/stad554 10.1111/j.1365-246X.2006.03155.x 10.1103/PhysRevD.110.104069 10.1103/PhysRevD.108.103018 10.1093/biomet/82.4.711 10.1093/mnras/stae1283 10.1103/PhysRevD.108.082004 10.1103/PhysRevLett.120.161102 10.1103/PhysRevD.108.022008 10.1103/PhysRevD.105.044035 10.1103/PhysRevD.101.123021 10.1051/0004-6361/202346844 10.1103/PhysRevD.108.044065 10.1103/PhysRevD.66.122002 10.1103/PhysRevD.106.103001 10.1103/PhysRevD.107.063004 10.1093/mnras/stab113 10.1080/01621459.1992.10475289 10.1103/PhysRevD.59.102003 10.1103/PhysRevD.68.061303 10.1103/PhysRevD.104.084037 10.1093/mnras/stv2422 10.1103/PhysRevD.110.022003 10.3847/1538-4357/ac9139 10.1103/PhysRevD.95.103012 10.1103/PhysRevX.13.041039 10.1007/s41114-020-00029-6 10.1103/PhysRevD.105.122008 10.1051/0004-6361/202347222 10.1093/mnras/stad2939 10.1007/s41114-022-00041-y 10.1016/j.advwatres.2011.04.013 10.1109/MCSE.2007.55 10.1088/0004-637X/758/2/131 10.1103/PhysRevD.106.042005 10.1038/s41586-020-2649-2 10.1103/PhysRevD.109.042001 10.1103/PhysRevD.93.044006 10.1103/PhysRevD.106.022003 10.3847/2041-8213/acdac6 10.1016/j.jpdc.2005.03.010 10.1103/PhysRevD.105.042002 10.1086/670067 10.1038/s41592-019-0686-2 10.1103/PhysRevD.76.083006 10.1103/PhysRevD.109.022004 10.1103/PhysRevD.93.044007 10.2140/camcos.2010.5.65 10.1103/PhysRevD.108.123029 10.1103/PhysRevD.110.024005 10.1103/PhysRevD.104.104054 10.1103/PhysRevD.71.022001 10.1016/j.jpdc.2007.09.005 10.1109/MCSE.2021.3083216 |
| ContentType | Journal Article |
| Copyright | Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL |
| Copyright_xml | – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL |
| DBID | CYE CYI AAYXX CITATION |
| DOI | 10.1103/PhysRevD.111.024060 |
| DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2470-0029 |
| ExternalDocumentID | 10_1103_PhysRevD_111_024060 20250002033 |
| GrantInformation | 244904.04.09.07.01 101065596 |
| GroupedDBID | 3MX 5VS ABSSX AECSF AEQTI AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK CYE CYI EBS EJD ER. NPBMV ROL S7W AAYXX CITATION |
| ID | FETCH-LOGICAL-c315t-ab0697b578a7c9d89ea9dc20629f6eaffa501b3d4a459d404fb6258ab0125cb33 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001410609500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2470-0010 |
| IngestDate | Sat Nov 29 07:36:34 EST 2025 Tue Nov 18 22:14:56 EST 2025 Fri Nov 21 15:42:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Data Analysis Gpus Lisa Global Fit Lisa |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c315t-ab0697b578a7c9d89ea9dc20629f6eaffa501b3d4a459d404fb6258ab0125cb33 |
| Notes | Marshall Space Flight Center MSFC |
| ORCID | 0000-0002-1112-8830 0000-0002-7605-5767 0000-0002-1671-3668 |
| OpenAccessLink | https://ntrs.nasa.gov/citations/20250002033 |
| ParticipantIDs | crossref_primary_10_1103_PhysRevD_111_024060 crossref_citationtrail_10_1103_PhysRevD_111_024060 nasa_ntrs_20250002033 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-24 |
| PublicationDateYYYYMMDD | 2025-01-24 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Marshall Space Flight Center |
| PublicationPlace_xml | – name: Marshall Space Flight Center |
| PublicationTitle | Physical review. D |
| PublicationYear | 2025 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevD.111.024060Cc26R1 PhysRevD.111.024060Cc24R1 PhysRevD.111.024060Cc68R1 J.-B. Bayle (PhysRevD.111.024060Cc23R1) 2023 PhysRevD.111.024060Cc28R1 PhysRevD.111.024060Cc49R1 PhysRevD.111.024060Cc66R1 PhysRevD.111.024060Cc22R1 PhysRevD.111.024060Cc43R1 PhysRevD.111.024060Cc60R1 PhysRevD.111.024060Cc20R1 PhysRevD.111.024060Cc62R1 PhysRevD.111.024060Cc14R1 PhysRevD.111.024060Cc37R1 PhysRevD.111.024060Cc12R1 PhysRevD.111.024060Cc35R1 PhysRevD.111.024060Cc18R1 PhysRevD.111.024060Cc56R1 PhysRevD.111.024060Cc79R1 PhysRevD.111.024060Cc16R1 PhysRevD.111.024060Cc39R1 PhysRevD.111.024060Cc58R1 PhysRevD.111.024060Cc3R1 PhysRevD.111.024060Cc7R1 PhysRevD.111.024060Cc5R1 PhysRevD.111.024060Cc52R1 PhysRevD.111.024060Cc75R1 PhysRevD.111.024060Cc54R1 PhysRevD.111.024060Cc77R1 PhysRevD.111.024060Cc9R1 PhysRevD.111.024060Cc10R1 PhysRevD.111.024060Cc71R1 PhysRevD.111.024060Cc31R1 PhysRevD.111.024060Cc50R1 PhysRevD.111.024060Cc73R1 PhysRevD.111.024060Cc25R1 PhysRevD.111.024060Cc48R1 PhysRevD.111.024060Cc46R1 W. R. Gilks (PhysRevD.111.024060Cc41R1) 1992; 41 PhysRevD.111.024060Cc29R1 PhysRevD.111.024060Cc67R1 PhysRevD.111.024060Cc27R1 PhysRevD.111.024060Cc65R1 PhysRevD.111.024060Cc21R1 PhysRevD.111.024060Cc44R1 PhysRevD.111.024060Cc15R1 PhysRevD.111.024060Cc36R1 PhysRevD.111.024060Cc13R1 PhysRevD.111.024060Cc19R1 PhysRevD.111.024060Cc57R1 PhysRevD.111.024060Cc78R1 PhysRevD.111.024060Cc17R1 PhysRevD.111.024060Cc38R1 PhysRevD.111.024060Cc59R1 F. Pedregosa (PhysRevD.111.024060Cc63R1) 2011; 12 PhysRevD.111.024060Cc4R1 PhysRevD.111.024060Cc8R1 PhysRevD.111.024060Cc6R1 PhysRevD.111.024060Cc53R1 PhysRevD.111.024060Cc74R1 PhysRevD.111.024060Cc55R1 PhysRevD.111.024060Cc76R1 PhysRevD.111.024060Cc11R1 PhysRevD.111.024060Cc32R1 PhysRevD.111.024060Cc30R1 PhysRevD.111.024060Cc51R1 PhysRevD.111.024060Cc72R1 |
| References_xml | – ident: PhysRevD.111.024060Cc6R1 doi: 10.1088/1674-4527/acdfa5 – ident: PhysRevD.111.024060Cc51R1 doi: 10.1103/PhysRevD.105.044055 – ident: PhysRevD.111.024060Cc17R1 doi: 10.1103/PhysRevD.100.022003 – ident: PhysRevD.111.024060Cc57R1 doi: 10.1103/PhysRevD.104.043019 – ident: PhysRevD.111.024060Cc9R1 doi: 10.3847/1538-4357/ad2068 – ident: PhysRevD.111.024060Cc55R1 doi: 10.1093/mnras/stac2555 – ident: PhysRevD.111.024060Cc13R1 doi: 10.1038/s42254-021-00364-9 – volume: 41 start-page: 337 year: 1992 ident: PhysRevD.111.024060Cc41R1 publication-title: J. R. Stat. Soc. C (Appl. Stat.) – ident: PhysRevD.111.024060Cc15R1 doi: 10.1093/mnras/stz903 – ident: PhysRevD.111.024060Cc7R1 doi: 10.1017/pasa.2023.36 – ident: PhysRevD.111.024060Cc12R1 doi: 10.1038/287307a0 – ident: PhysRevD.111.024060Cc10R1 doi: 10.1093/mnras/stad554 – ident: PhysRevD.111.024060Cc58R1 doi: 10.1111/j.1365-246X.2006.03155.x – volume: 12 start-page: 2825 issn: 1532-4435 year: 2011 ident: PhysRevD.111.024060Cc63R1 publication-title: J. Mach. Learn. Res. – ident: PhysRevD.111.024060Cc74R1 doi: 10.1103/PhysRevD.110.104069 – ident: PhysRevD.111.024060Cc71R1 doi: 10.1103/PhysRevD.108.103018 – ident: PhysRevD.111.024060Cc38R1 doi: 10.1093/biomet/82.4.711 – ident: PhysRevD.111.024060Cc11R1 doi: 10.1093/mnras/stae1283 – ident: PhysRevD.111.024060Cc56R1 doi: 10.1103/PhysRevD.108.082004 – ident: PhysRevD.111.024060Cc75R1 doi: 10.1103/PhysRevLett.120.161102 – ident: PhysRevD.111.024060Cc28R1 doi: 10.1103/PhysRevD.108.022008 – ident: PhysRevD.111.024060Cc76R1 doi: 10.1103/PhysRevD.105.044035 – ident: PhysRevD.111.024060Cc35R1 doi: 10.1103/PhysRevD.101.123021 – ident: PhysRevD.111.024060Cc5R1 doi: 10.1051/0004-6361/202346844 – ident: PhysRevD.111.024060Cc25R1 doi: 10.1103/PhysRevD.108.044065 – ident: PhysRevD.111.024060Cc49R1 doi: 10.1103/PhysRevD.66.122002 – ident: PhysRevD.111.024060Cc22R1 doi: 10.1103/PhysRevD.106.103001 – ident: PhysRevD.111.024060Cc21R1 doi: 10.1103/PhysRevD.107.063004 – ident: PhysRevD.111.024060Cc14R1 doi: 10.1093/mnras/stab113 – ident: PhysRevD.111.024060Cc39R1 doi: 10.1080/01621459.1992.10475289 – ident: PhysRevD.111.024060Cc46R1 doi: 10.1103/PhysRevD.59.102003 – ident: PhysRevD.111.024060Cc48R1 doi: 10.1103/PhysRevD.68.061303 – ident: PhysRevD.111.024060Cc24R1 doi: 10.1103/PhysRevD.104.084037 – ident: PhysRevD.111.024060Cc60R1 doi: 10.1093/mnras/stv2422 – ident: PhysRevD.111.024060Cc29R1 doi: 10.1103/PhysRevD.110.022003 – ident: PhysRevD.111.024060Cc20R1 doi: 10.3847/1538-4357/ac9139 – ident: PhysRevD.111.024060Cc16R1 doi: 10.1103/PhysRevD.95.103012 – ident: PhysRevD.111.024060Cc3R1 doi: 10.1103/PhysRevX.13.041039 – volume-title: 57th Rencontres de Moriond on Gravitation year: 2023 ident: PhysRevD.111.024060Cc23R1 – ident: PhysRevD.111.024060Cc30R1 doi: 10.1007/s41114-020-00029-6 – ident: PhysRevD.111.024060Cc31R1 doi: 10.1103/PhysRevD.105.122008 – ident: PhysRevD.111.024060Cc36R1 doi: 10.1051/0004-6361/202347222 – ident: PhysRevD.111.024060Cc44R1 doi: 10.1093/mnras/stad2939 – ident: PhysRevD.111.024060Cc8R1 doi: 10.1007/s41114-022-00041-y – ident: PhysRevD.111.024060Cc66R1 doi: 10.1016/j.advwatres.2011.04.013 – ident: PhysRevD.111.024060Cc78R1 doi: 10.1109/MCSE.2007.55 – ident: PhysRevD.111.024060Cc72R1 doi: 10.1088/0004-637X/758/2/131 – ident: PhysRevD.111.024060Cc27R1 doi: 10.1103/PhysRevD.106.042005 – ident: PhysRevD.111.024060Cc77R1 doi: 10.1038/s41586-020-2649-2 – ident: PhysRevD.111.024060Cc73R1 doi: 10.1103/PhysRevD.109.042001 – ident: PhysRevD.111.024060Cc53R1 doi: 10.1103/PhysRevD.93.044006 – ident: PhysRevD.111.024060Cc26R1 doi: 10.1103/PhysRevD.106.022003 – ident: PhysRevD.111.024060Cc4R1 doi: 10.3847/2041-8213/acdac6 – ident: PhysRevD.111.024060Cc68R1 doi: 10.1016/j.jpdc.2005.03.010 – ident: PhysRevD.111.024060Cc18R1 doi: 10.1103/PhysRevD.105.042002 – ident: PhysRevD.111.024060Cc43R1 doi: 10.1086/670067 – ident: PhysRevD.111.024060Cc79R1 doi: 10.1038/s41592-019-0686-2 – ident: PhysRevD.111.024060Cc54R1 doi: 10.1103/PhysRevD.76.083006 – ident: PhysRevD.111.024060Cc32R1 doi: 10.1103/PhysRevD.109.022004 – ident: PhysRevD.111.024060Cc52R1 doi: 10.1103/PhysRevD.93.044007 – ident: PhysRevD.111.024060Cc59R1 doi: 10.2140/camcos.2010.5.65 – ident: PhysRevD.111.024060Cc19R1 doi: 10.1103/PhysRevD.108.123029 – ident: PhysRevD.111.024060Cc37R1 doi: 10.1103/PhysRevD.110.024005 – ident: PhysRevD.111.024060Cc62R1 doi: 10.1103/PhysRevD.104.104054 – ident: PhysRevD.111.024060Cc50R1 doi: 10.1103/PhysRevD.71.022001 – ident: PhysRevD.111.024060Cc67R1 doi: 10.1016/j.jpdc.2007.09.005 – ident: PhysRevD.111.024060Cc65R1 doi: 10.1109/MCSE.2021.3083216 |
| SSID | ssj0001609711 |
| Score | 2.5862849 |
| Snippet | The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational... |
| SourceID | crossref nasa |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | Astrophysics Computer Programming and Software Numerical Analysis |
| Title | Efficient GPU-Accelerated MultiSource Global Fit Pipeline for LISA Data Analysis |
| URI | https://ntrs.nasa.gov/citations/20250002033 |
| Volume | 111 |
| WOSCitedRecordID | wos001410609500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 2470-0029 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001609711 issn: 2470-0010 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGAhIXxFJES0E-cAsZMo6zHUfdQIxGURepnCLHcaSoVWaUSUf9Cfxs3rPjJEBBcOASRZ4k9vh9en6bPxPyXpZMlWEZuBHnkcuFx91YRRyJIIVSQVH6SpO4LqLlMr66StLJ5JvdC7O9ieo6vrtL1v9V1NAGwsats_8g7v6j0AD3IHS4gtjh-leCP9akEJjiP00v3bmUsLAgH0Th6M225zpa7xiuf-ekap20WittbGLF4eLz-Ryg0IqermRsvqZWqmbHy3SoF_4i9MGwtgzfWQw_NKBNDZPBsroGT3o15I9WzUZcr7bC6HkkY-xXiVNRNePw_jg8wbAS0GVDeLLPO_UD7KpRBz3HOJ5943XVrWrc1gVDrKI2avlXpe8h-QR2cKa2R7gITJG5LfSGNc7m9Q-_3kexjeM2OVn_AXnIoiDRLsjZdIjWhci1hd57P9qOwgo6_3hP1z-YOTu1sHzp2my5eEaedv4GnRucPCcTVb8gj800bV6StEcL_QktdIQWatBCAS3UooUCWiiihSJaqEXLLrk8Ob44_OR2h2y40p8FrStyL0yiHBS3iGRSxIkSSSGZF7KkDJUoSxF4s9wvuOBBUnCPlzm4zDG8BqaxzH3_Ffy9Va1eEwqmex6FQoIRG_JcgqkpBBMYZAiYYPlsjzA7J5nsGOjxIJSbTHuinp_ZiUS_NDMTuUc-9C-tDQHLnx_fxcnO4MObbCTX_d-0vyFPBtQekJ22uVVvySO5batN806D4DuaN3uu |
| linkProvider | SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+GPU-Accelerated+MultiSource+Global+Fit+Pipeline+for+LISA+Data+Analysis&rft.jtitle=Physical+review.+D&rft.au=Katz%2C+Michael+L&rft.au=Karnesis%2C+Nikolaos&rft.au=Korsakova%2C+Natalia&rft.au=Gair%2C+Jonathan&rft.date=2025-01-24&rft.pub=American+Physical+Society&rft.issn=2470-0010&rft.eissn=2470-0029&rft.volume=111&rft_id=info:doi/10.1103%2FPhysRevD.111.024060&rft.externalDBID=CYI&rft.externalDocID=20250002033 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0010&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0010&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0010&client=summon |