Data-Driven Optimal Control via Linear Programming: Boundedness Guarantees
The linear programming (LP) approach is, together with value iteration and policy iteration, one of the three fundamental methods to solve optimal control problems in a dynamic programming setting. Despite its simple formulation, versatility, and predisposition to be employed in model-free settings,...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 70; číslo 3; s. 1683 - 1697 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The linear programming (LP) approach is, together with value iteration and policy iteration, one of the three fundamental methods to solve optimal control problems in a dynamic programming setting. Despite its simple formulation, versatility, and predisposition to be employed in model-free settings, the LP approach has not enjoyed the same popularity as the other methods. The reason is the often poor scalability of the exact LP approach and the difficulty to obtain bounded solutions for a reasonable amount of constraints. We mitigate these issues here, by investigating fundamental geometric features of the LP and developing sufficient conditions to guarantee finite solutions with minimal constraints. In the model-free context, we show that boundedness can be guaranteed by a suitable choice of dataset and objective function. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2024.3465536 |