Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost)

Across the globe, landslides have been recognized as one of the most detrimental geological calamities, especially in hilly terrains. However, the correct determination of landslide-prone fields remained a challenging task due to the nonlinear, complex, and inconsistent nature of landslides. Therefo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) Jg. 47; H. 6; S. 7367 - 7385
Hauptverfasser: Kavzoglu, Taskin, Teke, Alihan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2022
Springer Nature B.V
Schlagworte:
ISSN:2193-567X, 1319-8025, 2191-4281
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Across the globe, landslides have been recognized as one of the most detrimental geological calamities, especially in hilly terrains. However, the correct determination of landslide-prone fields remained a challenging task due to the nonlinear, complex, and inconsistent nature of landslides. Therefore, it is essential to apply methods with superior capabilities in dealing with real-world problems for properly delineating potential landslide zones. Recently, ensemble learning techniques have been drawn intense interest in landslide susceptibility mapping studies due to their distinct advantages. This present work intended to propose natural gradient boosting (NGBoost), a novel member of the ensemble learning family, for modeling landslide susceptibility for Macka County of Trabzon province, Turkey. The predictive performance of NGBoost was compared to ensemble-based machine learning methods, namely random forest (RF) and XGBoost using five accuracy metrics including overall accuracy (OA), F 1 score, Kappa coefficient, area under curve (AUC) value, and root-mean-square error to evaluate its competence and robustness. Besides, SHAP based on the game theory approach was implemented to interpret the influences of the predisposing factors on the produced model. Results indicated that the NGBoost method utilized for landslide susceptibility mapping problem for the first time had the greatest predictive ability (AUC = 0.898), followed by XGBoost (AUC = 0.871) and RF (AUC = 0.863), and outperformed the XGBoost and RF by approximately 6% in terms of OA. McNemar’s statistical significance test results also confirmed the superiority of the proposed NGBoost method over the RF and XGBoost algorithms.
AbstractList Across the globe, landslides have been recognized as one of the most detrimental geological calamities, especially in hilly terrains. However, the correct determination of landslide-prone fields remained a challenging task due to the nonlinear, complex, and inconsistent nature of landslides. Therefore, it is essential to apply methods with superior capabilities in dealing with real-world problems for properly delineating potential landslide zones. Recently, ensemble learning techniques have been drawn intense interest in landslide susceptibility mapping studies due to their distinct advantages. This present work intended to propose natural gradient boosting (NGBoost), a novel member of the ensemble learning family, for modeling landslide susceptibility for Macka County of Trabzon province, Turkey. The predictive performance of NGBoost was compared to ensemble-based machine learning methods, namely random forest (RF) and XGBoost using five accuracy metrics including overall accuracy (OA), F 1 score, Kappa coefficient, area under curve (AUC) value, and root-mean-square error to evaluate its competence and robustness. Besides, SHAP based on the game theory approach was implemented to interpret the influences of the predisposing factors on the produced model. Results indicated that the NGBoost method utilized for landslide susceptibility mapping problem for the first time had the greatest predictive ability (AUC = 0.898), followed by XGBoost (AUC = 0.871) and RF (AUC = 0.863), and outperformed the XGBoost and RF by approximately 6% in terms of OA. McNemar’s statistical significance test results also confirmed the superiority of the proposed NGBoost method over the RF and XGBoost algorithms.
Across the globe, landslides have been recognized as one of the most detrimental geological calamities, especially in hilly terrains. However, the correct determination of landslide-prone fields remained a challenging task due to the nonlinear, complex, and inconsistent nature of landslides. Therefore, it is essential to apply methods with superior capabilities in dealing with real-world problems for properly delineating potential landslide zones. Recently, ensemble learning techniques have been drawn intense interest in landslide susceptibility mapping studies due to their distinct advantages. This present work intended to propose natural gradient boosting (NGBoost), a novel member of the ensemble learning family, for modeling landslide susceptibility for Macka County of Trabzon province, Turkey. The predictive performance of NGBoost was compared to ensemble-based machine learning methods, namely random forest (RF) and XGBoost using five accuracy metrics including overall accuracy (OA), F1 score, Kappa coefficient, area under curve (AUC) value, and root-mean-square error to evaluate its competence and robustness. Besides, SHAP based on the game theory approach was implemented to interpret the influences of the predisposing factors on the produced model. Results indicated that the NGBoost method utilized for landslide susceptibility mapping problem for the first time had the greatest predictive ability (AUC = 0.898), followed by XGBoost (AUC = 0.871) and RF (AUC = 0.863), and outperformed the XGBoost and RF by approximately 6% in terms of OA. McNemar’s statistical significance test results also confirmed the superiority of the proposed NGBoost method over the RF and XGBoost algorithms.
Author Teke, Alihan
Kavzoglu, Taskin
Author_xml – sequence: 1
  givenname: Taskin
  orcidid: 0000-0002-9779-3443
  surname: Kavzoglu
  fullname: Kavzoglu, Taskin
  email: kavzoglu@gtu.edu.tr
  organization: Departments of Geomatics Engineering, Gebze Technical University
– sequence: 2
  givenname: Alihan
  surname: Teke
  fullname: Teke, Alihan
  organization: Departments of Geomatics Engineering, Gebze Technical University
BookMark eNp9kV1LHDEUhkOxULX-gV4FeqPQafMxH8mlyrotbK1oBe9CJnNmjcwkY5It9f_1hzWzKxSkeJNzLp4nJznvAdpz3gFCHyj5TAlpvkTKeS0LwlhB6qomhXiD9hmVtCiZoHvbnhdV3dy9Q0cx2paUgsuKUr6P_lwF6KxJ9hfgKwi9D6N2BiL2PV64CGM7AP6uzb11gFegg7NujU-HtQ823Y8RW4dX2nVxsB3gm000MCXb2sGmp-xN04zfxvm8zpgf8YUPENMnvPidAoyAl0F3FlzCZ97HNIPHd8ttf4KzgS912gQ9_I-7fObeo7e9HiIcPddDdHux-Hn-tVj9WH47P10VhtMqFYJD3VBT6hLA9ILSTkupJZdt0zWck7wlzXhd0qrhjel1SzpSMiPbUmpRA-OH6OPu3in4x03-hXrwm-DySMXqhhNSSjFTbEeZ4GMM0Ksp2FGHJ0WJmgNTu8BUDkxtA1MiS-KFZGzSyXqXgrbD6yrfqTHPcWsI_171ivUXteavNQ
CitedBy_id crossref_primary_10_1016_j_ijsrc_2024_08_003
crossref_primary_10_3390_su16166803
crossref_primary_10_1016_j_energy_2024_132078
crossref_primary_10_3390_su16156569
crossref_primary_10_1007_s42979_025_04214_8
crossref_primary_10_3390_rs17152635
crossref_primary_10_3390_land14040722
crossref_primary_10_1007_s10668_024_05398_4
crossref_primary_10_1016_j_colsurfa_2025_137581
crossref_primary_10_1038_s41598_024_54038_4
crossref_primary_10_3390_rs16050873
crossref_primary_10_1016_j_jsames_2025_105555
crossref_primary_10_3390_agriculture13061208
crossref_primary_10_1007_s12145_024_01561_7
crossref_primary_10_1002_rra_4353
crossref_primary_10_1016_j_conbuildmat_2025_141467
crossref_primary_10_1016_j_compag_2024_109414
crossref_primary_10_1080_19392699_2025_2531547
crossref_primary_10_1007_s42493_023_00092_5
crossref_primary_10_1016_j_catena_2023_107653
crossref_primary_10_1080_19475705_2025_2468323
crossref_primary_10_1016_j_jafrearsci_2022_104535
crossref_primary_10_1007_s13369_025_10467_5
crossref_primary_10_1080_14614103_2025_2452724
crossref_primary_10_1007_s00477_025_02911_7
crossref_primary_10_1002_gj_4902
crossref_primary_10_1007_s12665_025_12217_0
crossref_primary_10_3390_app142411750
crossref_primary_10_3390_rs17071161
crossref_primary_10_3390_su14106330
crossref_primary_10_1016_j_coldregions_2025_104648
crossref_primary_10_1117_1_JRS_18_042604
crossref_primary_10_1007_s00477_024_02683_6
crossref_primary_10_1080_19475705_2023_2213807
crossref_primary_10_3390_land14020268
crossref_primary_10_1016_j_energy_2025_135913
crossref_primary_10_1007_s12517_024_12146_5
crossref_primary_10_1038_s41598_025_17265_x
crossref_primary_10_3390_fi17090383
crossref_primary_10_3390_w15142661
crossref_primary_10_1190_geo2023_0657_1
crossref_primary_10_1007_s11069_025_07415_9
crossref_primary_10_1016_j_eswa_2025_129324
crossref_primary_10_1007_s10064_025_04436_3
crossref_primary_10_3389_fped_2024_1388820
crossref_primary_10_1371_journal_pone_0328705
crossref_primary_10_3390_land14010172
crossref_primary_10_3390_rs14133029
crossref_primary_10_1007_s10064_022_02708_w
crossref_primary_10_1109_JSEN_2025_3550784
crossref_primary_10_1007_s10661_025_13972_0
crossref_primary_10_1007_s11069_022_05793_y
crossref_primary_10_1016_j_envsoft_2023_105759
crossref_primary_10_1016_j_gr_2023_05_003
crossref_primary_10_1016_j_jmarsys_2025_104118
crossref_primary_10_1038_s41598_023_30009_z
crossref_primary_10_1007_s12145_024_01617_8
crossref_primary_10_1007_s10064_025_04270_7
crossref_primary_10_1016_j_nimb_2024_165293
crossref_primary_10_1088_2053_1591_ad419a
crossref_primary_10_3390_ijerph19052925
crossref_primary_10_1109_ACCESS_2025_3576854
crossref_primary_10_1038_s41598_024_83431_2
crossref_primary_10_1007_s12597_025_00950_w
crossref_primary_10_3390_su16125086
crossref_primary_10_1016_j_ecoinf_2025_103074
crossref_primary_10_1016_j_enconman_2024_118441
crossref_primary_10_3390_ma17071452
crossref_primary_10_1016_j_jafrearsci_2024_105208
crossref_primary_10_1007_s12517_022_10929_2
crossref_primary_10_3390_eng6080185
crossref_primary_10_3390_su16219574
crossref_primary_10_1016_j_asr_2024_06_082
crossref_primary_10_3390_su16020653
crossref_primary_10_3390_geohazards5010015
crossref_primary_10_1007_s10346_025_02462_6
crossref_primary_10_1016_j_ecoinf_2022_101647
crossref_primary_10_3390_su151813563
crossref_primary_10_1007_s10661_024_12467_8
crossref_primary_10_1016_j_catena_2023_107364
crossref_primary_10_1080_07853890_2024_2314237
crossref_primary_10_1016_j_asr_2022_10_044
crossref_primary_10_3390_su15010861
crossref_primary_10_1007_s00217_024_04614_9
crossref_primary_10_1002_cssc_202402559
crossref_primary_10_3390_rs16060988
crossref_primary_10_3390_su15054647
crossref_primary_10_1007_s11629_023_8029_2
crossref_primary_10_1016_j_eswa_2025_127686
crossref_primary_10_1007_s00477_023_02392_6
crossref_primary_10_1002_gj_4779
crossref_primary_10_1007_s00521_024_09893_7
crossref_primary_10_1038_s41598_025_90539_6
crossref_primary_10_1080_19479832_2024_2329563
crossref_primary_10_1007_s11356_023_28966_z
crossref_primary_10_1007_s12665_024_11909_3
crossref_primary_10_7454_jessd_v7i2_1258
crossref_primary_10_1007_s12145_024_01398_0
crossref_primary_10_1007_s12665_025_12242_z
crossref_primary_10_1007_s12145_023_01184_4
crossref_primary_10_1109_ACCESS_2024_3519219
crossref_primary_10_3390_w17020167
crossref_primary_10_1007_s11356_025_36761_1
crossref_primary_10_3390_rs15235520
crossref_primary_10_3390_systems13090808
crossref_primary_10_1007_s00477_025_03007_y
crossref_primary_10_58496_ADSA_2024_006
crossref_primary_10_1017_S0950268824001444
crossref_primary_10_3390_rs15061513
crossref_primary_10_1007_s12145_024_01480_7
crossref_primary_10_1186_s13040_024_00415_8
crossref_primary_10_1002_aic_18631
crossref_primary_10_3390_app131810455
crossref_primary_10_1016_j_energy_2025_136241
crossref_primary_10_1016_j_rsase_2024_101355
crossref_primary_10_1007_s10346_023_02166_9
crossref_primary_10_3390_su15032226
crossref_primary_10_3390_rs16163093
crossref_primary_10_1007_s12046_023_02193_1
crossref_primary_10_1007_s11069_023_06374_3
crossref_primary_10_1007_s12145_024_01259_w
crossref_primary_10_1016_j_scitotenv_2024_175059
crossref_primary_10_3390_a18050258
crossref_primary_10_1680_jgrim_24_00032
crossref_primary_10_3389_fpls_2025_1659345
crossref_primary_10_1038_s41598_024_71568_z
crossref_primary_10_1109_JSTARS_2024_3522995
crossref_primary_10_1016_j_fuel_2023_128467
crossref_primary_10_3390_su17104287
crossref_primary_10_1016_j_geoen_2023_212518
crossref_primary_10_1016_j_scp_2024_101818
crossref_primary_10_3390_app14146040
crossref_primary_10_1016_j_artint_2023_104058
crossref_primary_10_1016_j_biortech_2025_132582
crossref_primary_10_1097_MD_0000000000042667
crossref_primary_10_1007_s12665_025_12094_7
crossref_primary_10_1007_s13198_025_02759_8
crossref_primary_10_1007_s13369_023_08360_0
crossref_primary_10_1016_j_rsase_2023_101088
crossref_primary_10_1080_19475705_2024_2354507
crossref_primary_10_3390_rs15153901
crossref_primary_10_1007_s13132_024_02075_9
crossref_primary_10_1016_j_undsp_2025_03_006
crossref_primary_10_1007_s44371_025_00246_4
crossref_primary_10_5638_thagis_32_13
crossref_primary_10_1016_j_ecolind_2024_113002
crossref_primary_10_1016_j_jenvman_2024_122963
crossref_primary_10_1016_j_jhydrol_2023_129599
crossref_primary_10_1080_10106049_2025_2514725
crossref_primary_10_1016_j_commatsci_2023_112579
crossref_primary_10_1016_j_jrmge_2025_03_043
crossref_primary_10_1016_j_renene_2022_11_028
crossref_primary_10_1016_j_gr_2023_09_019
crossref_primary_10_1109_ACCESS_2024_3502759
crossref_primary_10_1007_s12145_025_01761_9
crossref_primary_10_1080_19942060_2024_2444419
crossref_primary_10_3390_land12061135
crossref_primary_10_1016_j_jgsce_2025_205602
crossref_primary_10_3389_feart_2024_1519771
crossref_primary_10_1007_s11069_023_06260_y
crossref_primary_10_1007_s00170_023_11582_z
crossref_primary_10_1016_j_asr_2024_12_020
crossref_primary_10_1016_j_energy_2025_135099
crossref_primary_10_3390_electronics13173396
crossref_primary_10_3390_rs15041007
crossref_primary_10_1016_j_compbiomed_2025_110008
crossref_primary_10_1016_j_engappai_2023_107083
crossref_primary_10_1002_gj_4603
crossref_primary_10_3390_pr12020384
crossref_primary_10_3390_rs16040665
crossref_primary_10_1007_s11227_024_06689_3
crossref_primary_10_3389_fevo_2023_1108924
crossref_primary_10_1007_s11273_025_10060_5
crossref_primary_10_1016_j_jhazmat_2024_135285
crossref_primary_10_3390_rs17010085
crossref_primary_10_1080_02723646_2025_2548705
crossref_primary_10_1007_s11356_023_31621_2
crossref_primary_10_1007_s12665_024_11627_w
crossref_primary_10_1155_2022_2058442
crossref_primary_10_1016_j_soildyn_2023_107994
crossref_primary_10_1016_j_oceaneng_2025_121286
crossref_primary_10_3389_fmolb_2024_1483326
crossref_primary_10_3390_rs15133296
crossref_primary_10_1007_s11356_025_36615_w
crossref_primary_10_1080_10106049_2022_2152493
crossref_primary_10_1007_s10668_024_04694_3
crossref_primary_10_1007_s00477_023_02560_8
crossref_primary_10_1016_j_multra_2023_100108
crossref_primary_10_3389_fmed_2024_1285067
crossref_primary_10_51646_jsesd_v14i1_419
Cites_doi 10.1080/19475705.2016.1255667
10.1002/widm.1249
10.1080/10106049.2018.1516248
10.1080/10106049.2021.1892210
10.1016/j.jafrearsci.2016.02.019
10.1007/s10115-013-0679-x
10.1596/0-8213-5930-4
10.30991/ijmlnce.2020v04i01.002
10.1016/B978-0-12-811318-9.00033-8
10.1007/s10346-013-0391-7
10.1007/s12665-012-1842-5
10.1007/s00254-006-0435-6
10.1016/S0013-7952(01)00093-X
10.1007/s11069-012-0218-1
10.1007/s11704-019-8208-z
10.1007/s42452-020-3060-1
10.3923/jas.2008.910.921
10.1016/j.catena.2017.11.022
10.4135/9781412983433
10.1016/j.geomorph.2004.06.010
10.1080/13658816.2020.1808897
10.1007/s10346-021-01693-7
10.1155/2020/8830661
10.1016/j.cageo.2016.10.001
10.1007/s11069-005-4669-5
10.1007/978-3-540-69970-5_30
10.1007/s00254-007-0882-8
10.1016/j.cageo.2008.08.007
10.1007/s10346-020-01580-7
10.1007/s00254-006-0256-7
10.1007/s10346-007-0088-x
10.1016/j.catena.2011.01.014
10.1080/10106049.2020.1831623
10.3390/rs13234776
10.1016/j.clay.2011.01.015
10.1007/978-3-319-77377-3_13
10.1016/j.enggeo.2015.04.004
10.1016/j.aei.2020.101201
10.1016/j.enggeo.2004.06.001
10.3390/ijgi9090553
10.1007/978-3-319-55342-9_8
10.1007/s11069-020-04371-4
10.1016/j.scitotenv.2020.137231
10.14481/jkges.2016.17.4.17
10.1023/A:1010933404324
10.1155/2012/974638
10.1016/j.cageo.2020.104445
10.1016/j.enggeo.2005.07.011
10.1080/19475705.2017.1407368
10.1016/j.catena.2020.104805
10.1016/j.geomorph.2010.05.009
10.1007/s002540050348
10.1016/j.cageo.2012.08.023
10.1016/j.scitotenv.2019.01.221
10.5194/isprs-archives-XLII-3-W4-295-2018
10.1016/j.cageo.2011.04.012
10.1109/ACCESS.2019.2923640
10.1089/ees.2006.0161
10.1016/S0169-555X(99)00078-1
10.3390/ijgi9020114
10.5194/nhess-10-623-2010
10.3390/app11114993
10.1007/s11069-014-1506-8
10.1007/s10346-016-0769-4
10.3390/ijgi8120545
10.1016/j.catena.2016.06.004
10.1080/10106049.2016.1170892
10.3390/ATMOS11080823
10.1016/j.geomorph.2006.10.036
10.3390/rs12111737
10.1016/j.geomorph.2008.02.011
10.3390/app9050942
10.1016/j.enggeo.2004.10.004
10.1145/2939672.2939785
10.1038/s42256-019-0138-9
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2022
King Fahd University of Petroleum & Minerals 2022.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2022
– notice: King Fahd University of Petroleum & Minerals 2022.
DBID AAYXX
CITATION
DOI 10.1007/s13369-022-06560-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 7385
ExternalDocumentID 10_1007_s13369_022_06560_8
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c315t-83e671c4a4eecf811da99a939b7d7330193a236415737cfab0d042c9b49a86e23
IEDL.DBID RSV
ISICitedReferencesCount 219
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743015500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:09:09 EDT 2025
Sat Nov 29 02:51:43 EST 2025
Tue Nov 18 21:55:06 EST 2025
Fri Feb 21 02:45:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords SHAP
Random forest
Ensemble learning
XGBoost
NGBoost
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-83e671c4a4eecf811da99a939b7d7330193a236415737cfab0d042c9b49a86e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9779-3443
PQID 2673004982
PQPubID 2044268
PageCount 19
ParticipantIDs proquest_journals_2673004982
crossref_primary_10_1007_s13369_022_06560_8
crossref_citationtrail_10_1007_s13369_022_06560_8
springer_journals_10_1007_s13369_022_06560_8
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Guzzetti, Carrara, Cardinali, Reichenbach (CR24) 1999; 31
Görüm, Fidan (CR7) 2021; 18
Pradhan (CR25) 2013; 51
Pham, Nguyen-Thoi, Qi, Phong, Dou, Ho, Le, Prakash (CR40) 2020; 195
Dou, Yunus, Tien Bui, Merghadi, Sahana, Zhu, Chen, Khosravi, Yang, Pham (CR43) 2019; 662
Yilmaz (CR28) 2009; 35
Kavzoglu, Colkesen, Sahin (CR48) 2019; 50
Safaei, Omar, Huat, Yousof, Ghiasi (CR3) 2011; 16
Kocaman, Tavus, Nefeslioglu, Karakas, Gokceoglu (CR61) 2020; 2020
Gómez, Kavzoglu (CR33) 2005; 1–2
Peduzzi (CR50) 2010; 10
Akinci, Kilicoglu, Dogan (CR14) 2020; 9
Sahin (CR65) 2020; 2
CR71
CR70
Chakraborty, Elhegazy, Elzarka, Gutierrez (CR67) 2020; 46
Ayalew, Yamagishi (CR78) 2005; 65
Kutlug Sahin, Ipbuker, Kavzoglu (CR13) 2017; 32
Sahin, Colkesen, Kavzoglu (CR60) 2020; 35
Sagi, Rokach (CR38) 2018; 8
Pourghasemi, Rahmati (CR32) 2018; 162
Daǧ, Bulut (CR83) 2012; 36
CR5
Pachauri, Gupta, Chander (CR54) 1998; 36
Yao, Tham, Dai (CR29) 2008; 101
Kavzoglu, Sahin, Colkesen (CR18) 2013; 11
Colkesen, Sahin, Kavzoglu (CR12) 2016; 118
Sezer, Nefeslioglu, Osna (CR15) 2017; 98
Štrumbelj, Kononenko (CR72) 2014; 41
Kavzoglu, Samui, Roy, Balas (CR62) 2017
Akgun, Dag, Bulut (CR16) 2008; 54
Dilley, Chen, Deichmann, Lerner-Lam, Arnold, Agwe, Buys, Kjekstad, Lyon, Yetman (CR2) 2005
CR41
Schuster (CR1) 1996; 247
Gokceoglu, Sonmez, Nefeslioglu, Duman, Can (CR19) 2005; 81
Yalcin, Reis, Aydinoglu, Yomralioglu (CR49) 2011
Dutta (CR69) 2020; 4
Hu, Mei, Zhang, Li, Li (CR81) 2021; 105
Kalantar, Ueda, Saeidi, Ahmadi, Halin, Shabani (CR80) 2020; 12
Dai, Lee, Ngai (CR23) 2002; 64
Viet, Lee, Kim (CR51) 2016; 17
Hong, Liu, Zhu (CR75) 2020; 718
Gao, Shan, Hu, Niu, Liu (CR37) 2019; 7
Tsangaratos, Ilia, Hong, Chen, Xu (CR42) 2017; 14
Kocaman, Gokceoglu (CR47) 2018; 42
Wang, Fang, Wang, Peng, Hong (CR76) 2020; 138
Saleem, Enamul Huq, Twumasi, Javed, Sajjad (CR53) 2019; 8
Yanar, Kocaman, Gokceoglu (CR46) 2020; 9
Menard (CR73) 2002
Yalcin (CR10) 2011; 52
Sahin (CR64) 2020
CR56
Ercanoglu, Gokceoglu (CR17) 2004; 75
Lee, Sambath (CR27) 2006; 50
Fang, Wang, Peng, Hong (CR39) 2021; 35
Kalantar, Pradhan, Amir Naghibi, Motevalli, Mansor (CR30) 2018; 9
Kavzoglu, Kutlug Sahin, Colkesen (CR26) 2015; 76
Kjekstad, Highland, Zhou, Ooi, Meng (CR4) 2009
Tien Bui, Pradhan, Lofman, Revhaug (CR31) 2012
Nefeslioglu, Duman, Durmaz (CR52) 2008; 94
Tagil, Jeff (CR55) 2008; 8
Tsangaratos, Ilia (CR79) 2016; 145
Lima, Steger, Glade (CR45) 2021; 18
Dong, Yu, Cao, Shi, Ma (CR36) 2020; 14
Kavzoglu, Teke, Yilmaz (CR35) 2021; 13
Kavzoglu, Kutlug Sahin, Colkesen (CR11) 2015; 192
Lee, Ryu, Kim (CR34) 2007; 4
Park, Kim (CR57) 2019
Pradhan, Jebur, Pradhan (CR20) 2017
Peng, Zhi, Ji, Ji, Tian (CR68) 2020; 11
CR66
Park, Choi, Kim, Kim (CR74) 2013; 68
Akgun, Sezer, Nefeslioglu, Gokceoglu, Pradhan (CR77) 2012; 38
CR63
Arabameri, Chandra Pal, Rezaie, Chakrabortty, Saha, Blaschke, Di Napoli, Ghorbanzadeh, Thi Ngo (CR82) 2021
Yalcin (CR8) 2007; 24
Regmi, Giardino, Vitek (CR22) 2010; 122
Akgün, Bulut (CR9) 2007; 51
Pham, Bui, Dholakia, Prakash, Pham, Mehmood, Le (CR58) 2017; 8
Breiman (CR59) 2001; 45
Can, Kocaman, Gokceoglu (CR44) 2021; 11
Hasekioğulları, Ercanoglu (CR6) 2012; 63
Chen, Liu, Chan (CR21) 2006; 37
6560_CR5
N Saleem (6560_CR53) 2019; 8
A Akgün (6560_CR9) 2007; 51
P Tsangaratos (6560_CR42) 2017; 14
X Hu (6560_CR81) 2021; 105
AK Pachauri (6560_CR54) 1998; 36
A Yalcin (6560_CR49) 2011
T Kavzoglu (6560_CR11) 2015; 192
S Tagil (6560_CR55) 2008; 8
O Sagi (6560_CR38) 2018; 8
T Yanar (6560_CR46) 2020; 9
A Akgun (6560_CR77) 2012; 38
M Dilley (6560_CR2) 2005
LC Chen (6560_CR21) 2006; 37
GD Hasekioğulları (6560_CR6) 2012; 63
B Pradhan (6560_CR25) 2013; 51
H Hong (6560_CR75) 2020; 718
NR Regmi (6560_CR22) 2010; 122
TT Viet (6560_CR51) 2016; 17
A Akgun (6560_CR16) 2008; 54
FC Dai (6560_CR23) 2002; 64
T Kavzoglu (6560_CR26) 2015; 76
6560_CR41
M Ercanoglu (6560_CR17) 2004; 75
H Akinci (6560_CR14) 2020; 9
J Dou (6560_CR43) 2019; 662
S Kocaman (6560_CR61) 2020; 2020
B Kalantar (6560_CR30) 2018; 9
S Kocaman (6560_CR47) 2018; 42
P Tsangaratos (6560_CR79) 2016; 145
EK Sahin (6560_CR64) 2020
S Park (6560_CR57) 2019
6560_CR71
6560_CR70
D Chakraborty (6560_CR67) 2020; 46
EK Sahin (6560_CR60) 2020; 35
I Yilmaz (6560_CR28) 2009; 35
L Breiman (6560_CR59) 2001; 45
E Štrumbelj (6560_CR72) 2014; 41
D Tien Bui (6560_CR31) 2012
H Gómez (6560_CR33) 2005; 1–2
EA Sezer (6560_CR15) 2017; 98
T Peng (6560_CR68) 2020; 11
I Colkesen (6560_CR12) 2016; 118
S Dutta (6560_CR69) 2020; 4
T Kavzoglu (6560_CR62) 2017
Z Fang (6560_CR39) 2021; 35
S Lee (6560_CR27) 2006; 50
S Lee (6560_CR34) 2007; 4
HA Nefeslioglu (6560_CR52) 2008; 94
6560_CR63
6560_CR66
S Park (6560_CR74) 2013; 68
C Gokceoglu (6560_CR19) 2005; 81
M Safaei (6560_CR3) 2011; 16
P Peduzzi (6560_CR50) 2010; 10
R Can (6560_CR44) 2021; 11
L Ayalew (6560_CR78) 2005; 65
F Guzzetti (6560_CR24) 1999; 31
T Kavzoglu (6560_CR35) 2021; 13
B Kalantar (6560_CR80) 2020; 12
HR Pourghasemi (6560_CR32) 2018; 162
EK Sahin (6560_CR65) 2020; 2
X Dong (6560_CR36) 2020; 14
A Yalcin (6560_CR8) 2007; 24
O Kjekstad (6560_CR4) 2009
B Pradhan (6560_CR20) 2017
X Yao (6560_CR29) 2008; 101
RL Schuster (6560_CR1) 1996; 247
S Daǧ (6560_CR83) 2012; 36
A Yalcin (6560_CR10) 2011; 52
BT Pham (6560_CR58) 2017; 8
X Gao (6560_CR37) 2019; 7
BT Pham (6560_CR40) 2020; 195
A Arabameri (6560_CR82) 2021
Y Wang (6560_CR76) 2020; 138
6560_CR56
S Menard (6560_CR73) 2002
T Kavzoglu (6560_CR18) 2013; 11
P Lima (6560_CR45) 2021; 18
T Görüm (6560_CR7) 2021; 18
E Kutlug Sahin (6560_CR13) 2017; 32
T Kavzoglu (6560_CR48) 2019; 50
References_xml – volume: 8
  start-page: 649
  year: 2017
  end-page: 671
  ident: CR58
  article-title: A novel ensemble classifier of rotation forest and Naïve Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS
  publication-title: Geom. Nat. Hazards Risk.
  doi: 10.1080/19475705.2016.1255667
– ident: CR70
– volume: 8
  start-page: e1249, 1–18
  year: 2018
  ident: CR38
  article-title: Ensemble learning: a survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 35
  start-page: 341
  year: 2020
  end-page: 363
  ident: CR60
  article-title: A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1516248
– volume: 16
  start-page: 1619
  year: 2011
  end-page: 1650
  ident: CR3
  article-title: Deterministic rainfall induced landslide approaches, advantage and limitation
  publication-title: Electron. J. Geotech. Eng.
– year: 2021
  ident: CR82
  article-title: Decision tree based ensemble machine learning approaches for landslide susceptibility mapping
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.1892210
– volume: 118
  start-page: 53
  year: 2016
  end-page: 64
  ident: CR12
  article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression
  publication-title: J. African Earth Sci.
  doi: 10.1016/j.jafrearsci.2016.02.019
– volume: 41
  start-page: 647
  year: 2014
  end-page: 665
  ident: CR72
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0679-x
– year: 2005
  ident: CR2
  publication-title: Natural Disaster Hotspots: A Global Risk Analysis
  doi: 10.1596/0-8213-5930-4
– volume: 4
  start-page: 12
  year: 2020
  end-page: 20
  ident: CR69
  article-title: Revealing brain tumor using cross-validated ngboost classifier
  publication-title: Int. J. Mach. Learn. Netw. Collab. Eng.
  doi: 10.30991/ijmlnce.2020v04i01.002
– start-page: 607
  year: 2017
  end-page: 619
  ident: CR62
  article-title: Object-oriented random forest for high resolution land cover mapping using quickbird-2 ımagery
  publication-title: Handbook of Neural Computation
  doi: 10.1016/B978-0-12-811318-9.00033-8
– volume: 11
  start-page: 425
  year: 2013
  end-page: 439
  ident: CR18
  article-title: Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression
  publication-title: Landslides
  doi: 10.1007/s10346-013-0391-7
– volume: 68
  start-page: 1443
  year: 2013
  end-page: 1464
  ident: CR74
  article-title: Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-1842-5
– volume: 51
  start-page: 1377
  year: 2007
  end-page: 1387
  ident: CR9
  article-title: GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-006-0435-6
– volume: 64
  start-page: 65
  year: 2002
  end-page: 87
  ident: CR23
  article-title: Landslide risk assessment and management: an overview
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(01)00093-X
– volume: 247
  start-page: 12
  year: 1996
  end-page: 35
  ident: CR1
  article-title: Socioeconomic significance of landslides
  publication-title: Spec. Rep. Natl. Res. Counc. Transp. Res. Board.
– volume: 63
  start-page: 1157
  year: 2012
  end-page: 1179
  ident: CR6
  article-title: A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey)
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-012-0218-1
– volume: 14
  start-page: 241
  year: 2020
  end-page: 258
  ident: CR36
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-8208-z
– volume: 2
  start-page: 1
  year: 2020
  end-page: 17
  ident: CR65
  article-title: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-3060-1
– volume: 8
  start-page: 910
  year: 2008
  end-page: 921
  ident: CR55
  article-title: GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey
  publication-title: J. Appl. Sci.
  doi: 10.3923/jas.2008.910.921
– volume: 162
  start-page: 177
  year: 2018
  end-page: 192
  ident: CR32
  article-title: Prediction of the landslide susceptibility: Which algorithm, which precision?
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.11.022
– year: 2002
  ident: CR73
  publication-title: Applied Logistic Regression Analysis: Sage University Series on Quantitative Applications in the Social Sciences
  doi: 10.4135/9781412983433
– volume: 65
  start-page: 15
  year: 2005
  end-page: 31
  ident: CR78
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 35
  start-page: 321
  year: 2021
  end-page: 347
  ident: CR39
  article-title: A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2020.1808897
– volume: 18
  start-page: 3531
  year: 2021
  end-page: 3546
  ident: CR45
  article-title: Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria
  publication-title: Landslides
  doi: 10.1007/s10346-021-01693-7
– ident: CR71
– volume: 2020
  start-page: 8830661
  year: 2020
  ident: CR61
  article-title: Evaluation of floods and landslides triggered by a meteorological catastrophe (Ordu, Turkey, August, 2018) using optical and radar data
  publication-title: Geofluids
  doi: 10.1155/2020/8830661
– volume: 98
  start-page: 26
  year: 2017
  end-page: 37
  ident: CR15
  article-title: An expert-based landslide susceptibility mapping (LSM) module developed for Netcad Architect Software
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.10.001
– volume: 37
  start-page: 209
  year: 2006
  end-page: 223
  ident: CR21
  article-title: Integrated community-based disaster management program in taiwan: a case study of shang-an village
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-005-4669-5
– start-page: 573
  year: 2009
  end-page: 587
  ident: CR4
  article-title: Economic and social impacts of landslides
  publication-title: Landslides: Disaster Risk Reduction
  doi: 10.1007/978-3-540-69970-5_30
– volume: 54
  start-page: 1127
  year: 2008
  end-page: 1143
  ident: CR16
  article-title: Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0882-8
– volume: 36
  start-page: 35
  year: 2012
  end-page: 62
  ident: CR83
  article-title: An example for preparation of GIS-based landslide susceptibility maps: Çayeli (Rize, NE Türkiye)
  publication-title: J. Geol. Eng.
– volume: 35
  start-page: 1125
  year: 2009
  end-page: 1138
  ident: CR28
  article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey)
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.08.007
– volume: 18
  start-page: 1691
  year: 2021
  end-page: 1705
  ident: CR7
  article-title: Spatiotemporal variations of fatal landslides in Turkey
  publication-title: Landslides
  doi: 10.1007/s10346-020-01580-7
– volume: 50
  start-page: 847
  year: 2006
  end-page: 855
  ident: CR27
  article-title: Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-006-0256-7
– volume: 4
  start-page: 327
  year: 2007
  end-page: 338
  ident: CR34
  article-title: Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea
  publication-title: Landslides
  doi: 10.1007/s10346-007-0088-x
– year: 2011
  ident: CR49
  article-title: A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey
  publication-title: CATENA
  doi: 10.1016/j.catena.2011.01.014
– year: 2020
  ident: CR64
  article-title: Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2020.1831623
– ident: CR5
– volume: 13
  start-page: 4776
  year: 2021
  ident: CR35
  article-title: Shared blocks-based ensemble deep learning for shallow landslide susceptibility mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs13234776
– volume: 52
  start-page: 11
  year: 2011
  end-page: 19
  ident: CR10
  article-title: A geotechnical study on the landslides in the Trabzon Province, NE, Turkey
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.01.015
– volume: 50
  start-page: 283
  year: 2019
  end-page: 301
  ident: CR48
  article-title: Machine learning techniques in landslide susceptibility mapping: a survey and a case study
  publication-title: Adv. Nat. Technol. Hazards Res.
  doi: 10.1007/978-3-319-77377-3_13
– volume: 192
  start-page: 101
  year: 2015
  end-page: 112
  ident: CR11
  article-title: Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.04.004
– volume: 46
  year: 2020
  ident: CR67
  article-title: A novel construction cost prediction model using hybrid natural and light gradient boosting
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101201
– volume: 75
  start-page: 229
  year: 2004
  end-page: 250
  ident: CR17
  article-title: Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey)
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2004.06.001
– ident: CR66
– volume: 9
  start-page: 4993
  year: 2020
  ident: CR14
  article-title: Random forest-based landslide susceptibility mapping in coastal regions of artvin, Turkey
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi9090553
– start-page: 151
  year: 2017
  end-page: 165
  ident: CR20
  article-title: Spatial prediction of landslide-prone areas through k-nearest neighbor algorithm and logistic regression model using high resolution airborne laser scanning data
  publication-title: Laser Scanning Applications in Landslide Assessment
  doi: 10.1007/978-3-319-55342-9_8
– volume: 105
  start-page: 1663
  year: 2021
  end-page: 1689
  ident: CR81
  article-title: Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-020-04371-4
– volume: 718
  year: 2020
  ident: CR75
  article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137231
– volume: 17
  start-page: 17
  year: 2016
  end-page: 31
  ident: CR51
  article-title: Shallow landslide assessment considering the ınfluence of vegetation cover
  publication-title: J. Korean Geoenviron. Soc.
  doi: 10.14481/jkges.2016.17.4.17
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR59
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2012
  ident: CR31
  article-title: Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and naïve bayes models
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2012/974638
– volume: 138
  year: 2020
  ident: CR76
  article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104445
– volume: 81
  start-page: 65
  year: 2005
  end-page: 83
  ident: CR19
  article-title: The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2005.07.011
– volume: 9
  start-page: 49
  year: 2018
  end-page: 69
  ident: CR30
  article-title: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN)
  publication-title: Geom. Nat. Hazards Risk.
  doi: 10.1080/19475705.2017.1407368
– volume: 195
  year: 2020
  ident: CR40
  article-title: Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104805
– volume: 122
  start-page: 25
  year: 2010
  end-page: 38
  ident: CR22
  article-title: Assessing susceptibility to landslides: using models to understand observed changes in slopes
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.05.009
– volume: 36
  start-page: 325
  year: 1998
  end-page: 334
  ident: CR54
  article-title: Landslide zoning in a part of the Garhwal Himalayas
  publication-title: Environ. Geol.
  doi: 10.1007/s002540050348
– ident: CR56
– volume: 51
  start-page: 350
  year: 2013
  end-page: 365
  ident: CR25
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 662
  start-page: 332
  year: 2019
  end-page: 346
  ident: CR43
  article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.221
– volume: 42
  start-page: 295
  year: 2018
  end-page: 300
  ident: CR47
  article-title: Possible contributions of citizen science for landslide hazard assessment
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch.
  doi: 10.5194/isprs-archives-XLII-3-W4-295-2018
– ident: CR63
– volume: 38
  start-page: 23
  year: 2012
  end-page: 34
  ident: CR77
  article-title: An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.04.012
– volume: 7
  start-page: 82512
  year: 2019
  end-page: 82521
  ident: CR37
  article-title: An adaptive ensemble machine learning model for intrusion detection
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2923640
– volume: 24
  start-page: 821
  year: 2007
  end-page: 833
  ident: CR8
  article-title: Environmental impacts of landslides: a case study from East Black Sea region, Turkey
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2006.0161
– volume: 31
  start-page: 181
  year: 1999
  end-page: 216
  ident: CR24
  article-title: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(99)00078-1
– volume: 9
  start-page: 114
  year: 2020
  ident: CR46
  article-title: Use of Mamdani fuzzy algorithm for multi-hazard susceptibility assessment in a developing urban settlement (Mamak, Ankara, Turkey)
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi9020114
– volume: 10
  start-page: 623
  year: 2010
  end-page: 640
  ident: CR50
  article-title: Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-10-623-2010
– volume: 11
  start-page: 4993
  year: 2021
  ident: CR44
  article-title: A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk dam, Turkey
  publication-title: Appl. Sci.
  doi: 10.3390/app11114993
– volume: 1–2
  start-page: 1
  year: 2005
  end-page: 27
  ident: CR33
  article-title: Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin
  publication-title: Venezuela. Eng. Geol.
– volume: 76
  start-page: 471
  year: 2015
  end-page: 496
  ident: CR26
  article-title: An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-014-1506-8
– volume: 14
  start-page: 1091
  year: 2017
  end-page: 1111
  ident: CR42
  article-title: Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China
  publication-title: Landslides
  doi: 10.1007/s10346-016-0769-4
– volume: 8
  start-page: 545
  year: 2019
  ident: CR53
  article-title: Parameters derived from and/or used with digital elevation models (DEMs) for landslide susceptibility mapping and landslide risk assessment: a review
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi8120545
– volume: 145
  start-page: 164
  year: 2016
  end-page: 179
  ident: CR79
  article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.06.004
– volume: 32
  start-page: 956
  year: 2017
  end-page: 977
  ident: CR13
  article-title: Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2016.1170892
– volume: 11
  start-page: 1
  year: 2020
  end-page: 17
  ident: CR68
  article-title: Prediction skill of extended range 2-m maximum air temperature probabilistic forecasts using machine learning post-processing methods
  publication-title: Atmosphere (Basel).
  doi: 10.3390/ATMOS11080823
– volume: 94
  start-page: 401
  year: 2008
  end-page: 418
  ident: CR52
  article-title: Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.10.036
– volume: 12
  start-page: 1
  year: 2020
  end-page: 23
  ident: CR80
  article-title: Landslide susceptibility mapping: machine and ensemble learning based on remote sensing big data
  publication-title: Remote Sens.
  doi: 10.3390/rs12111737
– ident: CR41
– volume: 101
  start-page: 572
  year: 2008
  end-page: 582
  ident: CR29
  article-title: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– year: 2019
  ident: CR57
  article-title: Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance
  publication-title: Appl. Sci.
  doi: 10.3390/app9050942
– volume: 51
  start-page: 350
  year: 2013
  ident: 6560_CR25
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 118
  start-page: 53
  year: 2016
  ident: 6560_CR12
  publication-title: J. African Earth Sci.
  doi: 10.1016/j.jafrearsci.2016.02.019
– volume: 65
  start-page: 15
  year: 2005
  ident: 6560_CR78
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 4
  start-page: 12
  year: 2020
  ident: 6560_CR69
  publication-title: Int. J. Mach. Learn. Netw. Collab. Eng.
  doi: 10.30991/ijmlnce.2020v04i01.002
– volume: 51
  start-page: 1377
  year: 2007
  ident: 6560_CR9
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-006-0435-6
– volume: 54
  start-page: 1127
  year: 2008
  ident: 6560_CR16
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0882-8
– volume: 76
  start-page: 471
  year: 2015
  ident: 6560_CR26
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-014-1506-8
– volume: 68
  start-page: 1443
  year: 2013
  ident: 6560_CR74
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-1842-5
– volume: 105
  start-page: 1663
  year: 2021
  ident: 6560_CR81
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-020-04371-4
– ident: 6560_CR41
– volume: 162
  start-page: 177
  year: 2018
  ident: 6560_CR32
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.11.022
– volume: 81
  start-page: 65
  year: 2005
  ident: 6560_CR19
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2005.07.011
– volume: 1–2
  start-page: 1
  year: 2005
  ident: 6560_CR33
  publication-title: Venezuela. Eng. Geol.
  doi: 10.1016/j.enggeo.2004.10.004
– volume: 138
  year: 2020
  ident: 6560_CR76
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104445
– start-page: 607
  volume-title: Handbook of Neural Computation
  year: 2017
  ident: 6560_CR62
  doi: 10.1016/B978-0-12-811318-9.00033-8
– volume: 24
  start-page: 821
  year: 2007
  ident: 6560_CR8
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2006.0161
– volume: 11
  start-page: 4993
  year: 2021
  ident: 6560_CR44
  publication-title: Appl. Sci.
  doi: 10.3390/app11114993
– year: 2011
  ident: 6560_CR49
  publication-title: CATENA
  doi: 10.1016/j.catena.2011.01.014
– volume: 42
  start-page: 295
  year: 2018
  ident: 6560_CR47
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch.
  doi: 10.5194/isprs-archives-XLII-3-W4-295-2018
– volume: 11
  start-page: 1
  year: 2020
  ident: 6560_CR68
  publication-title: Atmosphere (Basel).
  doi: 10.3390/ATMOS11080823
– volume: 63
  start-page: 1157
  year: 2012
  ident: 6560_CR6
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-012-0218-1
– volume: 98
  start-page: 26
  year: 2017
  ident: 6560_CR15
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.10.001
– volume: 718
  year: 2020
  ident: 6560_CR75
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137231
– volume: 101
  start-page: 572
  year: 2008
  ident: 6560_CR29
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.02.011
– volume: 36
  start-page: 35
  year: 2012
  ident: 6560_CR83
  publication-title: J. Geol. Eng.
– volume: 50
  start-page: 847
  year: 2006
  ident: 6560_CR27
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-006-0256-7
– volume: 18
  start-page: 3531
  year: 2021
  ident: 6560_CR45
  publication-title: Landslides
  doi: 10.1007/s10346-021-01693-7
– year: 2012
  ident: 6560_CR31
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2012/974638
– volume: 35
  start-page: 341
  year: 2020
  ident: 6560_CR60
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1516248
– year: 2019
  ident: 6560_CR57
  publication-title: Appl. Sci.
  doi: 10.3390/app9050942
– volume: 12
  start-page: 1
  year: 2020
  ident: 6560_CR80
  publication-title: Remote Sens.
  doi: 10.3390/rs12111737
– volume: 2020
  start-page: 8830661
  year: 2020
  ident: 6560_CR61
  publication-title: Geofluids
  doi: 10.1155/2020/8830661
– volume: 145
  start-page: 164
  year: 2016
  ident: 6560_CR79
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.06.004
– volume: 36
  start-page: 325
  year: 1998
  ident: 6560_CR54
  publication-title: Environ. Geol.
  doi: 10.1007/s002540050348
– start-page: 573
  volume-title: Landslides: Disaster Risk Reduction
  year: 2009
  ident: 6560_CR4
  doi: 10.1007/978-3-540-69970-5_30
– volume: 9
  start-page: 49
  year: 2018
  ident: 6560_CR30
  publication-title: Geom. Nat. Hazards Risk.
  doi: 10.1080/19475705.2017.1407368
– ident: 6560_CR71
– year: 2021
  ident: 6560_CR82
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.1892210
– volume: 10
  start-page: 623
  year: 2010
  ident: 6560_CR50
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-10-623-2010
– volume: 18
  start-page: 1691
  year: 2021
  ident: 6560_CR7
  publication-title: Landslides
  doi: 10.1007/s10346-020-01580-7
– volume: 11
  start-page: 425
  year: 2013
  ident: 6560_CR18
  publication-title: Landslides
  doi: 10.1007/s10346-013-0391-7
– volume: 122
  start-page: 25
  year: 2010
  ident: 6560_CR22
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.05.009
– volume: 35
  start-page: 1125
  year: 2009
  ident: 6560_CR28
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.08.007
– volume: 662
  start-page: 332
  year: 2019
  ident: 6560_CR43
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.221
– volume: 41
  start-page: 647
  year: 2014
  ident: 6560_CR72
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0679-x
– volume-title: Natural Disaster Hotspots: A Global Risk Analysis
  year: 2005
  ident: 6560_CR2
  doi: 10.1596/0-8213-5930-4
– ident: 6560_CR5
– volume: 8
  start-page: 649
  year: 2017
  ident: 6560_CR58
  publication-title: Geom. Nat. Hazards Risk.
  doi: 10.1080/19475705.2016.1255667
– volume: 64
  start-page: 65
  year: 2002
  ident: 6560_CR23
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(01)00093-X
– volume: 8
  start-page: e1249, 1–18
  year: 2018
  ident: 6560_CR38
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 94
  start-page: 401
  year: 2008
  ident: 6560_CR52
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.10.036
– volume: 35
  start-page: 321
  year: 2021
  ident: 6560_CR39
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2020.1808897
– volume: 46
  year: 2020
  ident: 6560_CR67
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101201
– year: 2020
  ident: 6560_CR64
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2020.1831623
– volume: 7
  start-page: 82512
  year: 2019
  ident: 6560_CR37
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2923640
– volume: 14
  start-page: 241
  year: 2020
  ident: 6560_CR36
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-8208-z
– volume: 195
  year: 2020
  ident: 6560_CR40
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104805
– volume: 16
  start-page: 1619
  year: 2011
  ident: 6560_CR3
  publication-title: Electron. J. Geotech. Eng.
– ident: 6560_CR63
  doi: 10.1145/2939672.2939785
– volume: 52
  start-page: 11
  year: 2011
  ident: 6560_CR10
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.01.015
– ident: 6560_CR66
– volume: 31
  start-page: 181
  year: 1999
  ident: 6560_CR24
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(99)00078-1
– volume-title: Applied Logistic Regression Analysis: Sage University Series on Quantitative Applications in the Social Sciences
  year: 2002
  ident: 6560_CR73
  doi: 10.4135/9781412983433
– volume: 17
  start-page: 17
  year: 2016
  ident: 6560_CR51
  publication-title: J. Korean Geoenviron. Soc.
  doi: 10.14481/jkges.2016.17.4.17
– volume: 37
  start-page: 209
  year: 2006
  ident: 6560_CR21
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-005-4669-5
– volume: 4
  start-page: 327
  year: 2007
  ident: 6560_CR34
  publication-title: Landslides
  doi: 10.1007/s10346-007-0088-x
– volume: 38
  start-page: 23
  year: 2012
  ident: 6560_CR77
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.04.012
– volume: 14
  start-page: 1091
  year: 2017
  ident: 6560_CR42
  publication-title: Landslides
  doi: 10.1007/s10346-016-0769-4
– ident: 6560_CR70
  doi: 10.1038/s42256-019-0138-9
– volume: 45
  start-page: 5
  year: 2001
  ident: 6560_CR59
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 75
  start-page: 229
  year: 2004
  ident: 6560_CR17
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2004.06.001
– volume: 2
  start-page: 1
  year: 2020
  ident: 6560_CR65
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-3060-1
– volume: 50
  start-page: 283
  year: 2019
  ident: 6560_CR48
  publication-title: Adv. Nat. Technol. Hazards Res.
  doi: 10.1007/978-3-319-77377-3_13
– volume: 8
  start-page: 545
  year: 2019
  ident: 6560_CR53
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi8120545
– start-page: 151
  volume-title: Laser Scanning Applications in Landslide Assessment
  year: 2017
  ident: 6560_CR20
  doi: 10.1007/978-3-319-55342-9_8
– volume: 8
  start-page: 910
  year: 2008
  ident: 6560_CR55
  publication-title: J. Appl. Sci.
  doi: 10.3923/jas.2008.910.921
– volume: 13
  start-page: 4776
  year: 2021
  ident: 6560_CR35
  publication-title: Remote Sens.
  doi: 10.3390/rs13234776
– ident: 6560_CR56
– volume: 192
  start-page: 101
  year: 2015
  ident: 6560_CR11
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.04.004
– volume: 247
  start-page: 12
  year: 1996
  ident: 6560_CR1
  publication-title: Spec. Rep. Natl. Res. Counc. Transp. Res. Board.
– volume: 9
  start-page: 114
  year: 2020
  ident: 6560_CR46
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi9020114
– volume: 9
  start-page: 4993
  year: 2020
  ident: 6560_CR14
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi9090553
– volume: 32
  start-page: 956
  year: 2017
  ident: 6560_CR13
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2016.1170892
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.6283143
Snippet Across the globe, landslides have been recognized as one of the most detrimental geological calamities, especially in hilly terrains. However, the correct...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7367
SubjectTerms Algorithms
Engineering
Game theory
Humanities and Social Sciences
Landslides
Landslides & mudslides
Machine learning
Mapping
multidisciplinary
Performance prediction
Research Article-Earth Sciences
Science
Title Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost)
URI https://link.springer.com/article/10.1007/s13369-022-06560-8
https://www.proquest.com/docview/2673004982
Volume 47
WOSCitedRecordID wos000743015500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELVo6QEOQAsVCwuaA4dWraVNnMT2cUHbcoDVqqXV3iLHmWxX2k2qOK3g__gwbG9CABUkeouUsRVpnmdG8Zs3hLyzmNVh5hg1RVLQqGA5lRwTKiN06U8ohcoPm-DTqZjP5axtCjMd2727kvSRum92YyyR1LHPR04xhoot8tCmO-EGNpydX3YoimzKt1UE6_-02Aoo9KNk7elkNE74vO2euXvb3zNUX3b-cVPqE9DJ0_t9-jPypC04YbxByC55gOUeefyLDOFz8n1Wu-saF_hg1jcSGKgKmJQG19kK4bNnXSK0gqwLGK8WVb1srtYGliV8ci3Dq2WOcH5jPFXGs26_2XVOAWIBnpsAZ9asWoMbCGqaY5h8bdz_STitPfOsgfdVZRwRGw7mp_75EOwKmCovD3KX3bS1e0EuTiZfPnyk7XQHqlkQN1QwTHigIxUh6kIEQa6kVJLJjOec2bgjmXLq9kHMGdeFyka5DTBaZpFUIsGQ7ZPtsirxJYGsUHGWadQ8j-1uKCMVCxZozXJbXeY4IEHn0VS30uduAscq7UWbnYdS66HUeygVA3L0c831Rvjjn9bDDihpGwRMakHn9MykCAfkuANG__rvu736P_PX5FG4wRYdBUOy3dQ3-Ibs6Ntmaeq3_nD8AAi7CZI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgIAGH8i2WFpgDBxC1tImT2D62aNsittGqLWhvkeNMlpV2ExSnCP4fP6y2NyGAChLcImVsRZrnmVH85g0hLy1mdZg7Rk2ZlDQqWUElx4TKCF36E0qh8sMmeJqK-VzOuqYw07Pd-ytJH6mHZjfGEkkd-3zsFGOouE5uRDZjOcX807OPPYoim_JtFcGGPy22Agr9KFl7OhmNEz7vumeu3vbXDDWUnb_dlPoEdHj3_z79HtnuCk7Y3yDkPrmG1QNy5ycZwofk-6xx1zUu8MFsaCQwUJcwqQyu8xXCiWddInSCrAvYXy3qZtl-WhtYVjB1LcOrZYFwdmE8Vcazbr_ZdU4BYgGemwCn1qxegxsIato9mHxt3f9JOGo886yFg7o2jogNr-ZH_vk12BWQKi8PcpVd2tk9Ih8OJ-dvj2k33YFqFsQtFQwTHuhIRYi6FEFQKCmVZDLnBWc27kimnLp9EHPGdanycWEDjJZ5JJVIMGSPyVZVV_iEQF6qOM81al7EdjeUkYoFC7Rmha0uCxyRoPdopjvpczeBY5UNos3OQ5n1UOY9lIkRefNjzeeN8MdfrXd7oGRdEDCZBZ3TM5MiHJG9HhjD6z_v9vTfzF-QW8fnJ9Ns-i59v0Nuhxuc0XGwS7ba5gKfkZv6S7s0zXN_UC4BgL4Mdg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgIAQHPou6UGAOHEDU6iZOYvtYYLcgSrSigPYWObazXWk3qZIUwf_jh-HxJqSggoS4RcqMpWjGMxP7zRtCnjqf1WGOiJoiKWhUMEMltwmVkcX0J5Syyg-b4Gkq5nM5O9fF79Hu_ZXkpqcBWZrKdv_UFPtD4xtjiaSIRB8jewwVl8mVCIH0-L9-_Ln3qMilf1dRsOHUxVVDoR8r63Yqo3HC510nzcXL_pqthhL0t1tTn4ymt_7_M26Tm10hCgcbz7lDLtnyLrlxjp7wHvk-q_EaBwMizIYGgwaqAiZlY9f5ysJ7j8a00BG1LuBgtajqZXuybmBZwhG2Eq-WxsLxWeMhNB6N-83pITPEAjxmAT44sWoNOCi0afdg8rXFc0s4rD0irYWXVdUgQBuezQ_983NwGpAqTxtykVzayW2TT9PJx1dvaDf1gWoWxC0VzCY80JGKrNWFCAKjpFSSyZwbzlw8kkwh630Qc8Z1ofKxcYFHyzySSiQ2ZPfJVlmVdodAXqg4z7XV3MRuNSsjFQsWaM2MqzqNHZGgt26mO0p0nMyxygYyZ7RQ5iyUeQtlYkRe_NQ53RCC_FV6t3earAsOTeYcEHnOpAhHZK93kuH1n1d78G_iT8i12etpdvQ2ffeQXA83bkbHwS7Zausz-4hc1V_aZVM_9nvmB1C5FVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Performances+of+Ensemble+Machine+Learning+Algorithms+in+Landslide+Susceptibility+Mapping+Using+Random+Forest%2C+Extreme+Gradient+Boosting+%28XGBoost%29+and+Natural+Gradient+Boosting+%28NGBoost%29&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Taskin%2C+Kavzoglu&rft.au=Teke+Alihan&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=47&rft.issue=6&rft.spage=7367&rft.epage=7385&rft_id=info:doi/10.1007%2Fs13369-022-06560-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon