Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques
•Four boosting machine learning (ML) models were developed to predict the seismic responses of steel moment frames.•The maximum global and interstory drift ratios, base shear coefficient, and maximum floor acceleration were predicted.•1,848 steel moment frames were analyzed under 50 earthquake recor...
Saved in:
| Published in: | Computers & structures Vol. 305; p. 107580 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.12.2024
|
| Subjects: | |
| ISSN: | 0045-7949 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Four boosting machine learning (ML) models were developed to predict the seismic responses of steel moment frames.•The maximum global and interstory drift ratios, base shear coefficient, and maximum floor acceleration were predicted.•1,848 steel moment frames were analyzed under 50 earthquake records to generate an inclusive dataset.•Fragility curves were estimated using the IDA responses predicted by the LightGBM models.•The LightGBM and CatBoost models achieved the best predictive performance compared to the other models.
The main objective of this paper is to develop machine learning (ML) models for predicting the seismic responses of steel moment frames. For this purpose, four boosting ML techniques-gradient boosting, XGBoost, LightGBM, and CatBoost-were developed in Python. To create an inclusive dataset, 92,400 nonlinear time-history analyses were performed on 1,848 steel moment frames under 50 earthquakes using OpenSeesPy. Geometric configurations, structural properties, and ground motion intensity measures were considered as the inputs for the models. The outputs included maximum global drift ratio (MGDR), maximum interstory drift ratio (MIDR), base shear coefficient (BSC), and maximum floor acceleration (MFA). The study also investigated the effectiveness of the ML models in estimating fragility curves for an 8-story steel frame at different performance levels. Finally, a web application was developed to facilitate the estimation of the peak dynamic responses for steel moment frames. The results show that the LightGBM and CatBoost models demonstrate superior predictive performance, with coefficient of determinations (R2) higher than 0.925. Furthermore, the LightGBM models can estimate the fragility curves with minimal errors (e.g., the relative errors in the median values of the predicted curves are less than 10%). |
|---|---|
| AbstractList | •Four boosting machine learning (ML) models were developed to predict the seismic responses of steel moment frames.•The maximum global and interstory drift ratios, base shear coefficient, and maximum floor acceleration were predicted.•1,848 steel moment frames were analyzed under 50 earthquake records to generate an inclusive dataset.•Fragility curves were estimated using the IDA responses predicted by the LightGBM models.•The LightGBM and CatBoost models achieved the best predictive performance compared to the other models.
The main objective of this paper is to develop machine learning (ML) models for predicting the seismic responses of steel moment frames. For this purpose, four boosting ML techniques-gradient boosting, XGBoost, LightGBM, and CatBoost-were developed in Python. To create an inclusive dataset, 92,400 nonlinear time-history analyses were performed on 1,848 steel moment frames under 50 earthquakes using OpenSeesPy. Geometric configurations, structural properties, and ground motion intensity measures were considered as the inputs for the models. The outputs included maximum global drift ratio (MGDR), maximum interstory drift ratio (MIDR), base shear coefficient (BSC), and maximum floor acceleration (MFA). The study also investigated the effectiveness of the ML models in estimating fragility curves for an 8-story steel frame at different performance levels. Finally, a web application was developed to facilitate the estimation of the peak dynamic responses for steel moment frames. The results show that the LightGBM and CatBoost models demonstrate superior predictive performance, with coefficient of determinations (R2) higher than 0.925. Furthermore, the LightGBM models can estimate the fragility curves with minimal errors (e.g., the relative errors in the median values of the predicted curves are less than 10%). |
| ArticleNumber | 107580 |
| Author | Zareian, Farzaneh Banazadeh, Mehdi Zareian, Mohammad Sajjad |
| Author_xml | – sequence: 1 givenname: Farzaneh orcidid: 0009-0001-2290-4794 surname: Zareian fullname: Zareian, Farzaneh email: f.zareian@aut.ac.ir organization: Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran – sequence: 2 givenname: Mehdi surname: Banazadeh fullname: Banazadeh, Mehdi email: mbanazadeh@aut.ac.ir organization: Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran – sequence: 3 givenname: Mohammad Sajjad surname: Zareian fullname: Zareian, Mohammad Sajjad email: zareian@shdu.ac.ir organization: Department of Civil Engineering, Shahab Danesh University, Qom, Iran |
| BookMark | eNqNkU1OwzAQhb0oEqVwBnyBFiex3WTBokL8SZVgAWvLmUxaV4ldbLdST8J1cSiwYAMrW0_fe6N5c0ZG1lkk5DJjs4xl8mozA9dvQ_Q7mOUs50mdi5KNyJgxLqbzilen5CyEDWNMcsbG5P3ZY2MgGmepa2nK64xF7WlzsLo3QD2GrbMBA9W2oSu06PU3HdCEgWm9XpnOxAOFnd8ntHWehojY0d71aONA9EnfBWNXtHYuxOHTa1inabRLA-0gRIS1NW87DOfkpNVdwIuvd0Je725fbh6my6f7x5vFcgpFJuJUgszzsi5klkMmS1lUtaibORfAmoJLxnkpGl2Ksip0lZi25WXdSF4JkLwVWEzI9TEXvAvBY6vAxM8Fo9emUxlTQ7Nqo36aVUOz6ths8s9_-bfe9Nof_uFcHJ2Y1tsb9CqAQQvpHB4hqsaZPzM-AOnRod4 |
| CitedBy_id | crossref_primary_10_1016_j_cma_2025_118079 |
| Cites_doi | 10.1016/S0141-0296(00)00074-2 10.1016/j.compstruc.2019.03.004 10.1007/s10518-021-01283-x 10.1002/eqe.935 10.1145/2939672.2939785 10.62913/engj.v42i4.863 10.1016/j.engstruct.2022.115502 10.1016/j.ultras.2024.107347 10.1002/eqe.876 10.3390/computation11070126 10.1007/s10518-019-00679-0 10.1061/(ASCE)ST.1943-541X.0003439 10.1193/1.1585416 10.1016/j.engstruct.2018.01.053 10.1016/j.engstruct.2018.02.024 10.3390/infrastructures7040051 10.3390/app12031753 10.1007/s00521-021-06004-8 10.1016/j.engstruct.2021.112518 10.1111/mice.12805 10.1007/s10518-018-0384-y 10.1016/j.engstruct.2005.07.010 10.1016/j.engappai.2023.106976 10.1002/eqe.3183 10.1007/s10518-019-00726-w 10.1007/s00366-022-01609-6 10.1016/0029-5493(90)90259-Z 10.1002/suco.202200718 10.1016/j.advengsoft.2011.05.033 10.1016/S0143-974X(01)00095-5 10.1016/j.soildyn.2020.106096 10.1061/(ASCE)ST.1943-541X.0003004 10.1061/JSENDH.STENG-12969 10.1016/j.eswa.2015.07.053 10.1002/eqe.141 10.1016/j.engstruct.2018.03.028 10.1002/eqe.4290150109 10.1016/j.advengsoft.2020.102825 10.1016/j.soildyn.2004.10.007 10.1016/j.softx.2017.10.009 10.1007/s10518-015-9838-7 10.1061/(ASCE)0733-9445(1991)117:1(19) 10.1007/s10518-016-9963-y 10.1016/j.conbuildmat.2022.129504 10.1061/(ASCE)0733-9445(2002)128:4(429) |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compstruc.2024.107580 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compstruc_2024_107580 S0045794924003092 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABAOU ABBOA ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ RXW SDF SDG SDP SES SEW SPC SPCBC SPD SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29F 6TJ 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABFNM ABJNI ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 OHT R2- SBC SET T9H TAE VH1 WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c315t-6c6228b3612c168639b5bd745c0d34604485da85893a912cff48bd6495c64f5e3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001361234200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7949 |
| IngestDate | Sat Nov 29 04:10:47 EST 2025 Tue Nov 18 22:17:17 EST 2025 Sat Dec 21 16:01:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nonlinear dynamic responses Fragility curves Steel moment frames Machine learning Boosting algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c315t-6c6228b3612c168639b5bd745c0d34604485da85893a912cff48bd6495c64f5e3 |
| ORCID | 0009-0001-2290-4794 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compstruc_2024_107580 crossref_primary_10_1016_j_compstruc_2024_107580 elsevier_sciencedirect_doi_10_1016_j_compstruc_2024_107580 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & structures |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mortazavi, Mojiri, Kwon, Christopoulos (b0020) 2022; 148 Lagaros, Papadrakakis (b0045) 2012; 44 Housner (b0295) 1975; 6 Ricles, Mao, Lu, Fisher (b0250) 2002; 128 Sun, Deng, Zhang, Liu, Xu, Wang (b0185) 2024 Truong, Vu, Thai, Ha (b0070) 2020; 147 Elenas, Meskouris (b0325) 2001; 23 Palanci, Kayhan, Demir (b0320) 2018; 16 ASCE/SEI 7-22. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, Virginia: American Society of Civil Engineers (ASCE); 2022. Mazzoni, McKenna, Scott, Fenves (b0235) 2006; 264 Prokhorenkova, Gusev, Vorobev, Dorogush, Gulin (b0205) 2018; 31 Khoshnoudian, Ziaei, Ayyobi, Paytam (b0005) 2017; 15 Vamvatsikos, Cornell (b0135) 2002; 31 Filippou FC, Popov EP, Bertero VV. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints 1983. Arias (b0290) 1970 Nasab, Kim (b0060) 2023; 278 Nguyen, Dao, Shin (b0080) 2021; 242 Jiang, Ye (b0010) 2020; 18 Mangalathu, Heo, Jeon (b0155) 2018; 162 Zhou (b0215) 2012 Cover, Thomas (b0335) 1991; 2 FEMA P-695. Quantification of Building Seismic Performance Factors. Washington, D.C.: Federal Emergency Management Agency; 2009. Mohsenian, Nikkhoo, Hajirasouliha (b0345) 2019; 17 Cavaleri, Barkhordari, Repapis, Armaghani, Ulrikh, Asteris (b0090) 2022; 359 Pacific Earthquake Engineering Research Center - PEER. Next generation attenuation database 2013. Vargas-Alzate, Gonzalez-Drigo, Avila-Haro (b0285) 2022; 7 Giovanis, Fragiadakis, Papadopoulos (b0150) 2016; 14 Friedman (b0190) 2001 . Rahgozar, Pouraminian, Rahgozar (b0015) 2021; 44 Nguyen, Lee, LaFave, Shin (b0180) 2023; 126 Stafford, Coull (b0340) 1991 Asteris, Karoglou, Skentou, Vasconcelos, He, Bakolas (b0115) 2024; 141 Mangalathu, Jeon (b0175) 2019; 48 Sarma, Yang (b0305) 1987; 15 ASCE/SEI 41-23. Seismic evaluation and retrofit of existing buildings. Reston, Virginia: American Society of Civil Engineers (ASCE); 2023. Alkayem, Shen, Mayya, Asteris, Fu, Di Luzio (b0095) 2023 Boore, Bommer (b0270) 2005; 25 Asteris, Koopialipoor, Armaghani, Kotsonis, Lourenço (b0100) 2021; 33 Park, Ang, Wen (b0310) 1987; 3 Zhang, Nguyen, Bui, Pradhan, Asteris, Costache (b0120) 2022 Krawinkler, Miranda (b0130) 2004; 9 Georgioudakis, Plevris (b0085) 2023; 11 Pinzón, Vargas-Alzate, Pujades, Diaz (b0240) 2020; 132 Vamvatsikos, Fragiadakis (b0040) 2010; 39 Jalayer, Cornell (b0145) 2009; 38 Vargas-Alzate, Hurtado, Pujades (b0280) 2022; 20 Seshadri R. GitHub - AutoViML/featurewiz: Use advanced feature engineering strategies and select the best features from your data set fast with a single line of code. 2020. Georgakis, Georgioudakis, Fragiadakis (b0075) 2020; 2 Uang (b0275) 1991; 117 Wang, Pedroni, Zentner, Zio (b0160) 2018; 162 Zhu, McKenna, Scott (b0210) 2018; 7 SAC. Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens. vol. 2. 1997. Ke, Meng, Finley, Wang, Chen, Ma (b0200) 2017; 30 Noureldin, Ali, Sim, Kim (b0165) 2022; 50 Guan, Burton, Shokrabadi, Yi (b0065) 2021; 147 Jalayer (b0140) 2003 Naderpoor, Taghikhany (b0055) 2022; 37 Asteris, Rizal, Koopialipoor, Roussis, Ferentinou, Armaghani (b0125) 2022; 12 Trifunac, Novikova (b0315) 1994; 1 Armaghani, Mamou, Maraveas, Roussis, Siorikis, Skentou (b0105) 2021; 25 Kwon, Elnashai (b0035) 2006; 28 Morfidis, Kostinakis (b0030) 2018; 165 Chen, Xgboost (b0195) 2016 Farfani, Behnamfar, Fathollahi (b0050) 2015; 42 Reed, Kassawara (b0300) 1990; 123 Bakalis (b0025) 2024; 150 Ricles, Fisher, Lu, Kaufmann (b0255) 2002; 58 Kiani, Camp, Pezeshk (b0170) 2019; 218 Lee D, Cotton SC, Hajjar JF, Dexter RJ, Ye Y, Ojard SD. Cyclic behavior of steel moment-resisting connections reinforced by alternative column stiffener details I. Connection performance and continuity plate detailing. Eng JOURNAL-AMERICAN Inst STEEL Constr 2005;42:189. ANSI/AISC 341-22. Seismic Provisions for Structural Steel Buildings. Chicago, Illinois: American Institute of Steel Construction; 2022. Ali, Muayad, Mohammed, Asteris (b0110) 2023; 24 Cover (10.1016/j.compstruc.2024.107580_b0335) 1991; 2 Rahgozar (10.1016/j.compstruc.2024.107580_b0015) 2021; 44 Ricles (10.1016/j.compstruc.2024.107580_b0255) 2002; 58 Mazzoni (10.1016/j.compstruc.2024.107580_b0235) 2006; 264 Park (10.1016/j.compstruc.2024.107580_b0310) 1987; 3 Jiang (10.1016/j.compstruc.2024.107580_b0010) 2020; 18 Reed (10.1016/j.compstruc.2024.107580_b0300) 1990; 123 Georgakis (10.1016/j.compstruc.2024.107580_b0075) 2020; 2 Asteris (10.1016/j.compstruc.2024.107580_b0100) 2021; 33 Vamvatsikos (10.1016/j.compstruc.2024.107580_b0135) 2002; 31 10.1016/j.compstruc.2024.107580_b0220 Morfidis (10.1016/j.compstruc.2024.107580_b0030) 2018; 165 10.1016/j.compstruc.2024.107580_b0265 Friedman (10.1016/j.compstruc.2024.107580_b0190) 2001 10.1016/j.compstruc.2024.107580_b0225 Truong (10.1016/j.compstruc.2024.107580_b0070) 2020; 147 Kiani (10.1016/j.compstruc.2024.107580_b0170) 2019; 218 Wang (10.1016/j.compstruc.2024.107580_b0160) 2018; 162 Elenas (10.1016/j.compstruc.2024.107580_b0325) 2001; 23 10.1016/j.compstruc.2024.107580_b0260 Sun (10.1016/j.compstruc.2024.107580_b0185) 2024 Armaghani (10.1016/j.compstruc.2024.107580_b0105) 2021; 25 Palanci (10.1016/j.compstruc.2024.107580_b0320) 2018; 16 Giovanis (10.1016/j.compstruc.2024.107580_b0150) 2016; 14 Boore (10.1016/j.compstruc.2024.107580_b0270) 2005; 25 Vargas-Alzate (10.1016/j.compstruc.2024.107580_b0280) 2022; 20 Arias (10.1016/j.compstruc.2024.107580_b0290) 1970 Vargas-Alzate (10.1016/j.compstruc.2024.107580_b0285) 2022; 7 Mohsenian (10.1016/j.compstruc.2024.107580_b0345) 2019; 17 Jalayer (10.1016/j.compstruc.2024.107580_b0140) 2003 Georgioudakis (10.1016/j.compstruc.2024.107580_b0085) 2023; 11 10.1016/j.compstruc.2024.107580_b0355 Nguyen (10.1016/j.compstruc.2024.107580_b0080) 2021; 242 Naderpoor (10.1016/j.compstruc.2024.107580_b0055) 2022; 37 Asteris (10.1016/j.compstruc.2024.107580_b0115) 2024; 141 Prokhorenkova (10.1016/j.compstruc.2024.107580_b0205) 2018; 31 Pinzón (10.1016/j.compstruc.2024.107580_b0240) 2020; 132 10.1016/j.compstruc.2024.107580_b0350 Mangalathu (10.1016/j.compstruc.2024.107580_b0175) 2019; 48 10.1016/j.compstruc.2024.107580_b0230 Nasab (10.1016/j.compstruc.2024.107580_b0060) 2023; 278 Ali (10.1016/j.compstruc.2024.107580_b0110) 2023; 24 Lagaros (10.1016/j.compstruc.2024.107580_b0045) 2012; 44 Farfani (10.1016/j.compstruc.2024.107580_b0050) 2015; 42 Zhu (10.1016/j.compstruc.2024.107580_b0210) 2018; 7 Krawinkler (10.1016/j.compstruc.2024.107580_b0130) 2004; 9 Jalayer (10.1016/j.compstruc.2024.107580_b0145) 2009; 38 Stafford (10.1016/j.compstruc.2024.107580_b0340) 1991 Zhou (10.1016/j.compstruc.2024.107580_b0215) 2012 10.1016/j.compstruc.2024.107580_b0245 Kwon (10.1016/j.compstruc.2024.107580_b0035) 2006; 28 Uang (10.1016/j.compstruc.2024.107580_b0275) 1991; 117 Sarma (10.1016/j.compstruc.2024.107580_b0305) 1987; 15 Ke (10.1016/j.compstruc.2024.107580_b0200) 2017; 30 Khoshnoudian (10.1016/j.compstruc.2024.107580_b0005) 2017; 15 Alkayem (10.1016/j.compstruc.2024.107580_b0095) 2023 Bakalis (10.1016/j.compstruc.2024.107580_b0025) 2024; 150 Guan (10.1016/j.compstruc.2024.107580_b0065) 2021; 147 Nguyen (10.1016/j.compstruc.2024.107580_b0180) 2023; 126 Vamvatsikos (10.1016/j.compstruc.2024.107580_b0040) 2010; 39 Noureldin (10.1016/j.compstruc.2024.107580_b0165) 2022; 50 10.1016/j.compstruc.2024.107580_b0330 Mortazavi (10.1016/j.compstruc.2024.107580_b0020) 2022; 148 Asteris (10.1016/j.compstruc.2024.107580_b0125) 2022; 12 Chen (10.1016/j.compstruc.2024.107580_b0195) 2016 Housner (10.1016/j.compstruc.2024.107580_b0295) 1975; 6 Cavaleri (10.1016/j.compstruc.2024.107580_b0090) 2022; 359 Trifunac (10.1016/j.compstruc.2024.107580_b0315) 1994; 1 Ricles (10.1016/j.compstruc.2024.107580_b0250) 2002; 128 Mangalathu (10.1016/j.compstruc.2024.107580_b0155) 2018; 162 Zhang (10.1016/j.compstruc.2024.107580_b0120) 2022 |
| References_xml | – volume: 20 start-page: 2329 year: 2022 end-page: 2365 ident: b0280 article-title: New insights into the relationship between seismic intensity measures and nonlinear structural response publication-title: Bull Earthq Eng – volume: 24 start-page: 4161 year: 2023 end-page: 4184 ident: b0110 article-title: Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches publication-title: Struct Concr – volume: 44 year: 2021 ident: b0015 article-title: Reliability-based seismic assessment of controlled rocking steel cores publication-title: J Build Eng – volume: 278 year: 2023 ident: b0060 article-title: Reliability-based optimum distribution of seismic energy dissipation devices in fuzzy structural systems using meta-models publication-title: Eng Struct – volume: 12 start-page: 1753 year: 2022 ident: b0125 article-title: Slope stability classification under seismic conditions using several tree-based intelligent techniques publication-title: Appl Sci – volume: 128 start-page: 429 year: 2002 end-page: 440 ident: b0250 article-title: Inelastic cyclic testing of welded unreinforced moment connections publication-title: J Struct Eng – volume: 25 start-page: 93 year: 2005 end-page: 115 ident: b0270 article-title: Processing of strong-motion accelerograms: needs, options and consequences publication-title: Soil Dyn Earthq Eng – volume: 7 start-page: 6 year: 2018 end-page: 11 ident: b0210 article-title: OpenSeesPy: Python library for the OpenSees finite element framework publication-title: SoftwareX – reference: Pacific Earthquake Engineering Research Center - PEER. Next generation attenuation database 2013. – volume: 117 start-page: 19 year: 1991 end-page: 28 ident: b0275 article-title: Establishing R (or R w) and C d factors for building seismic provisions publication-title: J Struct Eng – volume: 31 year: 2018 ident: b0205 article-title: CatBoost: unbiased boosting with categorical features publication-title: Adv Neural Inf Process Syst – volume: 15 start-page: 119 year: 1987 end-page: 132 ident: b0305 article-title: An evaluation of strong motion records and a new parameter A95 publication-title: Earthq Eng Struct Dyn – year: 2003 ident: b0140 article-title: Direct probabilistic seismic analysis: implementing non-linear dynamic assessments – start-page: 1189 year: 2001 end-page: 1232 ident: b0190 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat – volume: 48 start-page: 1238 year: 2019 end-page: 1255 ident: b0175 article-title: Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques publication-title: Earthq Eng Struct Dyn – volume: 14 start-page: 529 year: 2016 end-page: 547 ident: b0150 article-title: Epistemic uncertainty assessment using incremental dynamic analysis and neural networks publication-title: Bull Earthq Eng – year: 2012 ident: b0215 article-title: Ensemble methods: foundations and algorithms – volume: 218 start-page: 108 year: 2019 end-page: 122 ident: b0170 article-title: On the application of machine learning techniques to derive seismic fragility curves publication-title: Comput Struct – volume: 162 start-page: 213 year: 2018 end-page: 225 ident: b0160 article-title: Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment publication-title: Eng Struct – volume: 50 year: 2022 ident: b0165 article-title: A machine learning procedure for seismic qualitative assessment and design of structures considering safety and serviceability publication-title: J Build Eng – start-page: 1 year: 2024 end-page: 19 ident: b0185 article-title: Efficient fragility analysis of cross-fault hydraulic tunnels combining support vector machine and improved cloud method publication-title: J Earthq Eng – volume: 126 year: 2023 ident: b0180 article-title: Seismic fragility analysis of steel moment frames using machine learning models publication-title: Eng Appl Artif Intell – reference: Seshadri R. GitHub - AutoViML/featurewiz: Use advanced feature engineering strategies and select the best features from your data set fast with a single line of code. 2020. – volume: 162 start-page: 166 year: 2018 end-page: 176 ident: b0155 article-title: Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes publication-title: Eng Struct – volume: 39 start-page: 141 year: 2010 end-page: 163 ident: b0040 article-title: Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty publication-title: Earthq Eng Struct Dyn – start-page: 785 year: 2016 end-page: 794 ident: b0195 article-title: A scalable tree boosting system publication-title: Proc. 22nd acm sigkdd Int Conf Knowl Discov data Min – volume: 2 start-page: 3397 year: 2020 end-page: 3402 ident: b0075 article-title: A machine learning approach to nonlinear response analysis of structures publication-title: Proc Int Conf Struct Dyn , EURODYN – year: 2023 ident: b0095 article-title: Prediction of concrete and FRC properties at high temperature using machine and deep learning: a review of recent advances and future perspectives publication-title: J Build Eng – volume: 2 start-page: 12 year: 1991 end-page: 13 ident: b0335 article-title: Entropy, relative entropy and mutual information publication-title: Elem Inf Theory – volume: 42 start-page: 8971 year: 2015 end-page: 8981 ident: b0050 article-title: Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines publication-title: Expert Syst Appl – volume: 1 start-page: 131 year: 1994 end-page: 140 ident: b0315 article-title: State of the art review on strong motion duration publication-title: Proc Tenth Eur Conf Earthq Eng Vienna, Austria – volume: 7 start-page: 51 year: 2022 ident: b0285 article-title: Multi-regression analysis to enhance the predictability of the seismic response of buildings publication-title: Infrastructures – volume: 132 year: 2020 ident: b0240 article-title: A drift-correlated ground motion intensity measure: application to steel frame buildings publication-title: Soil Dyn Earthq Eng – volume: 37 start-page: 1402 year: 2022 end-page: 1416 ident: b0055 article-title: Seismic adaptive control of building structures with simultaneous sensor and damper faults based on dynamic neural network publication-title: Comput Civ Infrastruct Eng – volume: 11 start-page: 126 year: 2023 ident: b0085 article-title: Response spectrum analysis of multi-story shear buildings using machine learning techniques publication-title: Computation – volume: 141 year: 2024 ident: b0115 article-title: Predicting uniaxial compressive strength of rocks using ANN models: Incorporating porosity, compressional wave velocity, and schmidt hammer data publication-title: Ultrasonics – reference: ASCE/SEI 41-23. Seismic evaluation and retrofit of existing buildings. Reston, Virginia: American Society of Civil Engineers (ASCE); 2023. – volume: 18 start-page: 241 year: 2020 end-page: 272 ident: b0010 article-title: Quantifying the effects of various uncertainties on seismic risk assessment of CFS structures publication-title: Bull Earthq Eng – volume: 23 start-page: 698 year: 2001 end-page: 704 ident: b0325 article-title: Correlation study between seismic acceleration parameters and damage indices of structures publication-title: Eng Struct – volume: 15 start-page: 199 year: 2017 end-page: 226 ident: b0005 article-title: Effects of nonlinear soil–structure interaction on the seismic response of structure-TMD systems subjected to near-field earthquakes publication-title: Bull Earthq Eng – volume: 44 start-page: 92 year: 2012 end-page: 115 ident: b0045 article-title: Neural network based prediction schemes of the non-linear seismic response of 3D buildings publication-title: Adv Eng Softw – volume: 33 start-page: 13089 year: 2021 end-page: 13121 ident: b0100 article-title: Prediction of cement-based mortars compressive strength using machine learning techniques publication-title: Neural Comput Appl – start-page: 1 year: 2022 end-page: 14 ident: b0120 article-title: A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm publication-title: Eng Comput – volume: 25 start-page: 317 year: 2021 end-page: 330 ident: b0105 article-title: Predicting the unconfined compressive strength of granite using only two non-destructive test indexes publication-title: Geomech Eng – volume: 3 start-page: 1 year: 1987 end-page: 26 ident: b0310 article-title: Damage-limiting aseismic design of buildings publication-title: Earthq Spectra – volume: 30 year: 2017 ident: b0200 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Adv Neural Inf Process Syst – volume: 17 start-page: 5217 year: 2019 end-page: 5239 ident: b0345 article-title: Estimation of seismic response parameters and capacity of irregular tunnel-form buildings publication-title: Bull Earthq Eng – reference: SAC. Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens. vol. 2. 1997. – volume: 242 year: 2021 ident: b0080 article-title: Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting publication-title: Eng Struct – reference: FEMA P-695. Quantification of Building Seismic Performance Factors. Washington, D.C.: Federal Emergency Management Agency; 2009. – volume: 147 year: 2021 ident: b0065 article-title: Seismic drift demand estimation for steel moment frame buildings: from mechanics-based to data-driven models publication-title: J Struct Eng – reference: Filippou FC, Popov EP, Bertero VV. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints 1983. – volume: 28 start-page: 289 year: 2006 end-page: 303 ident: b0035 article-title: The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure publication-title: Eng Struct – reference: . – volume: 6 start-page: 1975 year: 1975 ident: b0295 article-title: Measures of severity of earthquake ground shaking publication-title: Proc US Natl Conf Earthq Eng – volume: 150 year: 2024 ident: b0025 article-title: Incorporating modeling uncertainties in the collapse assessment of capacity-designed steel moment frames under seismic loading publication-title: J Struct Eng – reference: ASCE/SEI 7-22. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, Virginia: American Society of Civil Engineers (ASCE); 2022. – volume: 58 start-page: 565 year: 2002 end-page: 604 ident: b0255 article-title: Development of improved welded moment connections for earthquake-resistant design publication-title: J Constr Steel Res – volume: 148 year: 2022 ident: b0020 article-title: Multielement hybrid simulations for performance assessment of multistory special concentrically braced frames publication-title: J Struct Eng – volume: 147 year: 2020 ident: b0070 article-title: A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm publication-title: Adv Eng Softw – year: 1970 ident: b0290 article-title: Measure of Earthquake Intensity publication-title: Massachusetts Inst. of Tech – year: 1991 ident: b0340 article-title: Tall building structures: analysis and design – volume: 9 start-page: 1 year: 2004 end-page: 9 ident: b0130 article-title: Performance-based earthquake engineering publication-title: Earthq Eng from Eng Seismol to Performance-Based Eng – volume: 264 start-page: 137 year: 2006 end-page: 158 ident: b0235 article-title: OpenSees command language manual publication-title: Pacific Earthq Eng Res Cent – volume: 359 year: 2022 ident: b0090 article-title: Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete publication-title: Constr Build Mater – volume: 16 start-page: 5453 year: 2018 end-page: 5488 ident: b0320 article-title: A statistical assessment on global drift ratio demands of mid-rise RC buildings using code-compatible real ground motion records publication-title: Bull Earthq Eng – volume: 38 start-page: 951 year: 2009 end-page: 972 ident: b0145 article-title: Alternative non‐linear demand estimation methods for probability‐based seismic assessments publication-title: Earthq Eng Struct Dyn – reference: Lee D, Cotton SC, Hajjar JF, Dexter RJ, Ye Y, Ojard SD. Cyclic behavior of steel moment-resisting connections reinforced by alternative column stiffener details I. Connection performance and continuity plate detailing. Eng JOURNAL-AMERICAN Inst STEEL Constr 2005;42:189. – volume: 123 start-page: 387 year: 1990 end-page: 396 ident: b0300 article-title: A criterion for determining exceedance of the operating basis earthquake publication-title: Nucl Eng Des – volume: 31 start-page: 491 year: 2002 end-page: 514 ident: b0135 article-title: Incremental dynamic analysis publication-title: Earthq Eng Struct Dyn – reference: ANSI/AISC 341-22. Seismic Provisions for Structural Steel Buildings. Chicago, Illinois: American Institute of Steel Construction; 2022. – volume: 165 start-page: 120 year: 2018 end-page: 141 ident: b0030 article-title: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks publication-title: Eng Struct – volume: 23 start-page: 698 year: 2001 ident: 10.1016/j.compstruc.2024.107580_b0325 article-title: Correlation study between seismic acceleration parameters and damage indices of structures publication-title: Eng Struct doi: 10.1016/S0141-0296(00)00074-2 – volume: 218 start-page: 108 year: 2019 ident: 10.1016/j.compstruc.2024.107580_b0170 article-title: On the application of machine learning techniques to derive seismic fragility curves publication-title: Comput Struct doi: 10.1016/j.compstruc.2019.03.004 – volume: 20 start-page: 2329 year: 2022 ident: 10.1016/j.compstruc.2024.107580_b0280 article-title: New insights into the relationship between seismic intensity measures and nonlinear structural response publication-title: Bull Earthq Eng doi: 10.1007/s10518-021-01283-x – volume: 39 start-page: 141 year: 2010 ident: 10.1016/j.compstruc.2024.107580_b0040 article-title: Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.935 – start-page: 785 year: 2016 ident: 10.1016/j.compstruc.2024.107580_b0195 article-title: A scalable tree boosting system publication-title: Proc. 22nd acm sigkdd Int Conf Knowl Discov data Min doi: 10.1145/2939672.2939785 – ident: 10.1016/j.compstruc.2024.107580_b0245 doi: 10.62913/engj.v42i4.863 – volume: 25 start-page: 317 year: 2021 ident: 10.1016/j.compstruc.2024.107580_b0105 article-title: Predicting the unconfined compressive strength of granite using only two non-destructive test indexes publication-title: Geomech Eng – ident: 10.1016/j.compstruc.2024.107580_b0230 – volume: 44 year: 2021 ident: 10.1016/j.compstruc.2024.107580_b0015 article-title: Reliability-based seismic assessment of controlled rocking steel cores publication-title: J Build Eng – ident: 10.1016/j.compstruc.2024.107580_b0330 – volume: 278 year: 2023 ident: 10.1016/j.compstruc.2024.107580_b0060 article-title: Reliability-based optimum distribution of seismic energy dissipation devices in fuzzy structural systems using meta-models publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115502 – volume: 141 year: 2024 ident: 10.1016/j.compstruc.2024.107580_b0115 article-title: Predicting uniaxial compressive strength of rocks using ANN models: Incorporating porosity, compressional wave velocity, and schmidt hammer data publication-title: Ultrasonics doi: 10.1016/j.ultras.2024.107347 – volume: 38 start-page: 951 year: 2009 ident: 10.1016/j.compstruc.2024.107580_b0145 article-title: Alternative non‐linear demand estimation methods for probability‐based seismic assessments publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.876 – ident: 10.1016/j.compstruc.2024.107580_b0225 – volume: 11 start-page: 126 year: 2023 ident: 10.1016/j.compstruc.2024.107580_b0085 article-title: Response spectrum analysis of multi-story shear buildings using machine learning techniques publication-title: Computation doi: 10.3390/computation11070126 – volume: 17 start-page: 5217 year: 2019 ident: 10.1016/j.compstruc.2024.107580_b0345 article-title: Estimation of seismic response parameters and capacity of irregular tunnel-form buildings publication-title: Bull Earthq Eng doi: 10.1007/s10518-019-00679-0 – volume: 50 year: 2022 ident: 10.1016/j.compstruc.2024.107580_b0165 article-title: A machine learning procedure for seismic qualitative assessment and design of structures considering safety and serviceability publication-title: J Build Eng – volume: 148 year: 2022 ident: 10.1016/j.compstruc.2024.107580_b0020 article-title: Multielement hybrid simulations for performance assessment of multistory special concentrically braced frames publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0003439 – volume: 3 start-page: 1 year: 1987 ident: 10.1016/j.compstruc.2024.107580_b0310 article-title: Damage-limiting aseismic design of buildings publication-title: Earthq Spectra doi: 10.1193/1.1585416 – volume: 30 year: 2017 ident: 10.1016/j.compstruc.2024.107580_b0200 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Adv Neural Inf Process Syst – volume: 162 start-page: 166 year: 2018 ident: 10.1016/j.compstruc.2024.107580_b0155 article-title: Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.01.053 – volume: 162 start-page: 213 year: 2018 ident: 10.1016/j.compstruc.2024.107580_b0160 article-title: Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.02.024 – volume: 2 start-page: 3397 year: 2020 ident: 10.1016/j.compstruc.2024.107580_b0075 article-title: A machine learning approach to nonlinear response analysis of structures publication-title: Proc Int Conf Struct Dyn , EURODYN – volume: 7 start-page: 51 year: 2022 ident: 10.1016/j.compstruc.2024.107580_b0285 article-title: Multi-regression analysis to enhance the predictability of the seismic response of buildings publication-title: Infrastructures doi: 10.3390/infrastructures7040051 – volume: 12 start-page: 1753 year: 2022 ident: 10.1016/j.compstruc.2024.107580_b0125 article-title: Slope stability classification under seismic conditions using several tree-based intelligent techniques publication-title: Appl Sci doi: 10.3390/app12031753 – volume: 33 start-page: 13089 year: 2021 ident: 10.1016/j.compstruc.2024.107580_b0100 article-title: Prediction of cement-based mortars compressive strength using machine learning techniques publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06004-8 – volume: 242 year: 2021 ident: 10.1016/j.compstruc.2024.107580_b0080 article-title: Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.112518 – volume: 37 start-page: 1402 year: 2022 ident: 10.1016/j.compstruc.2024.107580_b0055 article-title: Seismic adaptive control of building structures with simultaneous sensor and damper faults based on dynamic neural network publication-title: Comput Civ Infrastruct Eng doi: 10.1111/mice.12805 – volume: 1 start-page: 131 year: 1994 ident: 10.1016/j.compstruc.2024.107580_b0315 article-title: State of the art review on strong motion duration publication-title: Proc Tenth Eur Conf Earthq Eng Vienna, Austria – volume: 16 start-page: 5453 year: 2018 ident: 10.1016/j.compstruc.2024.107580_b0320 article-title: A statistical assessment on global drift ratio demands of mid-rise RC buildings using code-compatible real ground motion records publication-title: Bull Earthq Eng doi: 10.1007/s10518-018-0384-y – volume: 28 start-page: 289 year: 2006 ident: 10.1016/j.compstruc.2024.107580_b0035 article-title: The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure publication-title: Eng Struct doi: 10.1016/j.engstruct.2005.07.010 – ident: 10.1016/j.compstruc.2024.107580_b0220 – volume: 2 start-page: 12 year: 1991 ident: 10.1016/j.compstruc.2024.107580_b0335 article-title: Entropy, relative entropy and mutual information publication-title: Elem Inf Theory – ident: 10.1016/j.compstruc.2024.107580_b0350 – volume: 126 year: 2023 ident: 10.1016/j.compstruc.2024.107580_b0180 article-title: Seismic fragility analysis of steel moment frames using machine learning models publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106976 – volume: 48 start-page: 1238 year: 2019 ident: 10.1016/j.compstruc.2024.107580_b0175 article-title: Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.3183 – volume: 264 start-page: 137 year: 2006 ident: 10.1016/j.compstruc.2024.107580_b0235 article-title: OpenSees command language manual publication-title: Pacific Earthq Eng Res Cent – volume: 18 start-page: 241 year: 2020 ident: 10.1016/j.compstruc.2024.107580_b0010 article-title: Quantifying the effects of various uncertainties on seismic risk assessment of CFS structures publication-title: Bull Earthq Eng doi: 10.1007/s10518-019-00726-w – start-page: 1 year: 2022 ident: 10.1016/j.compstruc.2024.107580_b0120 article-title: A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm publication-title: Eng Comput doi: 10.1007/s00366-022-01609-6 – volume: 123 start-page: 387 year: 1990 ident: 10.1016/j.compstruc.2024.107580_b0300 article-title: A criterion for determining exceedance of the operating basis earthquake publication-title: Nucl Eng Des doi: 10.1016/0029-5493(90)90259-Z – volume: 24 start-page: 4161 year: 2023 ident: 10.1016/j.compstruc.2024.107580_b0110 article-title: Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches publication-title: Struct Concr doi: 10.1002/suco.202200718 – year: 1970 ident: 10.1016/j.compstruc.2024.107580_b0290 article-title: Measure of Earthquake Intensity – ident: 10.1016/j.compstruc.2024.107580_b0355 – volume: 44 start-page: 92 year: 2012 ident: 10.1016/j.compstruc.2024.107580_b0045 article-title: Neural network based prediction schemes of the non-linear seismic response of 3D buildings publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2011.05.033 – volume: 58 start-page: 565 year: 2002 ident: 10.1016/j.compstruc.2024.107580_b0255 article-title: Development of improved welded moment connections for earthquake-resistant design publication-title: J Constr Steel Res doi: 10.1016/S0143-974X(01)00095-5 – volume: 132 year: 2020 ident: 10.1016/j.compstruc.2024.107580_b0240 article-title: A drift-correlated ground motion intensity measure: application to steel frame buildings publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2020.106096 – volume: 147 year: 2021 ident: 10.1016/j.compstruc.2024.107580_b0065 article-title: Seismic drift demand estimation for steel moment frame buildings: from mechanics-based to data-driven models publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0003004 – year: 2023 ident: 10.1016/j.compstruc.2024.107580_b0095 article-title: Prediction of concrete and FRC properties at high temperature using machine and deep learning: a review of recent advances and future perspectives publication-title: J Build Eng – volume: 150 year: 2024 ident: 10.1016/j.compstruc.2024.107580_b0025 article-title: Incorporating modeling uncertainties in the collapse assessment of capacity-designed steel moment frames under seismic loading publication-title: J Struct Eng doi: 10.1061/JSENDH.STENG-12969 – volume: 42 start-page: 8971 year: 2015 ident: 10.1016/j.compstruc.2024.107580_b0050 article-title: Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.07.053 – ident: 10.1016/j.compstruc.2024.107580_b0265 – volume: 31 start-page: 491 year: 2002 ident: 10.1016/j.compstruc.2024.107580_b0135 article-title: Incremental dynamic analysis publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.141 – year: 2012 ident: 10.1016/j.compstruc.2024.107580_b0215 – volume: 165 start-page: 120 year: 2018 ident: 10.1016/j.compstruc.2024.107580_b0030 article-title: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.03.028 – ident: 10.1016/j.compstruc.2024.107580_b0260 – volume: 15 start-page: 119 year: 1987 ident: 10.1016/j.compstruc.2024.107580_b0305 article-title: An evaluation of strong motion records and a new parameter A95 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.4290150109 – volume: 147 year: 2020 ident: 10.1016/j.compstruc.2024.107580_b0070 article-title: A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2020.102825 – volume: 25 start-page: 93 year: 2005 ident: 10.1016/j.compstruc.2024.107580_b0270 article-title: Processing of strong-motion accelerograms: needs, options and consequences publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2004.10.007 – volume: 7 start-page: 6 year: 2018 ident: 10.1016/j.compstruc.2024.107580_b0210 article-title: OpenSeesPy: Python library for the OpenSees finite element framework publication-title: SoftwareX doi: 10.1016/j.softx.2017.10.009 – volume: 14 start-page: 529 year: 2016 ident: 10.1016/j.compstruc.2024.107580_b0150 article-title: Epistemic uncertainty assessment using incremental dynamic analysis and neural networks publication-title: Bull Earthq Eng doi: 10.1007/s10518-015-9838-7 – start-page: 1 year: 2024 ident: 10.1016/j.compstruc.2024.107580_b0185 article-title: Efficient fragility analysis of cross-fault hydraulic tunnels combining support vector machine and improved cloud method publication-title: J Earthq Eng – year: 2003 ident: 10.1016/j.compstruc.2024.107580_b0140 – start-page: 1189 year: 2001 ident: 10.1016/j.compstruc.2024.107580_b0190 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat – volume: 9 start-page: 1 year: 2004 ident: 10.1016/j.compstruc.2024.107580_b0130 article-title: Performance-based earthquake engineering publication-title: Earthq Eng from Eng Seismol to Performance-Based Eng – volume: 31 year: 2018 ident: 10.1016/j.compstruc.2024.107580_b0205 article-title: CatBoost: unbiased boosting with categorical features publication-title: Adv Neural Inf Process Syst – volume: 117 start-page: 19 year: 1991 ident: 10.1016/j.compstruc.2024.107580_b0275 article-title: Establishing R (or R w) and C d factors for building seismic provisions publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1991)117:1(19) – volume: 15 start-page: 199 year: 2017 ident: 10.1016/j.compstruc.2024.107580_b0005 article-title: Effects of nonlinear soil–structure interaction on the seismic response of structure-TMD systems subjected to near-field earthquakes publication-title: Bull Earthq Eng doi: 10.1007/s10518-016-9963-y – volume: 359 year: 2022 ident: 10.1016/j.compstruc.2024.107580_b0090 article-title: Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.129504 – volume: 6 start-page: 1975 year: 1975 ident: 10.1016/j.compstruc.2024.107580_b0295 article-title: Measures of severity of earthquake ground shaking publication-title: Proc US Natl Conf Earthq Eng – volume: 128 start-page: 429 year: 2002 ident: 10.1016/j.compstruc.2024.107580_b0250 article-title: Inelastic cyclic testing of welded unreinforced moment connections publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2002)128:4(429) – year: 1991 ident: 10.1016/j.compstruc.2024.107580_b0340 |
| SSID | ssj0006400 |
| Score | 2.4521794 |
| Snippet | •Four boosting machine learning (ML) models were developed to predict the seismic responses of steel moment frames.•The maximum global and interstory drift... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107580 |
| SubjectTerms | Boosting algorithms Fragility curves Machine learning Nonlinear dynamic responses Steel moment frames |
| Title | Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques |
| URI | https://dx.doi.org/10.1016/j.compstruc.2024.107580 |
| Volume | 305 |
| WOSCitedRecordID | wos001361234200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0045-7949 databaseCode: AIEXJ dateStart: 19950103 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006400 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWqjQd4QHyKjQ_5gbcoKE0cx-FtoE2A2DSJgSpeIsd2ulRtWiXrNO2P7O9ybcdOgUoDIV6iyrWdpvfUPr49PkboNS1pmbNchVybVQK_jcMyrlgopKqylApFTOri2-fs5IRNJvnpaHTj9sJczrOmYVdX-eq_hhrKINh66-xfhNt3CgXwGoIOVwg7XP8o8Ket_u_FEcHGWmHwNpD27PmgtapYZc2Zp8Z22tXuVN3pOlXLp7Uh6GLdal9aLUYEPKh5sFga-UClRV1dsDapBmDqnZFPL4w0U7mzKKaBt4jtNlmwO0qiM8CzFrbrdlAzfuetqm1m9oi317xRPmn9jjf8mktlskHH6lzWWxodL8_5YsGBSvPZjMvNzEZMflGJ-C03g77JDOFEe2xan1M3hCdm6_bv04HNTMx0NFfmYd7o-0A5rJKiYQb0usQvunfduVbWJlEOc_tunKU5DJe7Bx8PJ5_8JE-J291kP81P0sGtt9tOfDbIzNkDdL9fheADi56HaKSaR-jehjflY3Qz4AgvK-xxhHscYY8jDDjCA4507R5H2OMIWxxhwBE2OMIWR9jiCBscYYcj3OMIOxzhAUdP0Nejw7P3H8L-FI9QJOP0IqSCxjErE6DSYkwZMOIyLWVGUhHJhNCIEJZKzlIgzjyHOlVFWCkpLNwFJVWqkqdoB55RPUNY5GUuY71CZ4KMBYw_kZQig0EozqTKx3uIuq-4EL3FvT5pZV44LeOs8LEpdGwKG5s9FPmGK-vycnuTty6GRU9WLQktAHy3Nd7_l8bP0d3h1_IC7cD76iW6Iy4v6q591QP1B1FZyl4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+nonlinear+dynamic+responses+and+generation+of+seismic+fragility+curves+for+steel+moment+frames+using+boosting+machine+learning+techniques&rft.jtitle=Computers+%26+structures&rft.au=Zareian%2C+Farzaneh&rft.au=Banazadeh%2C+Mehdi&rft.au=Zareian%2C+Mohammad+Sajjad&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.volume=305&rft_id=info:doi/10.1016%2Fj.compstruc.2024.107580&rft.externalDocID=S0045794924003092 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon |