Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques

•Four boosting machine learning (ML) models were developed to predict the seismic responses of steel moment frames.•The maximum global and interstory drift ratios, base shear coefficient, and maximum floor acceleration were predicted.•1,848 steel moment frames were analyzed under 50 earthquake recor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures Jg. 305; S. 107580
Hauptverfasser: Zareian, Farzaneh, Banazadeh, Mehdi, Zareian, Mohammad Sajjad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2024
Schlagworte:
ISSN:0045-7949
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Four boosting machine learning (ML) models were developed to predict the seismic responses of steel moment frames.•The maximum global and interstory drift ratios, base shear coefficient, and maximum floor acceleration were predicted.•1,848 steel moment frames were analyzed under 50 earthquake records to generate an inclusive dataset.•Fragility curves were estimated using the IDA responses predicted by the LightGBM models.•The LightGBM and CatBoost models achieved the best predictive performance compared to the other models. The main objective of this paper is to develop machine learning (ML) models for predicting the seismic responses of steel moment frames. For this purpose, four boosting ML techniques-gradient boosting, XGBoost, LightGBM, and CatBoost-were developed in Python. To create an inclusive dataset, 92,400 nonlinear time-history analyses were performed on 1,848 steel moment frames under 50 earthquakes using OpenSeesPy. Geometric configurations, structural properties, and ground motion intensity measures were considered as the inputs for the models. The outputs included maximum global drift ratio (MGDR), maximum interstory drift ratio (MIDR), base shear coefficient (BSC), and maximum floor acceleration (MFA). The study also investigated the effectiveness of the ML models in estimating fragility curves for an 8-story steel frame at different performance levels. Finally, a web application was developed to facilitate the estimation of the peak dynamic responses for steel moment frames. The results show that the LightGBM and CatBoost models demonstrate superior predictive performance, with coefficient of determinations (R2) higher than 0.925. Furthermore, the LightGBM models can estimate the fragility curves with minimal errors (e.g., the relative errors in the median values of the predicted curves are less than 10%).
AbstractList •Four boosting machine learning (ML) models were developed to predict the seismic responses of steel moment frames.•The maximum global and interstory drift ratios, base shear coefficient, and maximum floor acceleration were predicted.•1,848 steel moment frames were analyzed under 50 earthquake records to generate an inclusive dataset.•Fragility curves were estimated using the IDA responses predicted by the LightGBM models.•The LightGBM and CatBoost models achieved the best predictive performance compared to the other models. The main objective of this paper is to develop machine learning (ML) models for predicting the seismic responses of steel moment frames. For this purpose, four boosting ML techniques-gradient boosting, XGBoost, LightGBM, and CatBoost-were developed in Python. To create an inclusive dataset, 92,400 nonlinear time-history analyses were performed on 1,848 steel moment frames under 50 earthquakes using OpenSeesPy. Geometric configurations, structural properties, and ground motion intensity measures were considered as the inputs for the models. The outputs included maximum global drift ratio (MGDR), maximum interstory drift ratio (MIDR), base shear coefficient (BSC), and maximum floor acceleration (MFA). The study also investigated the effectiveness of the ML models in estimating fragility curves for an 8-story steel frame at different performance levels. Finally, a web application was developed to facilitate the estimation of the peak dynamic responses for steel moment frames. The results show that the LightGBM and CatBoost models demonstrate superior predictive performance, with coefficient of determinations (R2) higher than 0.925. Furthermore, the LightGBM models can estimate the fragility curves with minimal errors (e.g., the relative errors in the median values of the predicted curves are less than 10%).
ArticleNumber 107580
Author Zareian, Farzaneh
Banazadeh, Mehdi
Zareian, Mohammad Sajjad
Author_xml – sequence: 1
  givenname: Farzaneh
  orcidid: 0009-0001-2290-4794
  surname: Zareian
  fullname: Zareian, Farzaneh
  email: f.zareian@aut.ac.ir
  organization: Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
– sequence: 2
  givenname: Mehdi
  surname: Banazadeh
  fullname: Banazadeh, Mehdi
  email: mbanazadeh@aut.ac.ir
  organization: Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
– sequence: 3
  givenname: Mohammad Sajjad
  surname: Zareian
  fullname: Zareian, Mohammad Sajjad
  email: zareian@shdu.ac.ir
  organization: Department of Civil Engineering, Shahab Danesh University, Qom, Iran
BookMark eNqNkU1OwzAQhb0oEqVwBnyBFiex3WTBokL8SZVgAWvLmUxaV4ldbLdST8J1cSiwYAMrW0_fe6N5c0ZG1lkk5DJjs4xl8mozA9dvQ_Q7mOUs50mdi5KNyJgxLqbzilen5CyEDWNMcsbG5P3ZY2MgGmepa2nK64xF7WlzsLo3QD2GrbMBA9W2oSu06PU3HdCEgWm9XpnOxAOFnd8ntHWehojY0d71aONA9EnfBWNXtHYuxOHTa1inabRLA-0gRIS1NW87DOfkpNVdwIuvd0Je725fbh6my6f7x5vFcgpFJuJUgszzsi5klkMmS1lUtaibORfAmoJLxnkpGl2Ksip0lZi25WXdSF4JkLwVWEzI9TEXvAvBY6vAxM8Fo9emUxlTQ7Nqo36aVUOz6ths8s9_-bfe9Nof_uFcHJ2Y1tsb9CqAQQvpHB4hqsaZPzM-AOnRod4
CitedBy_id crossref_primary_10_1016_j_cma_2025_118079
Cites_doi 10.1016/S0141-0296(00)00074-2
10.1016/j.compstruc.2019.03.004
10.1007/s10518-021-01283-x
10.1002/eqe.935
10.1145/2939672.2939785
10.62913/engj.v42i4.863
10.1016/j.engstruct.2022.115502
10.1016/j.ultras.2024.107347
10.1002/eqe.876
10.3390/computation11070126
10.1007/s10518-019-00679-0
10.1061/(ASCE)ST.1943-541X.0003439
10.1193/1.1585416
10.1016/j.engstruct.2018.01.053
10.1016/j.engstruct.2018.02.024
10.3390/infrastructures7040051
10.3390/app12031753
10.1007/s00521-021-06004-8
10.1016/j.engstruct.2021.112518
10.1111/mice.12805
10.1007/s10518-018-0384-y
10.1016/j.engstruct.2005.07.010
10.1016/j.engappai.2023.106976
10.1002/eqe.3183
10.1007/s10518-019-00726-w
10.1007/s00366-022-01609-6
10.1016/0029-5493(90)90259-Z
10.1002/suco.202200718
10.1016/j.advengsoft.2011.05.033
10.1016/S0143-974X(01)00095-5
10.1016/j.soildyn.2020.106096
10.1061/(ASCE)ST.1943-541X.0003004
10.1061/JSENDH.STENG-12969
10.1016/j.eswa.2015.07.053
10.1002/eqe.141
10.1016/j.engstruct.2018.03.028
10.1002/eqe.4290150109
10.1016/j.advengsoft.2020.102825
10.1016/j.soildyn.2004.10.007
10.1016/j.softx.2017.10.009
10.1007/s10518-015-9838-7
10.1061/(ASCE)0733-9445(1991)117:1(19)
10.1007/s10518-016-9963-y
10.1016/j.conbuildmat.2022.129504
10.1061/(ASCE)0733-9445(2002)128:4(429)
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruc.2024.107580
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compstruc_2024_107580
S0045794924003092
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29F
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
OHT
R2-
SBC
SET
T9H
TAE
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c315t-6c6228b3612c168639b5bd745c0d34604485da85893a912cff48bd6495c64f5e3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001361234200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Sat Nov 29 04:10:47 EST 2025
Tue Nov 18 22:17:17 EST 2025
Sat Dec 21 16:01:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear dynamic responses
Fragility curves
Steel moment frames
Machine learning
Boosting algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-6c6228b3612c168639b5bd745c0d34604485da85893a912cff48bd6495c64f5e3
ORCID 0009-0001-2290-4794
ParticipantIDs crossref_citationtrail_10_1016_j_compstruc_2024_107580
crossref_primary_10_1016_j_compstruc_2024_107580
elsevier_sciencedirect_doi_10_1016_j_compstruc_2024_107580
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers & structures
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mortazavi, Mojiri, Kwon, Christopoulos (b0020) 2022; 148
Lagaros, Papadrakakis (b0045) 2012; 44
Housner (b0295) 1975; 6
Ricles, Mao, Lu, Fisher (b0250) 2002; 128
Sun, Deng, Zhang, Liu, Xu, Wang (b0185) 2024
Truong, Vu, Thai, Ha (b0070) 2020; 147
Elenas, Meskouris (b0325) 2001; 23
Palanci, Kayhan, Demir (b0320) 2018; 16
ASCE/SEI 7-22. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, Virginia: American Society of Civil Engineers (ASCE); 2022.
Mazzoni, McKenna, Scott, Fenves (b0235) 2006; 264
Prokhorenkova, Gusev, Vorobev, Dorogush, Gulin (b0205) 2018; 31
Khoshnoudian, Ziaei, Ayyobi, Paytam (b0005) 2017; 15
Vamvatsikos, Cornell (b0135) 2002; 31
Filippou FC, Popov EP, Bertero VV. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints 1983.
Arias (b0290) 1970
Nasab, Kim (b0060) 2023; 278
Nguyen, Dao, Shin (b0080) 2021; 242
Jiang, Ye (b0010) 2020; 18
Mangalathu, Heo, Jeon (b0155) 2018; 162
Zhou (b0215) 2012
Cover, Thomas (b0335) 1991; 2
FEMA P-695. Quantification of Building Seismic Performance Factors. Washington, D.C.: Federal Emergency Management Agency; 2009.
Mohsenian, Nikkhoo, Hajirasouliha (b0345) 2019; 17
Cavaleri, Barkhordari, Repapis, Armaghani, Ulrikh, Asteris (b0090) 2022; 359
Pacific Earthquake Engineering Research Center - PEER. Next generation attenuation database 2013.
Vargas-Alzate, Gonzalez-Drigo, Avila-Haro (b0285) 2022; 7
Giovanis, Fragiadakis, Papadopoulos (b0150) 2016; 14
Friedman (b0190) 2001
.
Rahgozar, Pouraminian, Rahgozar (b0015) 2021; 44
Nguyen, Lee, LaFave, Shin (b0180) 2023; 126
Stafford, Coull (b0340) 1991
Asteris, Karoglou, Skentou, Vasconcelos, He, Bakolas (b0115) 2024; 141
Mangalathu, Jeon (b0175) 2019; 48
Sarma, Yang (b0305) 1987; 15
ASCE/SEI 41-23. Seismic evaluation and retrofit of existing buildings. Reston, Virginia: American Society of Civil Engineers (ASCE); 2023.
Alkayem, Shen, Mayya, Asteris, Fu, Di Luzio (b0095) 2023
Boore, Bommer (b0270) 2005; 25
Asteris, Koopialipoor, Armaghani, Kotsonis, Lourenço (b0100) 2021; 33
Park, Ang, Wen (b0310) 1987; 3
Zhang, Nguyen, Bui, Pradhan, Asteris, Costache (b0120) 2022
Krawinkler, Miranda (b0130) 2004; 9
Georgioudakis, Plevris (b0085) 2023; 11
Pinzón, Vargas-Alzate, Pujades, Diaz (b0240) 2020; 132
Vamvatsikos, Fragiadakis (b0040) 2010; 39
Jalayer, Cornell (b0145) 2009; 38
Vargas-Alzate, Hurtado, Pujades (b0280) 2022; 20
Seshadri R. GitHub - AutoViML/featurewiz: Use advanced feature engineering strategies and select the best features from your data set fast with a single line of code. 2020.
Georgakis, Georgioudakis, Fragiadakis (b0075) 2020; 2
Uang (b0275) 1991; 117
Wang, Pedroni, Zentner, Zio (b0160) 2018; 162
Zhu, McKenna, Scott (b0210) 2018; 7
SAC. Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens. vol. 2. 1997.
Ke, Meng, Finley, Wang, Chen, Ma (b0200) 2017; 30
Noureldin, Ali, Sim, Kim (b0165) 2022; 50
Guan, Burton, Shokrabadi, Yi (b0065) 2021; 147
Jalayer (b0140) 2003
Naderpoor, Taghikhany (b0055) 2022; 37
Asteris, Rizal, Koopialipoor, Roussis, Ferentinou, Armaghani (b0125) 2022; 12
Trifunac, Novikova (b0315) 1994; 1
Armaghani, Mamou, Maraveas, Roussis, Siorikis, Skentou (b0105) 2021; 25
Kwon, Elnashai (b0035) 2006; 28
Morfidis, Kostinakis (b0030) 2018; 165
Chen, Xgboost (b0195) 2016
Farfani, Behnamfar, Fathollahi (b0050) 2015; 42
Reed, Kassawara (b0300) 1990; 123
Bakalis (b0025) 2024; 150
Ricles, Fisher, Lu, Kaufmann (b0255) 2002; 58
Kiani, Camp, Pezeshk (b0170) 2019; 218
Lee D, Cotton SC, Hajjar JF, Dexter RJ, Ye Y, Ojard SD. Cyclic behavior of steel moment-resisting connections reinforced by alternative column stiffener details I. Connection performance and continuity plate detailing. Eng JOURNAL-AMERICAN Inst STEEL Constr 2005;42:189.
ANSI/AISC 341-22. Seismic Provisions for Structural Steel Buildings. Chicago, Illinois: American Institute of Steel Construction; 2022.
Ali, Muayad, Mohammed, Asteris (b0110) 2023; 24
Cover (10.1016/j.compstruc.2024.107580_b0335) 1991; 2
Rahgozar (10.1016/j.compstruc.2024.107580_b0015) 2021; 44
Ricles (10.1016/j.compstruc.2024.107580_b0255) 2002; 58
Mazzoni (10.1016/j.compstruc.2024.107580_b0235) 2006; 264
Park (10.1016/j.compstruc.2024.107580_b0310) 1987; 3
Jiang (10.1016/j.compstruc.2024.107580_b0010) 2020; 18
Reed (10.1016/j.compstruc.2024.107580_b0300) 1990; 123
Georgakis (10.1016/j.compstruc.2024.107580_b0075) 2020; 2
Asteris (10.1016/j.compstruc.2024.107580_b0100) 2021; 33
Vamvatsikos (10.1016/j.compstruc.2024.107580_b0135) 2002; 31
10.1016/j.compstruc.2024.107580_b0220
Morfidis (10.1016/j.compstruc.2024.107580_b0030) 2018; 165
10.1016/j.compstruc.2024.107580_b0265
Friedman (10.1016/j.compstruc.2024.107580_b0190) 2001
10.1016/j.compstruc.2024.107580_b0225
Truong (10.1016/j.compstruc.2024.107580_b0070) 2020; 147
Kiani (10.1016/j.compstruc.2024.107580_b0170) 2019; 218
Wang (10.1016/j.compstruc.2024.107580_b0160) 2018; 162
Elenas (10.1016/j.compstruc.2024.107580_b0325) 2001; 23
10.1016/j.compstruc.2024.107580_b0260
Sun (10.1016/j.compstruc.2024.107580_b0185) 2024
Armaghani (10.1016/j.compstruc.2024.107580_b0105) 2021; 25
Palanci (10.1016/j.compstruc.2024.107580_b0320) 2018; 16
Giovanis (10.1016/j.compstruc.2024.107580_b0150) 2016; 14
Boore (10.1016/j.compstruc.2024.107580_b0270) 2005; 25
Vargas-Alzate (10.1016/j.compstruc.2024.107580_b0280) 2022; 20
Arias (10.1016/j.compstruc.2024.107580_b0290) 1970
Vargas-Alzate (10.1016/j.compstruc.2024.107580_b0285) 2022; 7
Mohsenian (10.1016/j.compstruc.2024.107580_b0345) 2019; 17
Jalayer (10.1016/j.compstruc.2024.107580_b0140) 2003
Georgioudakis (10.1016/j.compstruc.2024.107580_b0085) 2023; 11
10.1016/j.compstruc.2024.107580_b0355
Nguyen (10.1016/j.compstruc.2024.107580_b0080) 2021; 242
Naderpoor (10.1016/j.compstruc.2024.107580_b0055) 2022; 37
Asteris (10.1016/j.compstruc.2024.107580_b0115) 2024; 141
Prokhorenkova (10.1016/j.compstruc.2024.107580_b0205) 2018; 31
Pinzón (10.1016/j.compstruc.2024.107580_b0240) 2020; 132
10.1016/j.compstruc.2024.107580_b0350
Mangalathu (10.1016/j.compstruc.2024.107580_b0175) 2019; 48
10.1016/j.compstruc.2024.107580_b0230
Nasab (10.1016/j.compstruc.2024.107580_b0060) 2023; 278
Ali (10.1016/j.compstruc.2024.107580_b0110) 2023; 24
Lagaros (10.1016/j.compstruc.2024.107580_b0045) 2012; 44
Farfani (10.1016/j.compstruc.2024.107580_b0050) 2015; 42
Zhu (10.1016/j.compstruc.2024.107580_b0210) 2018; 7
Krawinkler (10.1016/j.compstruc.2024.107580_b0130) 2004; 9
Jalayer (10.1016/j.compstruc.2024.107580_b0145) 2009; 38
Stafford (10.1016/j.compstruc.2024.107580_b0340) 1991
Zhou (10.1016/j.compstruc.2024.107580_b0215) 2012
10.1016/j.compstruc.2024.107580_b0245
Kwon (10.1016/j.compstruc.2024.107580_b0035) 2006; 28
Uang (10.1016/j.compstruc.2024.107580_b0275) 1991; 117
Sarma (10.1016/j.compstruc.2024.107580_b0305) 1987; 15
Ke (10.1016/j.compstruc.2024.107580_b0200) 2017; 30
Khoshnoudian (10.1016/j.compstruc.2024.107580_b0005) 2017; 15
Alkayem (10.1016/j.compstruc.2024.107580_b0095) 2023
Bakalis (10.1016/j.compstruc.2024.107580_b0025) 2024; 150
Guan (10.1016/j.compstruc.2024.107580_b0065) 2021; 147
Nguyen (10.1016/j.compstruc.2024.107580_b0180) 2023; 126
Vamvatsikos (10.1016/j.compstruc.2024.107580_b0040) 2010; 39
Noureldin (10.1016/j.compstruc.2024.107580_b0165) 2022; 50
10.1016/j.compstruc.2024.107580_b0330
Mortazavi (10.1016/j.compstruc.2024.107580_b0020) 2022; 148
Asteris (10.1016/j.compstruc.2024.107580_b0125) 2022; 12
Chen (10.1016/j.compstruc.2024.107580_b0195) 2016
Housner (10.1016/j.compstruc.2024.107580_b0295) 1975; 6
Cavaleri (10.1016/j.compstruc.2024.107580_b0090) 2022; 359
Trifunac (10.1016/j.compstruc.2024.107580_b0315) 1994; 1
Ricles (10.1016/j.compstruc.2024.107580_b0250) 2002; 128
Mangalathu (10.1016/j.compstruc.2024.107580_b0155) 2018; 162
Zhang (10.1016/j.compstruc.2024.107580_b0120) 2022
References_xml – volume: 20
  start-page: 2329
  year: 2022
  end-page: 2365
  ident: b0280
  article-title: New insights into the relationship between seismic intensity measures and nonlinear structural response
  publication-title: Bull Earthq Eng
– volume: 24
  start-page: 4161
  year: 2023
  end-page: 4184
  ident: b0110
  article-title: Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches
  publication-title: Struct Concr
– volume: 44
  year: 2021
  ident: b0015
  article-title: Reliability-based seismic assessment of controlled rocking steel cores
  publication-title: J Build Eng
– volume: 278
  year: 2023
  ident: b0060
  article-title: Reliability-based optimum distribution of seismic energy dissipation devices in fuzzy structural systems using meta-models
  publication-title: Eng Struct
– volume: 12
  start-page: 1753
  year: 2022
  ident: b0125
  article-title: Slope stability classification under seismic conditions using several tree-based intelligent techniques
  publication-title: Appl Sci
– volume: 128
  start-page: 429
  year: 2002
  end-page: 440
  ident: b0250
  article-title: Inelastic cyclic testing of welded unreinforced moment connections
  publication-title: J Struct Eng
– volume: 25
  start-page: 93
  year: 2005
  end-page: 115
  ident: b0270
  article-title: Processing of strong-motion accelerograms: needs, options and consequences
  publication-title: Soil Dyn Earthq Eng
– volume: 7
  start-page: 6
  year: 2018
  end-page: 11
  ident: b0210
  article-title: OpenSeesPy: Python library for the OpenSees finite element framework
  publication-title: SoftwareX
– reference: Pacific Earthquake Engineering Research Center - PEER. Next generation attenuation database 2013.
– volume: 117
  start-page: 19
  year: 1991
  end-page: 28
  ident: b0275
  article-title: Establishing R (or R w) and C d factors for building seismic provisions
  publication-title: J Struct Eng
– volume: 31
  year: 2018
  ident: b0205
  article-title: CatBoost: unbiased boosting with categorical features
  publication-title: Adv Neural Inf Process Syst
– volume: 15
  start-page: 119
  year: 1987
  end-page: 132
  ident: b0305
  article-title: An evaluation of strong motion records and a new parameter A95
  publication-title: Earthq Eng Struct Dyn
– year: 2003
  ident: b0140
  article-title: Direct probabilistic seismic analysis: implementing non-linear dynamic assessments
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0190
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– volume: 48
  start-page: 1238
  year: 2019
  end-page: 1255
  ident: b0175
  article-title: Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques
  publication-title: Earthq Eng Struct Dyn
– volume: 14
  start-page: 529
  year: 2016
  end-page: 547
  ident: b0150
  article-title: Epistemic uncertainty assessment using incremental dynamic analysis and neural networks
  publication-title: Bull Earthq Eng
– year: 2012
  ident: b0215
  article-title: Ensemble methods: foundations and algorithms
– volume: 218
  start-page: 108
  year: 2019
  end-page: 122
  ident: b0170
  article-title: On the application of machine learning techniques to derive seismic fragility curves
  publication-title: Comput Struct
– volume: 162
  start-page: 213
  year: 2018
  end-page: 225
  ident: b0160
  article-title: Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment
  publication-title: Eng Struct
– volume: 50
  year: 2022
  ident: b0165
  article-title: A machine learning procedure for seismic qualitative assessment and design of structures considering safety and serviceability
  publication-title: J Build Eng
– start-page: 1
  year: 2024
  end-page: 19
  ident: b0185
  article-title: Efficient fragility analysis of cross-fault hydraulic tunnels combining support vector machine and improved cloud method
  publication-title: J Earthq Eng
– volume: 126
  year: 2023
  ident: b0180
  article-title: Seismic fragility analysis of steel moment frames using machine learning models
  publication-title: Eng Appl Artif Intell
– reference: Seshadri R. GitHub - AutoViML/featurewiz: Use advanced feature engineering strategies and select the best features from your data set fast with a single line of code. 2020.
– volume: 162
  start-page: 166
  year: 2018
  end-page: 176
  ident: b0155
  article-title: Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes
  publication-title: Eng Struct
– volume: 39
  start-page: 141
  year: 2010
  end-page: 163
  ident: b0040
  article-title: Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty
  publication-title: Earthq Eng Struct Dyn
– start-page: 785
  year: 2016
  end-page: 794
  ident: b0195
  article-title: A scalable tree boosting system
  publication-title: Proc. 22nd acm sigkdd Int Conf Knowl Discov data Min
– volume: 2
  start-page: 3397
  year: 2020
  end-page: 3402
  ident: b0075
  article-title: A machine learning approach to nonlinear response analysis of structures
  publication-title: Proc Int Conf Struct Dyn , EURODYN
– year: 2023
  ident: b0095
  article-title: Prediction of concrete and FRC properties at high temperature using machine and deep learning: a review of recent advances and future perspectives
  publication-title: J Build Eng
– volume: 2
  start-page: 12
  year: 1991
  end-page: 13
  ident: b0335
  article-title: Entropy, relative entropy and mutual information
  publication-title: Elem Inf Theory
– volume: 42
  start-page: 8971
  year: 2015
  end-page: 8981
  ident: b0050
  article-title: Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines
  publication-title: Expert Syst Appl
– volume: 1
  start-page: 131
  year: 1994
  end-page: 140
  ident: b0315
  article-title: State of the art review on strong motion duration
  publication-title: Proc Tenth Eur Conf Earthq Eng Vienna, Austria
– volume: 7
  start-page: 51
  year: 2022
  ident: b0285
  article-title: Multi-regression analysis to enhance the predictability of the seismic response of buildings
  publication-title: Infrastructures
– volume: 132
  year: 2020
  ident: b0240
  article-title: A drift-correlated ground motion intensity measure: application to steel frame buildings
  publication-title: Soil Dyn Earthq Eng
– volume: 37
  start-page: 1402
  year: 2022
  end-page: 1416
  ident: b0055
  article-title: Seismic adaptive control of building structures with simultaneous sensor and damper faults based on dynamic neural network
  publication-title: Comput Civ Infrastruct Eng
– volume: 11
  start-page: 126
  year: 2023
  ident: b0085
  article-title: Response spectrum analysis of multi-story shear buildings using machine learning techniques
  publication-title: Computation
– volume: 141
  year: 2024
  ident: b0115
  article-title: Predicting uniaxial compressive strength of rocks using ANN models: Incorporating porosity, compressional wave velocity, and schmidt hammer data
  publication-title: Ultrasonics
– reference: ASCE/SEI 41-23. Seismic evaluation and retrofit of existing buildings. Reston, Virginia: American Society of Civil Engineers (ASCE); 2023.
– volume: 18
  start-page: 241
  year: 2020
  end-page: 272
  ident: b0010
  article-title: Quantifying the effects of various uncertainties on seismic risk assessment of CFS structures
  publication-title: Bull Earthq Eng
– volume: 23
  start-page: 698
  year: 2001
  end-page: 704
  ident: b0325
  article-title: Correlation study between seismic acceleration parameters and damage indices of structures
  publication-title: Eng Struct
– volume: 15
  start-page: 199
  year: 2017
  end-page: 226
  ident: b0005
  article-title: Effects of nonlinear soil–structure interaction on the seismic response of structure-TMD systems subjected to near-field earthquakes
  publication-title: Bull Earthq Eng
– volume: 44
  start-page: 92
  year: 2012
  end-page: 115
  ident: b0045
  article-title: Neural network based prediction schemes of the non-linear seismic response of 3D buildings
  publication-title: Adv Eng Softw
– volume: 33
  start-page: 13089
  year: 2021
  end-page: 13121
  ident: b0100
  article-title: Prediction of cement-based mortars compressive strength using machine learning techniques
  publication-title: Neural Comput Appl
– start-page: 1
  year: 2022
  end-page: 14
  ident: b0120
  article-title: A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm
  publication-title: Eng Comput
– volume: 25
  start-page: 317
  year: 2021
  end-page: 330
  ident: b0105
  article-title: Predicting the unconfined compressive strength of granite using only two non-destructive test indexes
  publication-title: Geomech Eng
– volume: 3
  start-page: 1
  year: 1987
  end-page: 26
  ident: b0310
  article-title: Damage-limiting aseismic design of buildings
  publication-title: Earthq Spectra
– volume: 30
  year: 2017
  ident: b0200
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv Neural Inf Process Syst
– volume: 17
  start-page: 5217
  year: 2019
  end-page: 5239
  ident: b0345
  article-title: Estimation of seismic response parameters and capacity of irregular tunnel-form buildings
  publication-title: Bull Earthq Eng
– reference: SAC. Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens. vol. 2. 1997.
– volume: 242
  year: 2021
  ident: b0080
  article-title: Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting
  publication-title: Eng Struct
– reference: FEMA P-695. Quantification of Building Seismic Performance Factors. Washington, D.C.: Federal Emergency Management Agency; 2009.
– volume: 147
  year: 2021
  ident: b0065
  article-title: Seismic drift demand estimation for steel moment frame buildings: from mechanics-based to data-driven models
  publication-title: J Struct Eng
– reference: Filippou FC, Popov EP, Bertero VV. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints 1983.
– volume: 28
  start-page: 289
  year: 2006
  end-page: 303
  ident: b0035
  article-title: The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure
  publication-title: Eng Struct
– reference: .
– volume: 6
  start-page: 1975
  year: 1975
  ident: b0295
  article-title: Measures of severity of earthquake ground shaking
  publication-title: Proc US Natl Conf Earthq Eng
– volume: 150
  year: 2024
  ident: b0025
  article-title: Incorporating modeling uncertainties in the collapse assessment of capacity-designed steel moment frames under seismic loading
  publication-title: J Struct Eng
– reference: ASCE/SEI 7-22. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, Virginia: American Society of Civil Engineers (ASCE); 2022.
– volume: 58
  start-page: 565
  year: 2002
  end-page: 604
  ident: b0255
  article-title: Development of improved welded moment connections for earthquake-resistant design
  publication-title: J Constr Steel Res
– volume: 148
  year: 2022
  ident: b0020
  article-title: Multielement hybrid simulations for performance assessment of multistory special concentrically braced frames
  publication-title: J Struct Eng
– volume: 147
  year: 2020
  ident: b0070
  article-title: A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm
  publication-title: Adv Eng Softw
– year: 1970
  ident: b0290
  article-title: Measure of Earthquake Intensity
  publication-title: Massachusetts Inst. of Tech
– year: 1991
  ident: b0340
  article-title: Tall building structures: analysis and design
– volume: 9
  start-page: 1
  year: 2004
  end-page: 9
  ident: b0130
  article-title: Performance-based earthquake engineering
  publication-title: Earthq Eng from Eng Seismol to Performance-Based Eng
– volume: 264
  start-page: 137
  year: 2006
  end-page: 158
  ident: b0235
  article-title: OpenSees command language manual
  publication-title: Pacific Earthq Eng Res Cent
– volume: 359
  year: 2022
  ident: b0090
  article-title: Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete
  publication-title: Constr Build Mater
– volume: 16
  start-page: 5453
  year: 2018
  end-page: 5488
  ident: b0320
  article-title: A statistical assessment on global drift ratio demands of mid-rise RC buildings using code-compatible real ground motion records
  publication-title: Bull Earthq Eng
– volume: 38
  start-page: 951
  year: 2009
  end-page: 972
  ident: b0145
  article-title: Alternative non‐linear demand estimation methods for probability‐based seismic assessments
  publication-title: Earthq Eng Struct Dyn
– reference: Lee D, Cotton SC, Hajjar JF, Dexter RJ, Ye Y, Ojard SD. Cyclic behavior of steel moment-resisting connections reinforced by alternative column stiffener details I. Connection performance and continuity plate detailing. Eng JOURNAL-AMERICAN Inst STEEL Constr 2005;42:189.
– volume: 123
  start-page: 387
  year: 1990
  end-page: 396
  ident: b0300
  article-title: A criterion for determining exceedance of the operating basis earthquake
  publication-title: Nucl Eng Des
– volume: 31
  start-page: 491
  year: 2002
  end-page: 514
  ident: b0135
  article-title: Incremental dynamic analysis
  publication-title: Earthq Eng Struct Dyn
– reference: ANSI/AISC 341-22. Seismic Provisions for Structural Steel Buildings. Chicago, Illinois: American Institute of Steel Construction; 2022.
– volume: 165
  start-page: 120
  year: 2018
  end-page: 141
  ident: b0030
  article-title: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks
  publication-title: Eng Struct
– volume: 23
  start-page: 698
  year: 2001
  ident: 10.1016/j.compstruc.2024.107580_b0325
  article-title: Correlation study between seismic acceleration parameters and damage indices of structures
  publication-title: Eng Struct
  doi: 10.1016/S0141-0296(00)00074-2
– volume: 218
  start-page: 108
  year: 2019
  ident: 10.1016/j.compstruc.2024.107580_b0170
  article-title: On the application of machine learning techniques to derive seismic fragility curves
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.03.004
– volume: 20
  start-page: 2329
  year: 2022
  ident: 10.1016/j.compstruc.2024.107580_b0280
  article-title: New insights into the relationship between seismic intensity measures and nonlinear structural response
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-021-01283-x
– volume: 39
  start-page: 141
  year: 2010
  ident: 10.1016/j.compstruc.2024.107580_b0040
  article-title: Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.935
– start-page: 785
  year: 2016
  ident: 10.1016/j.compstruc.2024.107580_b0195
  article-title: A scalable tree boosting system
  publication-title: Proc. 22nd acm sigkdd Int Conf Knowl Discov data Min
  doi: 10.1145/2939672.2939785
– ident: 10.1016/j.compstruc.2024.107580_b0245
  doi: 10.62913/engj.v42i4.863
– volume: 25
  start-page: 317
  year: 2021
  ident: 10.1016/j.compstruc.2024.107580_b0105
  article-title: Predicting the unconfined compressive strength of granite using only two non-destructive test indexes
  publication-title: Geomech Eng
– ident: 10.1016/j.compstruc.2024.107580_b0230
– volume: 44
  year: 2021
  ident: 10.1016/j.compstruc.2024.107580_b0015
  article-title: Reliability-based seismic assessment of controlled rocking steel cores
  publication-title: J Build Eng
– ident: 10.1016/j.compstruc.2024.107580_b0330
– volume: 278
  year: 2023
  ident: 10.1016/j.compstruc.2024.107580_b0060
  article-title: Reliability-based optimum distribution of seismic energy dissipation devices in fuzzy structural systems using meta-models
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115502
– volume: 141
  year: 2024
  ident: 10.1016/j.compstruc.2024.107580_b0115
  article-title: Predicting uniaxial compressive strength of rocks using ANN models: Incorporating porosity, compressional wave velocity, and schmidt hammer data
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2024.107347
– volume: 38
  start-page: 951
  year: 2009
  ident: 10.1016/j.compstruc.2024.107580_b0145
  article-title: Alternative non‐linear demand estimation methods for probability‐based seismic assessments
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.876
– ident: 10.1016/j.compstruc.2024.107580_b0225
– volume: 11
  start-page: 126
  year: 2023
  ident: 10.1016/j.compstruc.2024.107580_b0085
  article-title: Response spectrum analysis of multi-story shear buildings using machine learning techniques
  publication-title: Computation
  doi: 10.3390/computation11070126
– volume: 17
  start-page: 5217
  year: 2019
  ident: 10.1016/j.compstruc.2024.107580_b0345
  article-title: Estimation of seismic response parameters and capacity of irregular tunnel-form buildings
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-019-00679-0
– volume: 50
  year: 2022
  ident: 10.1016/j.compstruc.2024.107580_b0165
  article-title: A machine learning procedure for seismic qualitative assessment and design of structures considering safety and serviceability
  publication-title: J Build Eng
– volume: 148
  year: 2022
  ident: 10.1016/j.compstruc.2024.107580_b0020
  article-title: Multielement hybrid simulations for performance assessment of multistory special concentrically braced frames
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0003439
– volume: 3
  start-page: 1
  year: 1987
  ident: 10.1016/j.compstruc.2024.107580_b0310
  article-title: Damage-limiting aseismic design of buildings
  publication-title: Earthq Spectra
  doi: 10.1193/1.1585416
– volume: 30
  year: 2017
  ident: 10.1016/j.compstruc.2024.107580_b0200
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv Neural Inf Process Syst
– volume: 162
  start-page: 166
  year: 2018
  ident: 10.1016/j.compstruc.2024.107580_b0155
  article-title: Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.01.053
– volume: 162
  start-page: 213
  year: 2018
  ident: 10.1016/j.compstruc.2024.107580_b0160
  article-title: Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.02.024
– volume: 2
  start-page: 3397
  year: 2020
  ident: 10.1016/j.compstruc.2024.107580_b0075
  article-title: A machine learning approach to nonlinear response analysis of structures
  publication-title: Proc Int Conf Struct Dyn , EURODYN
– volume: 7
  start-page: 51
  year: 2022
  ident: 10.1016/j.compstruc.2024.107580_b0285
  article-title: Multi-regression analysis to enhance the predictability of the seismic response of buildings
  publication-title: Infrastructures
  doi: 10.3390/infrastructures7040051
– volume: 12
  start-page: 1753
  year: 2022
  ident: 10.1016/j.compstruc.2024.107580_b0125
  article-title: Slope stability classification under seismic conditions using several tree-based intelligent techniques
  publication-title: Appl Sci
  doi: 10.3390/app12031753
– volume: 33
  start-page: 13089
  year: 2021
  ident: 10.1016/j.compstruc.2024.107580_b0100
  article-title: Prediction of cement-based mortars compressive strength using machine learning techniques
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06004-8
– volume: 242
  year: 2021
  ident: 10.1016/j.compstruc.2024.107580_b0080
  article-title: Prediction of seismic drift responses of planar steel moment frames using artificial neural network and extreme gradient boosting
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.112518
– volume: 37
  start-page: 1402
  year: 2022
  ident: 10.1016/j.compstruc.2024.107580_b0055
  article-title: Seismic adaptive control of building structures with simultaneous sensor and damper faults based on dynamic neural network
  publication-title: Comput Civ Infrastruct Eng
  doi: 10.1111/mice.12805
– volume: 1
  start-page: 131
  year: 1994
  ident: 10.1016/j.compstruc.2024.107580_b0315
  article-title: State of the art review on strong motion duration
  publication-title: Proc Tenth Eur Conf Earthq Eng Vienna, Austria
– volume: 16
  start-page: 5453
  year: 2018
  ident: 10.1016/j.compstruc.2024.107580_b0320
  article-title: A statistical assessment on global drift ratio demands of mid-rise RC buildings using code-compatible real ground motion records
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-018-0384-y
– volume: 28
  start-page: 289
  year: 2006
  ident: 10.1016/j.compstruc.2024.107580_b0035
  article-title: The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.07.010
– ident: 10.1016/j.compstruc.2024.107580_b0220
– volume: 2
  start-page: 12
  year: 1991
  ident: 10.1016/j.compstruc.2024.107580_b0335
  article-title: Entropy, relative entropy and mutual information
  publication-title: Elem Inf Theory
– ident: 10.1016/j.compstruc.2024.107580_b0350
– volume: 126
  year: 2023
  ident: 10.1016/j.compstruc.2024.107580_b0180
  article-title: Seismic fragility analysis of steel moment frames using machine learning models
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106976
– volume: 48
  start-page: 1238
  year: 2019
  ident: 10.1016/j.compstruc.2024.107580_b0175
  article-title: Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.3183
– volume: 264
  start-page: 137
  year: 2006
  ident: 10.1016/j.compstruc.2024.107580_b0235
  article-title: OpenSees command language manual
  publication-title: Pacific Earthq Eng Res Cent
– volume: 18
  start-page: 241
  year: 2020
  ident: 10.1016/j.compstruc.2024.107580_b0010
  article-title: Quantifying the effects of various uncertainties on seismic risk assessment of CFS structures
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-019-00726-w
– start-page: 1
  year: 2022
  ident: 10.1016/j.compstruc.2024.107580_b0120
  article-title: A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm
  publication-title: Eng Comput
  doi: 10.1007/s00366-022-01609-6
– volume: 123
  start-page: 387
  year: 1990
  ident: 10.1016/j.compstruc.2024.107580_b0300
  article-title: A criterion for determining exceedance of the operating basis earthquake
  publication-title: Nucl Eng Des
  doi: 10.1016/0029-5493(90)90259-Z
– volume: 24
  start-page: 4161
  year: 2023
  ident: 10.1016/j.compstruc.2024.107580_b0110
  article-title: Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches
  publication-title: Struct Concr
  doi: 10.1002/suco.202200718
– year: 1970
  ident: 10.1016/j.compstruc.2024.107580_b0290
  article-title: Measure of Earthquake Intensity
– ident: 10.1016/j.compstruc.2024.107580_b0355
– volume: 44
  start-page: 92
  year: 2012
  ident: 10.1016/j.compstruc.2024.107580_b0045
  article-title: Neural network based prediction schemes of the non-linear seismic response of 3D buildings
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2011.05.033
– volume: 58
  start-page: 565
  year: 2002
  ident: 10.1016/j.compstruc.2024.107580_b0255
  article-title: Development of improved welded moment connections for earthquake-resistant design
  publication-title: J Constr Steel Res
  doi: 10.1016/S0143-974X(01)00095-5
– volume: 132
  year: 2020
  ident: 10.1016/j.compstruc.2024.107580_b0240
  article-title: A drift-correlated ground motion intensity measure: application to steel frame buildings
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2020.106096
– volume: 147
  year: 2021
  ident: 10.1016/j.compstruc.2024.107580_b0065
  article-title: Seismic drift demand estimation for steel moment frame buildings: from mechanics-based to data-driven models
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0003004
– year: 2023
  ident: 10.1016/j.compstruc.2024.107580_b0095
  article-title: Prediction of concrete and FRC properties at high temperature using machine and deep learning: a review of recent advances and future perspectives
  publication-title: J Build Eng
– volume: 150
  year: 2024
  ident: 10.1016/j.compstruc.2024.107580_b0025
  article-title: Incorporating modeling uncertainties in the collapse assessment of capacity-designed steel moment frames under seismic loading
  publication-title: J Struct Eng
  doi: 10.1061/JSENDH.STENG-12969
– volume: 42
  start-page: 8971
  year: 2015
  ident: 10.1016/j.compstruc.2024.107580_b0050
  article-title: Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.07.053
– ident: 10.1016/j.compstruc.2024.107580_b0265
– volume: 31
  start-page: 491
  year: 2002
  ident: 10.1016/j.compstruc.2024.107580_b0135
  article-title: Incremental dynamic analysis
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.141
– year: 2012
  ident: 10.1016/j.compstruc.2024.107580_b0215
– volume: 165
  start-page: 120
  year: 2018
  ident: 10.1016/j.compstruc.2024.107580_b0030
  article-title: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.03.028
– ident: 10.1016/j.compstruc.2024.107580_b0260
– volume: 15
  start-page: 119
  year: 1987
  ident: 10.1016/j.compstruc.2024.107580_b0305
  article-title: An evaluation of strong motion records and a new parameter A95
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290150109
– volume: 147
  year: 2020
  ident: 10.1016/j.compstruc.2024.107580_b0070
  article-title: A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2020.102825
– volume: 25
  start-page: 93
  year: 2005
  ident: 10.1016/j.compstruc.2024.107580_b0270
  article-title: Processing of strong-motion accelerograms: needs, options and consequences
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2004.10.007
– volume: 7
  start-page: 6
  year: 2018
  ident: 10.1016/j.compstruc.2024.107580_b0210
  article-title: OpenSeesPy: Python library for the OpenSees finite element framework
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2017.10.009
– volume: 14
  start-page: 529
  year: 2016
  ident: 10.1016/j.compstruc.2024.107580_b0150
  article-title: Epistemic uncertainty assessment using incremental dynamic analysis and neural networks
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-015-9838-7
– start-page: 1
  year: 2024
  ident: 10.1016/j.compstruc.2024.107580_b0185
  article-title: Efficient fragility analysis of cross-fault hydraulic tunnels combining support vector machine and improved cloud method
  publication-title: J Earthq Eng
– year: 2003
  ident: 10.1016/j.compstruc.2024.107580_b0140
– start-page: 1189
  year: 2001
  ident: 10.1016/j.compstruc.2024.107580_b0190
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– volume: 9
  start-page: 1
  year: 2004
  ident: 10.1016/j.compstruc.2024.107580_b0130
  article-title: Performance-based earthquake engineering
  publication-title: Earthq Eng from Eng Seismol to Performance-Based Eng
– volume: 31
  year: 2018
  ident: 10.1016/j.compstruc.2024.107580_b0205
  article-title: CatBoost: unbiased boosting with categorical features
  publication-title: Adv Neural Inf Process Syst
– volume: 117
  start-page: 19
  year: 1991
  ident: 10.1016/j.compstruc.2024.107580_b0275
  article-title: Establishing R (or R w) and C d factors for building seismic provisions
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1991)117:1(19)
– volume: 15
  start-page: 199
  year: 2017
  ident: 10.1016/j.compstruc.2024.107580_b0005
  article-title: Effects of nonlinear soil–structure interaction on the seismic response of structure-TMD systems subjected to near-field earthquakes
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-016-9963-y
– volume: 359
  year: 2022
  ident: 10.1016/j.compstruc.2024.107580_b0090
  article-title: Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.129504
– volume: 6
  start-page: 1975
  year: 1975
  ident: 10.1016/j.compstruc.2024.107580_b0295
  article-title: Measures of severity of earthquake ground shaking
  publication-title: Proc US Natl Conf Earthq Eng
– volume: 128
  start-page: 429
  year: 2002
  ident: 10.1016/j.compstruc.2024.107580_b0250
  article-title: Inelastic cyclic testing of welded unreinforced moment connections
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2002)128:4(429)
– year: 1991
  ident: 10.1016/j.compstruc.2024.107580_b0340
SSID ssj0006400
Score 2.4521794
Snippet •Four boosting machine learning (ML) models were developed to predict the seismic responses of steel moment frames.•The maximum global and interstory drift...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107580
SubjectTerms Boosting algorithms
Fragility curves
Machine learning
Nonlinear dynamic responses
Steel moment frames
Title Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques
URI https://dx.doi.org/10.1016/j.compstruc.2024.107580
Volume 305
WOSCitedRecordID wos001361234200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006400
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swGBWh3cP2MHZl7S7oYW_BwxdZlvfWjZZtrKWwboS9GFmSU4fECXZTSv9I_-4-SZacbYFujEEwwZHkOOdEOvp89Amh13qMk3HKAkVhpkNixQMexjLI8lJUiitamgft3z5nJydsMslPR6Mbtxbmcp41Dbu6ylf_FWo4B2DrpbN_AbdvFE7AewAdjgA7HP8I-NNWP3txQrCxqTB4O5Z27_lxa12xyiZnnpq00650p-pOl6laPq2NQBfrVuel1WZE4IOajxdLYx-otKmrG69NqAGUemfs0wtjzVRuL4rp2KeI7TZVsNtKojPEsyls1-3gZvzOW1XbyOwRb695o3zQ-h1v-DWXykSDjtW5rLdUOl6e88WCg5TmsxmXm5GNmPziEvFLbgZ_k-nCic6xafOcui48MUu3fx8ObGRiptFcmZt5o68D52GWFA4joPclftGt68a1szYJcxjbd-MszaG73D34eDj55Ad5StzqJvttfrIObr3cduGzIWbOHqD7_SwEH1j2PEQj1TxC9zZyUz5GNwOP8LLCnke45xH2PMLAIzzwSJfueYQ9j7DlEQYeYcMjbHmELY-w4RF2PMI9j7DjER549AR9PTo8e_8h6HfxCEQSpRcBFdALsDIBKS0iykARl2kpM5KKUCaEhoSwVHKWgnDmOZSpKsJKSWHiLiipUpU8RTtwj-oZwizP4ipnIicyghdMTlIRR1VMoVSkMrGHqPuJC9GnuNc7rcwL52WcFR6bQmNTWGz2UOgrrmyWl9urvHUYFr1YtSK0APLdVnn_Xyo_R3eHf8sLtAOfq5fojri8qLv2VU_UH0kGySU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+nonlinear+dynamic+responses+and+generation+of+seismic+fragility+curves+for+steel+moment+frames+using+boosting+machine+learning+techniques&rft.jtitle=Computers+%26+structures&rft.au=Zareian%2C+Farzaneh&rft.au=Banazadeh%2C+Mehdi&rft.au=Zareian%2C+Mohammad+Sajjad&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.volume=305&rft_id=info:doi/10.1016%2Fj.compstruc.2024.107580&rft.externalDocID=S0045794924003092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon