Calculating shear lag in steel-concrete composite beams under combined compression and bending

Long and complex composite steel-concrete structures are becoming common, requiring a deep understanding of the effects induced by the simultaneous action of axial forces and bending. In fact, the axial force generated, for instance, by cable inclination in cable-supported structures can modify the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures Jg. 322; S. 119101
Hauptverfasser: Giaccu, Gian Felice, Maiorana, Emanuele, Fenu, Luigi, Briseghella, Bruno
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2025
Schlagworte:
ISSN:0141-0296
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Long and complex composite steel-concrete structures are becoming common, requiring a deep understanding of the effects induced by the simultaneous action of axial forces and bending. In fact, the axial force generated, for instance, by cable inclination in cable-supported structures can modify the stress distribution within the elements compared to bending scenarios, thereby necessitating a revision of the effective width to be utilized. Nonetheless, current design codes, including Eurocode specifications and others, lack provisions for addressing the combined effects of axial force and bending, as they are exclusively tailored for bending. This limitation can introduce design complexities, necessitating the implementation of intricate Finite Element (FE) models, which impose substantial computational loads and design efforts. The methodology proposed in this paper overcomes these challenges allowing to assess the stress distribution and resistance of composite deck at Serviceability Limit State (SLS) and Ultimate Limit States (ULS) by leveraging results obtained from standard beam models typically used by structural designers or practitioners. A comprehensive parametric analysis using nonlinear finite element models is performed to validate the developed methodology. A comparison with the Eurocode 4 formulations highlights that the proposed method provides superior accuracy in estimating peak stress in concrete slabs under combined compression and bending. Additionally, it facilitates straightforward verification at the ULS in compliance with Eurocode requirements. •Current codes ignore shear lag on axial forces in steel-concrete composite beams.•A simplified method is proposed for combined axial and bending effects.•A comprehensive parametric analysis is performed to validate the approach.•The method evaluates effective width at Serviceability and Ultimate Limit States.
AbstractList Long and complex composite steel-concrete structures are becoming common, requiring a deep understanding of the effects induced by the simultaneous action of axial forces and bending. In fact, the axial force generated, for instance, by cable inclination in cable-supported structures can modify the stress distribution within the elements compared to bending scenarios, thereby necessitating a revision of the effective width to be utilized. Nonetheless, current design codes, including Eurocode specifications and others, lack provisions for addressing the combined effects of axial force and bending, as they are exclusively tailored for bending. This limitation can introduce design complexities, necessitating the implementation of intricate Finite Element (FE) models, which impose substantial computational loads and design efforts. The methodology proposed in this paper overcomes these challenges allowing to assess the stress distribution and resistance of composite deck at Serviceability Limit State (SLS) and Ultimate Limit States (ULS) by leveraging results obtained from standard beam models typically used by structural designers or practitioners. A comprehensive parametric analysis using nonlinear finite element models is performed to validate the developed methodology. A comparison with the Eurocode 4 formulations highlights that the proposed method provides superior accuracy in estimating peak stress in concrete slabs under combined compression and bending. Additionally, it facilitates straightforward verification at the ULS in compliance with Eurocode requirements. •Current codes ignore shear lag on axial forces in steel-concrete composite beams.•A simplified method is proposed for combined axial and bending effects.•A comprehensive parametric analysis is performed to validate the approach.•The method evaluates effective width at Serviceability and Ultimate Limit States.
ArticleNumber 119101
Author Giaccu, Gian Felice
Maiorana, Emanuele
Fenu, Luigi
Briseghella, Bruno
Author_xml – sequence: 1
  givenname: Gian Felice
  surname: Giaccu
  fullname: Giaccu, Gian Felice
  organization: Department of Architecture, Design and Urban Planning, University of Sassari, Alghero, Italy
– sequence: 2
  givenname: Emanuele
  surname: Maiorana
  fullname: Maiorana, Emanuele
  email: e.maiorana@unirsm.sm
  organization: Department of Economics, Science, Engineering and Design, University of the Republic of San Marino, San Marino
– sequence: 3
  givenname: Luigi
  surname: Fenu
  fullname: Fenu, Luigi
  organization: Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
– sequence: 4
  givenname: Bruno
  surname: Briseghella
  fullname: Briseghella, Bruno
  organization: College of Civil Engineering, Fuzhou University, Fuzhou, China
BookMark eNqNkMtOAzEMRbMoEm3hG8gPzJBkHp0uWFQVL6kSG9gSZRynZDRNqiRF4u9JKWLBBla27Huv7DMjE-cdEnLFWckZb6-HEt02pnCAVAom6pLzZV5MyJTxmhdMLNtzMotxYIyJrmNT8rpWIxxGlazb0viGKtBRbal1NCbEsQDvIGBCCn6399Hmrke1i_TgNIbjtLcO9dc6YIzWO6qcziKnc-QFOTNqjHj5Xefk5e72ef1QbJ7uH9erTQEVb1LRAoOFaTnvGxSoeCc0702jdbPEqlNGCdGrWhhd59LmAxroKpN1mglgna7mZHHKheBjDGjkPtidCh-SM3lEIwf5g0Ye0cgTmuy8-eUEmzIO71JQdvyHf3XyY37v3WKQESw6QG0DZq329s-MT6jDjUw
CitedBy_id crossref_primary_10_1016_j_istruc_2025_109520
crossref_primary_10_1016_j_istruc_2025_109731
crossref_primary_10_1016_j_istruc_2025_109429
crossref_primary_10_1016_j_conbuildmat_2025_140280
Cites_doi 10.1016/j.jcsr.2010.11.009
10.1016/j.engstruct.2007.07.027
10.1007/s12205-023-1568-9
10.1016/j.jcsr.2016.04.023
10.1016/j.engstruct.2010.04.041
10.1090/qam/17176
10.1016/j.conbuildmat.2020.118303
10.1016/j.istruc.2022.03.034
10.62913/engj.v58i4.1183
10.1016/j.engstruct.2004.07.009
10.1016/S0143-974X(01)00058-X
10.1080/15376490902781217
10.1061/(ASCE)0733-9445(1992)118:7(1871)
10.1080/15732479.2023.2290701
10.12989/gae.2016.11.5.671
10.3390/jcs4040157
10.1016/j.jcsr.2006.11.018
10.1016/j.jcsr.2020.106152
10.1061/(ASCE)1084-0702(2000)5:2(91)
10.1016/j.engstruct.2023.115752
10.1016/0020-7683(74)90108-5
10.1016/j.autcon.2021.103879
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engstruct.2024.119101
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_engstruct_2024_119101
S0141029624016638
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c315t-6c0c7f611b5e2ea182d1bf5dd59e38afa22ba42fd4ba46bea5c83fa18d02c08d3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001335300200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
IngestDate Sat Nov 29 02:42:03 EST 2025
Tue Nov 18 22:43:56 EST 2025
Sun Apr 06 06:54:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Axial force and bending
Shear-lag
Steel-concrete composite beam
Effective width
Non-linear analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-6c0c7f611b5e2ea182d1bf5dd59e38afa22ba42fd4ba46bea5c83fa18d02c08d3
ParticipantIDs crossref_primary_10_1016_j_engstruct_2024_119101
crossref_citationtrail_10_1016_j_engstruct_2024_119101
elsevier_sciencedirect_doi_10_1016_j_engstruct_2024_119101
PublicationCentury 2000
PublicationDate 2025-01-01
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering structures
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Baertschi R., Garcia S., Kroyer R., Sutter P. Deformation capacity and ductility of shear connectors. In: Proceedings in civil engineering, 9th international conference on composite construction in steel and concrete.
Amadio, Fragiacomo (bib50) 2002; 58
Bradford, Gilbert (bib34) 1992; 118
Sun, Xu, Lozano-Galant, Wang, Turmo (bib14) 2021; 131
(bib46) 1994
Suwaed, Karavasilis (bib37) 2020; 171
Uy B., Tuem H.S. Behaviour and design of composite steel-concrete beams under combined actions In: 8th International Conference On Steel-Concrete Composite And Hybrid Structures.
(bib25) 2007
Slutter, Driscoll (bib32) 1965; 7
Mirambell, Bonilla, Bezerra, Clero (bib33) 2021; 38
Adekola (bib5) 1968; 46
(bib47) 2013
Zhang, Wang, Yang (bib52) 2023
bib41
bib42
Oehlers, Seracino, Yeo (bib35) 2000; 5
CAN/CSA-S6–14, Canadian highway bridge design code. Toronto: 2014.
bib39
bib2
Chen, Aref, Ahn, Chiewanichakorn, Carpenter, Nottis, Kalpakidis (bib19) 2005; 543
Qureshi, Lam, Ye (bib44) 2011; 67
Gonçalves R., Henriques D., Camotim D. Recent developments in the GBT-based numerical modeling of steel-concrete composite beams. In: Structural Stability Research Council Annual Stability Conference 2016. Orlando, United States.
Vairo (bib53) 2009; 16
GB 50917–2013, Code for design of steel and concrete composite bridges
Shuguang (bib43) 2020; 4
Reissner (bib4) 1946; 4
Zhai, Wang, Feng, Xie, Zhou (bib21) 2013; 33
Niea, Tiana, Caib (bib48) 2008; 30
Torres Tavares F. Evaluation of the effective slab width for composite cable-stayed bridge. Instituto Superior Técnico, Universidade Técnica de Lisboa 2009.
Byers D. Evaluation of the Effective Slab Width for Composite Cable-Stayed Bridge Design. Ph.D. Thesis. University of Kansas 1999.
Wu, Zhai, Zhou (bib22) 2012; 568
Pedro, Reis (bib23) 2010; 32
Byers D.D., S.L M. Evaluation of Effective Slab Width for Composite Cable-Stayed Bridge Design. In: 82nd Annual TRB Meeting. 1–8.
Behnam, Denavit (bib7) 2020; 170
Giaccu, Briseghella, Fenu (bib24) 2022; 39
(bib38) 2017
Huitong X., Jinzhu G., Qi M., Li X., Xu Z. Simplified analysis method considering shear-lag effect of steel-concrete composite decks. In: IOP Conference Series: Earth and Environmental Science (EES) 2019.
Wen, Wei, Lin, Zhao, Xiao (bib3) 2023; 27
Xing, Han, Xu, Guo, Wang (bib36) 2016; 123
Tokyo: 2017.
Beijing: 2015.
Wang, Zhang, Yang (bib51) 2023; 281
bib26
Muke, Bajad (bib20) 2016; 5
Masoudnia (bib31) 2020; 244
She, Yan, Chen, Luo, Wu, Li, Feng (bib16) 2024
Gara, Ranzi, Leoni (bib12) 2008; 8
Castro, Elghazouli, Izzuddin (bib49) 2007; 63
Ahn, Chiewanichakorn, Chen, Aref (bib30) 2004; 26
JRA Part I—in general and Part II—steel bridges
Ltd SP. Strand7 Software 1999.
Silva Nicoletti, Rossi, De Souza, Martins (bib1) 2021; 239
Draiche, Tounsi, Mahmoud (bib13) 2016; 11
Denavit M.D. Interaction strength of steel-concrete composite beam-columns including the balance point. In: 2020 Proceedings of the Annual Stability Conference Structural Stability Research Council.
Adekola (bib6) 1974; 10
Xing (10.1016/j.engstruct.2024.119101_bib36) 2016; 123
Niea (10.1016/j.engstruct.2024.119101_bib48) 2008; 30
Giaccu (10.1016/j.engstruct.2024.119101_bib24) 2022; 39
(10.1016/j.engstruct.2024.119101_bib25) 2007
10.1016/j.engstruct.2024.119101_bib40
Wu (10.1016/j.engstruct.2024.119101_bib22) 2012; 568
10.1016/j.engstruct.2024.119101_bib45
Wang (10.1016/j.engstruct.2024.119101_bib51) 2023; 281
Zhang (10.1016/j.engstruct.2024.119101_bib52) 2023
10.1016/j.engstruct.2024.119101_bib9
10.1016/j.engstruct.2024.119101_bib27
10.1016/j.engstruct.2024.119101_bib8
10.1016/j.engstruct.2024.119101_bib29
(10.1016/j.engstruct.2024.119101_bib38) 2017
10.1016/j.engstruct.2024.119101_bib28
(10.1016/j.engstruct.2024.119101_bib47) 2013
Shuguang (10.1016/j.engstruct.2024.119101_bib43) 2020; 4
Masoudnia (10.1016/j.engstruct.2024.119101_bib31) 2020; 244
Bradford (10.1016/j.engstruct.2024.119101_bib34) 1992; 118
Silva Nicoletti (10.1016/j.engstruct.2024.119101_bib1) 2021; 239
Wen (10.1016/j.engstruct.2024.119101_bib3) 2023; 27
Adekola (10.1016/j.engstruct.2024.119101_bib6) 1974; 10
Slutter (10.1016/j.engstruct.2024.119101_bib32) 1965; 7
(10.1016/j.engstruct.2024.119101_bib46) 1994
Mirambell (10.1016/j.engstruct.2024.119101_bib33) 2021; 38
Suwaed (10.1016/j.engstruct.2024.119101_bib37) 2020; 171
Castro (10.1016/j.engstruct.2024.119101_bib49) 2007; 63
Zhai (10.1016/j.engstruct.2024.119101_bib21) 2013; 33
10.1016/j.engstruct.2024.119101_bib10
Oehlers (10.1016/j.engstruct.2024.119101_bib35) 2000; 5
Behnam (10.1016/j.engstruct.2024.119101_bib7) 2020; 170
10.1016/j.engstruct.2024.119101_bib11
10.1016/j.engstruct.2024.119101_bib15
10.1016/j.engstruct.2024.119101_bib18
Vairo (10.1016/j.engstruct.2024.119101_bib53) 2009; 16
10.1016/j.engstruct.2024.119101_bib17
Muke (10.1016/j.engstruct.2024.119101_bib20) 2016; 5
Qureshi (10.1016/j.engstruct.2024.119101_bib44) 2011; 67
Draiche (10.1016/j.engstruct.2024.119101_bib13) 2016; 11
Amadio (10.1016/j.engstruct.2024.119101_bib50) 2002; 58
Adekola (10.1016/j.engstruct.2024.119101_bib5) 1968; 46
Sun (10.1016/j.engstruct.2024.119101_bib14) 2021; 131
Reissner (10.1016/j.engstruct.2024.119101_bib4) 1946; 4
She (10.1016/j.engstruct.2024.119101_bib16) 2024
Chen (10.1016/j.engstruct.2024.119101_bib19) 2005; 543
Ahn (10.1016/j.engstruct.2024.119101_bib30) 2004; 26
Pedro (10.1016/j.engstruct.2024.119101_bib23) 2010; 32
Gara (10.1016/j.engstruct.2024.119101_bib12) 2008; 8
References_xml – ident: bib42
– volume: 4
  start-page: 157
  year: 2020
  ident: bib43
  article-title: The maximum stress failure criterion and themaximum strain failure criterion: their unificationand rationalization
  publication-title: J Compos Sci
– reference: Byers D. Evaluation of the Effective Slab Width for Composite Cable-Stayed Bridge Design. Ph.D. Thesis. University of Kansas 1999.
– reference: GB 50917–2013, Code for design of steel and concrete composite bridges (
– volume: 118
  start-page: 1871
  year: 1992
  end-page: 1883
  ident: bib34
  article-title: Composite Beams with Partial Interaction under Sustained Loads
  publication-title: J Struct Eng
– volume: 46
  start-page: 285
  year: 1968
  end-page: 289
  ident: bib5
  article-title: Effective width of composite beams of steel and concrete
  publication-title: Struct Eng
– ident: bib2
– start-page: 1
  year: 2023
  end-page: 17
  ident: bib52
  article-title: Shear lag effect of composite cable-stayed bridges under dead and live loads
  publication-title: Struct Infrastruct E
– volume: 5
  year: 2016
  ident: bib20
  article-title: Evaluation of effective slab width for composite cable-stayed bridge
  publication-title: IJIRSET
– reference: Gonçalves R., Henriques D., Camotim D. Recent developments in the GBT-based numerical modeling of steel-concrete composite beams. In: Structural Stability Research Council Annual Stability Conference 2016. Orlando, United States.
– ident: bib26
– volume: 33
  start-page: 51
  year: 2013
  end-page: 58
  ident: bib21
  article-title: Effective width coefficient for composite cable-stayed bridge and its practical calculation method
  publication-title: J Chang' Univ (Nat Sci Ed)
– reference: Denavit M.D. Interaction strength of steel-concrete composite beam-columns including the balance point. In: 2020 Proceedings of the Annual Stability Conference Structural Stability Research Council.
– year: 2024
  ident: bib16
  article-title: Experimental and theoretical investigation of shear lag effect in twin box-shaped composite girders of long-span cable-stayed bridges
  publication-title: Struct Concr
– volume: 7
  start-page: 959
  year: 1965
  ident: bib32
  article-title: Flexural strength of steel-concrete composite beams
  publication-title: J Struct Div
– volume: 8
  start-page: 249
  year: 2008
  end-page: 260
  ident: bib12
  article-title: Analysis of the shear lag effect in composite bridges with complex static schemes by means of a deck finite element
  publication-title: Int J Steel Struct
– volume: 27
  start-page: 2559
  year: 2023
  end-page: 2569
  ident: bib3
  article-title: Experiment and modelling on effective width of single and twin i-beam composite girders
  publication-title: KSCE J Civ Eng
– year: 1994
  ident: bib46
  publication-title: LRFD Bridge Design Specifications
– volume: 4
  start-page: 268
  year: 1946
  end-page: 278
  ident: bib4
  article-title: Analysis of shear lag in box beams by the principle of the minimum potential energy
  publication-title: Q Appl Math
– reference: Huitong X., Jinzhu G., Qi M., Li X., Xu Z. Simplified analysis method considering shear-lag effect of steel-concrete composite decks. In: IOP Conference Series: Earth and Environmental Science (EES) 2019.
– year: 2013
  ident: bib47
  publication-title: Concrete bridges; dimensioning and construction
– year: 2017
  ident: bib38
  publication-title: LRFD Bridge Design Specifications
– ident: bib41
– year: 2007
  ident: bib25
  publication-title: AASHTO LRFD bridge design specifications
– reference: CAN/CSA-S6–14, Canadian highway bridge design code. Toronto: 2014.
– volume: 30
  start-page: 1396
  year: 2008
  end-page: 1407
  ident: bib48
  article-title: Effective width of steel–concrete composite beam at ultimate strength state.
  publication-title: Eng Struct
– ident: bib39
– reference: Ltd SP. Strand7 Software 1999.
– volume: 11
  start-page: 671
  year: 2016
  end-page: 690
  ident: bib13
  article-title: A refined theory with stretching effect for the flexure analysis of laminated composite plates
  publication-title: Geomech Eng
– volume: 568
  start-page: 200
  year: 2012
  end-page: 203
  ident: bib22
  article-title: Study on the effective slab width of composite cable-stayed bridge under axial force
  publication-title: Adv Mat Res
– volume: 10
  start-page: 389
  year: 1974
  end-page: 400
  ident: bib6
  article-title: The dependence of the shear-lag on partial interaction in composite beams
  publication-title: Int J Solids Struct
– volume: 32
  start-page: 2702
  year: 2010
  end-page: 2716
  ident: bib23
  article-title: Nonlinear analysis of composite steel-concrete cable-stayed bridges
  publication-title: Eng Struct
– volume: 16
  start-page: 456
  year: 2009
  end-page: 466
  ident: bib53
  article-title: A closed-form refined model of the cables' nonlinear response in cable-stayed structures
  publication-title: Mech Adv Mater Struc
– volume: 281
  year: 2023
  ident: bib51
  article-title: Shear lag effect of composite girders in cable-stayed bridges under dead loads
  publication-title: Eng Struct
– volume: 239
  year: 2021
  ident: bib1
  article-title: Numerical assessment of effective width in steel-concrete composite box girder bridges with partial interaction
  publication-title: Eng Struct
– volume: 38
  start-page: 67
  year: 2021
  end-page: 78
  ident: bib33
  article-title: Numerical study on the deflections of steel-concrete composite beams with partial interaction.
  publication-title: Steel Compos Struct
– reference: Baertschi R., Garcia S., Kroyer R., Sutter P. Deformation capacity and ductility of shear connectors. In: Proceedings in civil engineering, 9th international conference on composite construction in steel and concrete.
– volume: 63
  start-page: 1317
  year: 2007
  end-page: 1327
  ident: bib49
  article-title: Assessment of effective slab widths in composite beams
  publication-title: J Constr Steel Res
– volume: 171
  year: 2020
  ident: bib37
  article-title: Demountable steel-concrete composite beam with full-interaction and low degree of shear connection
  publication-title: J Constr Steel Res
– reference: Torres Tavares F. Evaluation of the effective slab width for composite cable-stayed bridge. Instituto Superior Técnico, Universidade Técnica de Lisboa 2009.
– reference: ) Tokyo: 2017.
– volume: 244
  year: 2020
  ident: bib31
  article-title: State of the art of the effective flange width for composite T-beams
  publication-title: Constr Build Mater
– volume: 67
  start-page: 706
  year: 2011
  end-page: 719
  ident: bib44
  article-title: Effect of shear connector spacing and layout on the shear connector capacity in composite beams
  publication-title: J Constr Steel Res
– volume: 5
  year: 2000
  ident: bib35
  article-title: Effect of friction on shear connection in composite bridge beams
  publication-title: J Bridge Eng
– reference: ). Beijing: 2015.
– volume: 543
  year: 2005
  ident: bib19
  article-title: Effective slab width for composite steel bridge members
  publication-title: NCHRP Rep
– volume: 123
  start-page: 79
  year: 2016
  end-page: 92
  ident: bib36
  article-title: Experimental and numerical study on static behavior of elastic concrete-steel composite beams
  publication-title: J Constr Steel Res
– volume: 170
  year: 2020
  ident: bib7
  article-title: Steel-concrete composite columns are efficient structural members that possess significant strength, stiffness, and ductility
  publication-title: J Constr Steel Res
– reference: Uy B., Tuem H.S. Behaviour and design of composite steel-concrete beams under combined actions In: 8th International Conference On Steel-Concrete Composite And Hybrid Structures.
– reference: JRA Part I—in general and Part II—steel bridges (
– reference: Byers D.D., S.L M. Evaluation of Effective Slab Width for Composite Cable-Stayed Bridge Design. In: 82nd Annual TRB Meeting. 1–8.
– volume: 26
  start-page: 1843
  year: 2004
  end-page: 1851
  ident: bib30
  article-title: Effective flange width provisions for composite steel bridges
  publication-title: Eng Struct
– volume: 58
  start-page: 373
  year: 2002
  end-page: 388
  ident: bib50
  article-title: Effective width evaluation for steel–concrete composite beams
  publication-title: J Constr Steel Res
– volume: 131
  year: 2021
  ident: bib14
  article-title: Analytical observability method for the structural system identification of wide-flange box girder bridges with the effect of shear lag
  publication-title: Autom Constr
– volume: 39
  start-page: 512
  year: 2022
  end-page: 526
  ident: bib24
  article-title: Numerical simulation and simplified calculation of the effective slab width for composite cable-stayed bridges
  publication-title: Struct
– volume: 67
  start-page: 706
  issue: 4
  year: 2011
  ident: 10.1016/j.engstruct.2024.119101_bib44
  article-title: Effect of shear connector spacing and layout on the shear connector capacity in composite beams
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2010.11.009
– volume: 30
  start-page: 1396
  year: 2008
  ident: 10.1016/j.engstruct.2024.119101_bib48
  article-title: Effective width of steel–concrete composite beam at ultimate strength state.
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2007.07.027
– volume: 239
  year: 2021
  ident: 10.1016/j.engstruct.2024.119101_bib1
  article-title: Numerical assessment of effective width in steel-concrete composite box girder bridges with partial interaction
  publication-title: Eng Struct
– volume: 568
  start-page: 200
  year: 2012
  ident: 10.1016/j.engstruct.2024.119101_bib22
  article-title: Study on the effective slab width of composite cable-stayed bridge under axial force
  publication-title: Adv Mat Res
– volume: 27
  start-page: 2559
  issue: 6
  year: 2023
  ident: 10.1016/j.engstruct.2024.119101_bib3
  article-title: Experiment and modelling on effective width of single and twin i-beam composite girders
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-023-1568-9
– volume: 123
  start-page: 79
  year: 2016
  ident: 10.1016/j.engstruct.2024.119101_bib36
  article-title: Experimental and numerical study on static behavior of elastic concrete-steel composite beams
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2016.04.023
– ident: 10.1016/j.engstruct.2024.119101_bib29
– volume: 32
  start-page: 2702
  issue: 9
  year: 2010
  ident: 10.1016/j.engstruct.2024.119101_bib23
  article-title: Nonlinear analysis of composite steel-concrete cable-stayed bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.04.041
– volume: 4
  start-page: 268
  issue: 3
  year: 1946
  ident: 10.1016/j.engstruct.2024.119101_bib4
  article-title: Analysis of shear lag in box beams by the principle of the minimum potential energy
  publication-title: Q Appl Math
  doi: 10.1090/qam/17176
– volume: 244
  year: 2020
  ident: 10.1016/j.engstruct.2024.119101_bib31
  article-title: State of the art of the effective flange width for composite T-beams
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.118303
– ident: 10.1016/j.engstruct.2024.119101_bib27
– volume: 39
  start-page: 512
  issue: 3)
  year: 2022
  ident: 10.1016/j.engstruct.2024.119101_bib24
  article-title: Numerical simulation and simplified calculation of the effective slab width for composite cable-stayed bridges
  publication-title: Struct
  doi: 10.1016/j.istruc.2022.03.034
– ident: 10.1016/j.engstruct.2024.119101_bib8
  doi: 10.62913/engj.v58i4.1183
– volume: 38
  start-page: 67
  issue: 1
  year: 2021
  ident: 10.1016/j.engstruct.2024.119101_bib33
  article-title: Numerical study on the deflections of steel-concrete composite beams with partial interaction.
  publication-title: Steel Compos Struct
– volume: 8
  start-page: 249
  issue: 4
  year: 2008
  ident: 10.1016/j.engstruct.2024.119101_bib12
  article-title: Analysis of the shear lag effect in composite bridges with complex static schemes by means of a deck finite element
  publication-title: Int J Steel Struct
– ident: 10.1016/j.engstruct.2024.119101_bib45
– ident: 10.1016/j.engstruct.2024.119101_bib18
– volume: 7
  start-page: 959
  issue: 7
  year: 1965
  ident: 10.1016/j.engstruct.2024.119101_bib32
  article-title: Flexural strength of steel-concrete composite beams
  publication-title: J Struct Div
– year: 2024
  ident: 10.1016/j.engstruct.2024.119101_bib16
  article-title: Experimental and theoretical investigation of shear lag effect in twin box-shaped composite girders of long-span cable-stayed bridges
  publication-title: Struct Concr
– volume: 26
  start-page: 1843
  year: 2004
  ident: 10.1016/j.engstruct.2024.119101_bib30
  article-title: Effective flange width provisions for composite steel bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2004.07.009
– volume: 170
  year: 2020
  ident: 10.1016/j.engstruct.2024.119101_bib7
  article-title: Steel-concrete composite columns are efficient structural members that possess significant strength, stiffness, and ductility
  publication-title: J Constr Steel Res
– volume: 58
  start-page: 373
  year: 2002
  ident: 10.1016/j.engstruct.2024.119101_bib50
  article-title: Effective width evaluation for steel–concrete composite beams
  publication-title: J Constr Steel Res
  doi: 10.1016/S0143-974X(01)00058-X
– ident: 10.1016/j.engstruct.2024.119101_bib10
– volume: 16
  start-page: 456
  issue: 6
  year: 2009
  ident: 10.1016/j.engstruct.2024.119101_bib53
  article-title: A closed-form refined model of the cables' nonlinear response in cable-stayed structures
  publication-title: Mech Adv Mater Struc
  doi: 10.1080/15376490902781217
– volume: 118
  start-page: 1871
  issue: 7
  year: 1992
  ident: 10.1016/j.engstruct.2024.119101_bib34
  article-title: Composite Beams with Partial Interaction under Sustained Loads
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1992)118:7(1871)
– volume: 46
  start-page: 285
  issue: 9
  year: 1968
  ident: 10.1016/j.engstruct.2024.119101_bib5
  article-title: Effective width of composite beams of steel and concrete
  publication-title: Struct Eng
– start-page: 1
  year: 2023
  ident: 10.1016/j.engstruct.2024.119101_bib52
  article-title: Shear lag effect of composite cable-stayed bridges under dead and live loads
  publication-title: Struct Infrastruct E
  doi: 10.1080/15732479.2023.2290701
– ident: 10.1016/j.engstruct.2024.119101_bib28
– year: 2013
  ident: 10.1016/j.engstruct.2024.119101_bib47
– ident: 10.1016/j.engstruct.2024.119101_bib9
– volume: 11
  start-page: 671
  issue: 5
  year: 2016
  ident: 10.1016/j.engstruct.2024.119101_bib13
  article-title: A refined theory with stretching effect for the flexure analysis of laminated composite plates
  publication-title: Geomech Eng
  doi: 10.12989/gae.2016.11.5.671
– volume: 4
  start-page: 157
  issue: 4
  year: 2020
  ident: 10.1016/j.engstruct.2024.119101_bib43
  article-title: The maximum stress failure criterion and themaximum strain failure criterion: their unificationand rationalization
  publication-title: J Compos Sci
  doi: 10.3390/jcs4040157
– volume: 63
  start-page: 1317
  year: 2007
  ident: 10.1016/j.engstruct.2024.119101_bib49
  article-title: Assessment of effective slab widths in composite beams
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2006.11.018
– volume: 171
  year: 2020
  ident: 10.1016/j.engstruct.2024.119101_bib37
  article-title: Demountable steel-concrete composite beam with full-interaction and low degree of shear connection
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2020.106152
– ident: 10.1016/j.engstruct.2024.119101_bib40
– year: 1994
  ident: 10.1016/j.engstruct.2024.119101_bib46
– year: 2007
  ident: 10.1016/j.engstruct.2024.119101_bib25
– volume: 33
  start-page: 51
  issue: 1
  year: 2013
  ident: 10.1016/j.engstruct.2024.119101_bib21
  article-title: Effective width coefficient for composite cable-stayed bridge and its practical calculation method
  publication-title: J Chang' Univ (Nat Sci Ed)
– volume: 5
  issue: 8
  year: 2016
  ident: 10.1016/j.engstruct.2024.119101_bib20
  article-title: Evaluation of effective slab width for composite cable-stayed bridge
  publication-title: IJIRSET
– ident: 10.1016/j.engstruct.2024.119101_bib17
– volume: 5
  issue: 2
  year: 2000
  ident: 10.1016/j.engstruct.2024.119101_bib35
  article-title: Effect of friction on shear connection in composite bridge beams
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)1084-0702(2000)5:2(91)
– volume: 543
  year: 2005
  ident: 10.1016/j.engstruct.2024.119101_bib19
  article-title: Effective slab width for composite steel bridge members
  publication-title: NCHRP Rep
– volume: 281
  year: 2023
  ident: 10.1016/j.engstruct.2024.119101_bib51
  article-title: Shear lag effect of composite girders in cable-stayed bridges under dead loads
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.115752
– volume: 10
  start-page: 389
  year: 1974
  ident: 10.1016/j.engstruct.2024.119101_bib6
  article-title: The dependence of the shear-lag on partial interaction in composite beams
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(74)90108-5
– ident: 10.1016/j.engstruct.2024.119101_bib15
– ident: 10.1016/j.engstruct.2024.119101_bib11
– volume: 131
  year: 2021
  ident: 10.1016/j.engstruct.2024.119101_bib14
  article-title: Analytical observability method for the structural system identification of wide-flange box girder bridges with the effect of shear lag
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2021.103879
– year: 2017
  ident: 10.1016/j.engstruct.2024.119101_bib38
SSID ssj0002880
Score 2.4627988
Snippet Long and complex composite steel-concrete structures are becoming common, requiring a deep understanding of the effects induced by the simultaneous action of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119101
SubjectTerms Axial force and bending
Effective width
Non-linear analysis
Shear-lag
Steel-concrete composite beam
Title Calculating shear lag in steel-concrete composite beams under combined compression and bending
URI https://dx.doi.org/10.1016/j.engstruct.2024.119101
Volume 322
WOSCitedRecordID wos001335300200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0141-0296
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002880
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KH3SpA906G1xsGXLtnoLYdMHIRSalj3VyNJ4cXCVsI-Sn5_Rw15vG0hL6cVrtJK1q_kszQzfzBDyNmXAlFAsSoTWaKBAE4kmB9wMNct00fDGJdP5dlKcnpazmfgcqENLV06gMKa8uhKX_1XU2IbCtqGzfyHu4aHYgPcodLyi2PH6R4I_kp1yNbmso8DWq5500oWtoDyhi9D-RUVxBY5MbhlbMKnBpmWw0WQL24q2MrhYt8CR9XTlGsxwzPWe_E0uw4nPQ7tebCiJ71up1Nr53e0mcgxdq0ZEW5sawMejTX9Is4Zu-A5X0w07WbfzduMuaJcwt6xVGSBpLsYeC8Z_8VgMoTQb3pL3bGIv5svb9ltz6mOWf9vmvcfh_ADM3P89NPRZdmCT1YWJtnNof3F0Vnw46i8J6ljlXbLLCi5wG9w9_DidfRoOb1a6YnvDr9miBN443c0KzUhJOXtEHgbrgh56VDwmd8A8IQ9GcnpKvo_wQR0-KOKDtoZu44MO-KAOH9Thg_b4oCN8UMQHDfh4Rr4eT8-OPkShyEak0oSvolzFqmjyJKk5MJBobuqkbrjWXEBaykYyVsuMNTrDjxwn5KpMG-ynY6biUqfPyY65MPCCUDw6RJnFqcjxPc_TWiRpIiWq2LyuY82TPZL3K1WpkIHeFkLpqp5qeF4NS1zZJa78Eu-ReBh46ZOw3D7kXS-KKuiSXkesEEO3Dd7_l8Evyf0N6F-RHewAr8k99XPVLhdvAt6uAWZpo2E
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculating+shear+lag+in+steel-concrete+composite+beams+under+combined+compression+and+bending&rft.jtitle=Engineering+structures&rft.au=Giaccu%2C+Gian+Felice&rft.au=Maiorana%2C+Emanuele&rft.au=Fenu%2C+Luigi&rft.au=Briseghella%2C+Bruno&rft.date=2025-01-01&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.volume=322&rft_id=info:doi/10.1016%2Fj.engstruct.2024.119101&rft.externalDocID=S0141029624016638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon