Fast and Message-Efficient Global Snapshot Algorithms for Large-Scale Distributed Systems

Large-scale distributed systems such as supercomputers and peer-to-peer systems typically have a fully connected logical topology over a large number of processors. Existing snapshot algorithms in such systems have high response time and/or require a large number of messages, typically O(n 2 ), wher...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on parallel and distributed systems Vol. 21; no. 9; pp. 1281 - 1289
Main Author: Kshemkalyani, Ajay D
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1045-9219, 1558-2183
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large-scale distributed systems such as supercomputers and peer-to-peer systems typically have a fully connected logical topology over a large number of processors. Existing snapshot algorithms in such systems have high response time and/or require a large number of messages, typically O(n 2 ), where n is the number of processes. In this paper, we present a suite of two algorithms: simple_tree, and hypercube, that are both fast and require a small number of messages. This makes the algorithms highly scalable. Simple_tree requires O(n) messages and has O(log n) response time. Hypercube requires O(n log n) messages and has O(log n) response time, in addition to having the property that the roles of all the processes are symmetrical. Process symmetry implies greater potential for balanced workload and congestion-freedom. All the algorithms assume non-FIFO channels.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2010.24