Integration with respect to deficient topological measures on locally compact spaces

Topological measures and deficient topological measures generalize Borel measures and correspond to certain non-linear functionals. We study integration with respect to deficient topological measures on locally compact spaces. Such an integration over sets yields a new deficient topological measure...

Full description

Saved in:
Bibliographic Details
Published in:Mathematica Slovaca Vol. 70; no. 5; pp. 1113 - 1134
Main Author: Butler, Svetlana V
Format: Journal Article
Language:English
Published: Heidelberg Walter de Gruyter GmbH 01.10.2020
Subjects:
ISSN:0139-9918, 1337-2211
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Topological measures and deficient topological measures generalize Borel measures and correspond to certain non-linear functionals. We study integration with respect to deficient topological measures on locally compact spaces. Such an integration over sets yields a new deficient topological measure if we integrate a nonnegative continuous vanishing at infinity function; and it produces a signed deficient topological measure if we integrate a continuous function on a compact space. We present many properties of these resulting deficient topological measures and of signed deficient topological measures. In particular, they are absolutely continuous with respect to the original deficient topological measure, and their corresponding non-linear functionals are Lipschitz continuous. Deficient topological measures obtained by integration over sets can also be obtained from non-linear functionals. We show that for a deficient topological measure μ that assumes finitely many values, there is a function f such that ∫X$\begin{array}{}\int\limits_X\end{array}$ f dμ = 0, but ∫X$\begin{array}{}\int\limits_X\end{array}$ (–f) dμ ≠ 0. We present different criteria for ∫X$\begin{array}{}\int\limits_X\end{array}$ f dμ = 0. We also prove some convergence results, including a Monotone convergence theorem.
AbstractList Topological measures and deficient topological measures generalize Borel measures and correspond to certain non-linear functionals. We study integration with respect to deficient topological measures on locally compact spaces. Such an integration over sets yields a new deficient topological measure if we integrate a nonnegative continuous vanishing at infinity function; and it produces a signed deficient topological measure if we integrate a continuous function on a compact space. We present many properties of these resulting deficient topological measures and of signed deficient topological measures. In particular, they are absolutely continuous with respect to the original deficient topological measure, and their corresponding non-linear functionals are Lipschitz continuous. Deficient topological measures obtained by integration over sets can also be obtained from non-linear functionals. We show that for a deficient topological measure μ that assumes finitely many values, there is a function f such that ∫X$\begin{array}{}\int\limits_X\end{array}$ f dμ = 0, but ∫X$\begin{array}{}\int\limits_X\end{array}$ (–f) dμ ≠ 0. We present different criteria for ∫X$\begin{array}{}\int\limits_X\end{array}$ f dμ = 0. We also prove some convergence results, including a Monotone convergence theorem.
Author Butler, Svetlana V
Author_xml – sequence: 1
  givenname: Svetlana
  surname: Butler
  middlename: V
  fullname: Butler, Svetlana V
BookMark eNotj0tLAzEUhYNUsK3u_AEB19HcPCdLKT4KBTd1XTJpUqfMJOMkg_jvjejmXs7hO_dwV2gRU_QI3QK9BwnyYciEUdCECmgu0BI414QxgAVaUuCGGAPNFVrlfKZUasn5Eu23sfjTZEuXIv7qygeefB69K7gkfPShc52Pv2JMfTp1zvZ48DbPlcI10afq9N_YpWG0NZTr9PkaXQbbZ3_zv9fo_flpv3klu7eX7eZxRxwHWYjUrbC8NfwIXjMjmGpBGcOkFQpoMDwIB4xq5o0OlWNCaWeDDUoFwUTga3T3d3ec0ufsczmc0zzFWnlgQjRQf-aa_wDhyVPo
CitedBy_id crossref_primary_10_1007_s11117_022_00864_7
crossref_primary_10_1007_s10959_021_01095_4
crossref_primary_10_1016_j_fss_2021_07_004
ContentType Journal Article
Copyright 2020 Mathematical Institute Slovak Academy of Sciences
Copyright_xml – notice: 2020 Mathematical Institute Slovak Academy of Sciences
DBID 3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1515/ms-2017-0418
DatabaseName ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1337-2211
EndPage 1134
GroupedDBID .86
.VR
06D
1N0
29M
2~H
30V
3V.
4.4
408
40D
5GY
67Z
6NX
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
8TC
95.
95~
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASQH
AAXCG
ABAQN
ABFKT
ABJCF
ABJNI
ABMBZ
ABPLS
ABSOE
ABUWG
ABWLS
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACOMO
ACPMA
ACUND
ACZBO
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEICA
AENEX
AEQDQ
AERZL
AFBAA
AFBBN
AFBDD
AFCXV
AFKRA
AFWTZ
AFYRI
AGBEV
AHBYD
AHVWV
AHXUK
AIWOI
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
ASYPN
AZQEC
BA0
BAKPI
BBCWN
BCIFA
BENPR
BGLVJ
BPHCQ
CCPQU
CFGNV
CS3
DU5
DWQXO
E3Z
EBS
FR3
GNUQQ
GQ7
HCIFZ
HF~
HMJXF
IJ-
IXC
IY9
I~Z
JQ2
K6V
K7-
KDIRW
KR7
L6V
L7M
L~C
L~D
M0N
M7S
MA-
P2P
P62
P9R
PF0
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
Q9U
QD8
QOS
R9I
RPX
RSV
S27
S3B
SDH
SHX
SLJYH
SMT
SOJ
T13
TSV
TUC
U2A
UK5
VC2
WK8
WTRAM
~A9
ID FETCH-LOGICAL-c315t-57b4a3b93d1e729426b169925a4610f93f4c12072e97f3b92467cafaf66f424f3
IEDL.DBID M7S
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576367800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0139-9918
IngestDate Wed Aug 13 06:13:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-57b4a3b93d1e729426b169925a4610f93f4c12072e97f3b92467cafaf66f424f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2448113937
PQPubID 2038886
PageCount 22
ParticipantIDs proquest_journals_2448113937
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Mathematica Slovaca
PublicationYear 2020
Publisher Walter de Gruyter GmbH
Publisher_xml – name: Walter de Gruyter GmbH
SSID ssj0057533
Score 2.1959896
Snippet Topological measures and deficient topological measures generalize Borel measures and correspond to certain non-linear functionals. We study integration with...
SourceID proquest
SourceType Aggregation Database
StartPage 1113
SubjectTerms Arrays
Continuity (mathematics)
Convergence
Topology
Title Integration with respect to deficient topological measures on locally compact spaces
URI https://www.proquest.com/docview/2448113937
Volume 70
WOSCitedRecordID wos000576367800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA22daEL3-KjlizchjaPaSYrUWlR1FK0Qnclk0lAsA87o-Dfe5NmdCG4cTnMXBiSzDk3d07ORehcJ9IaJnICdOeIMJwRDYkFAW5KpFFdalywzL-Xg0E6HqthLLgVUVZZYWIA6nxufI28DTSUUurt2y4Wb8R3jfJ_V2MLjRpqeJcEGqR7TxUSQyayaiUPYQTyoDQK34HC29MC1gcAdEfQ9BcMB27pb__3rXbQVswq8eVqGeyiNbfcQ5sP35asxT4a3UZjCJgI7KuvGDba_pglLuc4t95IAvgHLhYVHOLpqn5YYIgInPf6iYNmHYIAiABhDtBzvze6viGxpQIxnCYlSWQmNM8Uz6mFtBroOaNdpViive-6U9wJQ1lHMqukg-cY4KjRTrtu1wkmHD9E9dl8Zo8QNkZJ7UTCcmuE5EJRX0xSGcukltzSY9SshmwSv4ti8jNeJ3_fPkUbzO9sg2yuierl8t2eoXXzUb4UyxZqXPUGw8cWqt1J0gqT_gXdIrPL
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VggQc2BE7PsDRar0krg8IsRRRdRFCReqtJI4tIVEKTQHxU3wj4zSBAxK3HjhGiaMkM3nveTyeATiKAmUNlwlFunNUGsFphMKCIjcFyuiQGZeVzG-pTqfW6-mbEnwWe2F8WmWBiRlQJ0PjY-QVpKEaY7582-nzC_Vdo_zqatFCY-IWTfvxjlO29KRxifY95vyq3r24pnlXAWoEC8Y0ULGMRKxFwiwqS2SomIVa8yDypcedFk4axquKW60cXscRSkzkIheGTnLpBN53BmalkGFQhtnzeufmtsB-1D6T5vX4oBSVVy1PtUfRUBmk6JFICVXJar-AP2Ozq-X_9h1WYCnXzeRs4uirUHKjNVhsfxedTdeh28hLX6CrER9fJiObbSQl4yFJrC-VgQyLB88F4JPBJEKaEhyRsfrjB8my8nEQQi1i6AbcTeW1NqH8NHyyW0CM0SpyMuCJNVIJqZkPl-mYxypSwrJt2CtM1M___LT_Y5-dv08fwvx1t93qtxqd5i4scD-Pz5IE96A8Hr3afZgzb-OHdHSQOxmB-2nb8wse8A09
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+with+respect+to+deficient+topological+measures+on+locally+compact+spaces&rft.jtitle=Mathematica+Slovaca&rft.au=Butler%2C+Svetlana+V&rft.date=2020-10-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0139-9918&rft.eissn=1337-2211&rft.volume=70&rft.issue=5&rft.spage=1113&rft.epage=1134&rft_id=info:doi/10.1515%2Fms-2017-0418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0139-9918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0139-9918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0139-9918&client=summon