Improvements on Cross-Validation: The 632+ Bootstrap Method

A training set of data has been used to construct a rule for predicting future responses. What is the error rate of this rule? This is an important question both for comparing models and for assessing a final selected model. The traditional answer to this question is given by cross-validation. The c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 92; no. 438; pp. 548 - 560
Main Authors: Efron, Bradley, Tibshirani, Robert
Format: Journal Article
Language:English
Published: Alexandria, VA Taylor & Francis Group 01.06.1997
American Statistical Association
Subjects:
ISSN:0162-1459, 1537-274X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A training set of data has been used to construct a rule for predicting future responses. What is the error rate of this rule? This is an important question both for comparing models and for assessing a final selected model. The traditional answer to this question is given by cross-validation. The cross-validation estimate of prediction error is nearly unbiased but can be highly variable. Here we discuss bootstrap estimates of prediction error, which can be thought of as smoothed versions of cross-validation. We show that a particular bootstrap method, the .632+ rule, substantially outperforms cross-validation in a catalog of 24 simulation experiments. Besides providing point estimates, we also consider estimating the variability of an error rate estimate. All of the results here are nonparametric and apply to any possible prediction rule; however, we study only classification problems with 0-1 loss in detail. Our simulations include "smooth" prediction rules like Fisher's linear discriminant function and unsmooth ones like nearest neighbors.
AbstractList A training set of data has been used to construct a rule for predicting future responses. What is the error rate of this rule? This is an important question both for comparing models and for assessing a final selected model. The traditional answer to this question is given by cross-validation. The cross-validation estimate of prediction error is nearly unbiased but can be highly variable. Here we discuss bootstrap estimates of prediction error, which can be thought of as smoothed versions of cross-validation. We show that a particular bootstrap method, the .632+ rule, substantially outperforms cross-validation in a catalog of 24 simulation experiments. Besides providing point estimates, we also consider estimating the variability of an error rate estimate. All of the results here are nonparametric and apply to any possible prediction rule; however, we study only classification problems with 0-1 loss in detail. Our simulations include "smooth" prediction rules like Fisher's linear discriminant function and unsmooth ones like nearest neighbors.
Author Tibshirani, Robert
Efron, Bradley
Author_xml – sequence: 1
  givenname: Bradley
  surname: Efron
  fullname: Efron, Bradley
  organization: Department of Statistics , Stanford University
– sequence: 2
  givenname: Robert
  surname: Tibshirani
  fullname: Tibshirani, Robert
  organization: Department of Preventive Medicine and Biostatistics , University of Toronto
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2812655$$DView record in Pascal Francis
BookMark eNqFkEtLAzEYRYMoWKt_QWYhbmQ0j0kyUTe1-ChU3Ki4C2kmwSkzk5qkiv_ejG1B3DSbQDg333fuAdjtXGcAOEbwHMESXkDEMCqoOEdC8PRU8AJCvgMGiBKeY1687YJBD-U9tQ8OQpjDdHhZDsDVpF1492la08WQuS4bexdC_qqaulKxdt1l9vxuMkbwWXbjXAzRq0X2aOK7qw7BnlVNMEfrewhe7m6fxw_59Ol-Mh5Nc00QjXkhDGaWiQoqrrlAs5JAboQVpYXMUouxsjNbWA1nhGGibKVNOasoZVzjooJkCE5X_6ZNP5YmRNnWQZumUZ1xyyBJSTlknCXwZA2qoFVjvep0HeTC163y3xKXCDNKE3a9wnTv6o2Vuo6_skmubiSCsi9WboqVfbFyU2yKs3_xzYCtwfV68xCd_5vCqRGJBUseJGGjFVZ31vlWfTnfVDKq78b5jRLZMuoHHHqb4Q
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_14036096_2022_2149618
crossref_primary_10_32890_jict_20_1_2021_6358
crossref_primary_10_1080_01431161_2010_486413
crossref_primary_10_1080_19466315_2020_1835710
crossref_primary_10_1108_17563780910959901
crossref_primary_10_3389_fgene_2019_00724
crossref_primary_10_3389_fpsyt_2022_828773
crossref_primary_10_2217_14622416_7_7_1003
crossref_primary_10_3389_fimmu_2019_03109
crossref_primary_10_1080_10543406_2011_629890
crossref_primary_10_1063_5_0281324
crossref_primary_10_1007_s10750_024_05675_3
crossref_primary_10_2196_28333
crossref_primary_10_1002_nop2_1602
crossref_primary_10_1007_s13595_021_01047_2
crossref_primary_10_1214_009053604000000959
crossref_primary_10_1080_13658816_2013_871016
crossref_primary_10_1080_02664763_2023_2252208
crossref_primary_10_1164_rccm_200612_1819OC
crossref_primary_10_1007_s10096_016_2714_9
crossref_primary_10_1007_s00442_018_4086_6
crossref_primary_10_1080_00031305_2015_1005128
crossref_primary_10_1109_TMI_2012_2206398
crossref_primary_10_3389_fgene_2021_651971
crossref_primary_10_1111_1752_1688_13250
crossref_primary_10_1186_s12916_023_02858_y
crossref_primary_10_1029_2024JD041671
crossref_primary_10_5194_essd_13_1829_2021
crossref_primary_10_2217_14622416_7_4_543
crossref_primary_10_1007_s11294_024_09898_x
crossref_primary_10_1128_JCM_03467_14
crossref_primary_10_1080_00949655_2020_1856848
crossref_primary_10_1080_02635143_2025_2491073
crossref_primary_10_1080_1062936X_2015_1084647
crossref_primary_10_1080_10543406_2016_1226329
crossref_primary_10_5194_amt_12_525_2019
crossref_primary_10_1093_aje_kwj235
crossref_primary_10_1081_BIP_200025645
crossref_primary_10_1186_s13195_023_01367_7
crossref_primary_10_3389_fgene_2021_749573
crossref_primary_10_1080_00222216_2011_11950235
crossref_primary_10_1093_molbev_msae238
crossref_primary_10_1117_1_JMI_12_S2_S22012
crossref_primary_10_1080_17538947_2025_2520471
crossref_primary_10_1029_2021WR029680
crossref_primary_10_1080_10503307_2020_1859638
crossref_primary_10_3389_fmars_2023_1116829
crossref_primary_10_2196_49023
crossref_primary_10_3389_fbioe_2019_00226
crossref_primary_10_3389_ffgc_2024_1472699
crossref_primary_10_1080_10543406_2010_504906
crossref_primary_10_2139_ssrn_2562051
crossref_primary_10_5194_nhess_21_2993_2021
crossref_primary_10_1080_15592294_2015_1137414
crossref_primary_10_3389_fpsyg_2022_821897
crossref_primary_10_1007_s42947_021_00013_5
crossref_primary_10_1080_03610918_2014_936464
crossref_primary_10_1080_0305215X_2020_1861262
crossref_primary_10_3389_fdata_2020_00015
crossref_primary_10_1158_1078_0432_CCR_07_4534
crossref_primary_10_1038_s41598_017_17701_7
crossref_primary_10_1016_j_eswa_2024_123372
crossref_primary_10_5964_qcmb_14891
crossref_primary_10_2196_17516
crossref_primary_10_1080_10485252_2017_1404598
crossref_primary_10_1214_ss_1063994968
crossref_primary_10_1088_1361_6560_abb0c7
crossref_primary_10_1161_HYPERTENSIONAHA_121_18794
crossref_primary_10_1016_S0140_6736_05_66539_7
crossref_primary_10_3389_fonc_2021_644045
crossref_primary_10_1080_13668803_2024_2413006
crossref_primary_10_1080_10543406_2019_1579220
crossref_primary_10_1080_02724634_2025_2493157
crossref_primary_10_2478_bsrj_2021_0015
crossref_primary_10_1177_09670335231173139
crossref_primary_10_1080_02664763_2022_2070137
crossref_primary_10_1021_acs_jproteome_5c00483
crossref_primary_10_1007_s10651_025_00644_y
crossref_primary_10_1029_2020GL091933
crossref_primary_10_1080_02664763_2020_1753023
crossref_primary_10_1080_02664763_2020_1830954
crossref_primary_10_1088_1741_4326_ac1a0d
crossref_primary_10_1080_19466315_2020_1828159
crossref_primary_10_5721_EuJRS20154814
crossref_primary_10_1080_07421222_2019_1598692
crossref_primary_10_1007_s00134_017_4678_3
crossref_primary_10_3109_03014460_2012_681800
crossref_primary_10_1080_00015385_2017_1420438
crossref_primary_10_1038_srep35110
crossref_primary_10_1080_01621459_2014_932172
crossref_primary_10_1080_24725854_2017_1347984
crossref_primary_10_1155_2019_8321942
crossref_primary_10_1007_s11205_018_02056_x
crossref_primary_10_1080_10503307_2020_1823029
crossref_primary_10_1080_00223131_2018_1467287
crossref_primary_10_1214_009053604000000067
crossref_primary_10_5194_acp_21_35_2021
crossref_primary_10_1093_bioinformatics_bti499
crossref_primary_10_3389_fmars_2019_00645
crossref_primary_10_1080_10618600_2022_2107530
crossref_primary_10_5194_hess_13_1907_2009
Cites_doi 10.1080/00401706.1974.10489157
10.1080/01621459.1986.10478291
10.2307/2336519
10.1080/01621459.1975.10479865
10.1002/0471725293
10.1109/TPAMI.1987.4767957
10.1016/0167-8655(86)90035-8
10.1214/aos/1176344552
10.1016/0167-8655(85)90049-2
10.2307/1403680
10.1080/01621459.1983.10477973
10.1214/aos/1176349027
10.1007/978-1-4899-4541-9
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 1997
Copyright 1997 American Statistical Association
1997 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 1997
– notice: Copyright 1997 American Statistical Association
– notice: 1997 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8BJ
FQK
JBE
DOI 10.1080/01621459.1997.10474007
DatabaseName CrossRef
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 560
ExternalDocumentID 2812655
10_1080_01621459_1997_10474007
2965703
10474007
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
0BK
0R~
1OL
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUFD
ABUWG
ABXSQ
ABXUL
ABXYU
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AENEX
AEPSL
AEUPB
AEYOC
AFFNX
AFKRA
AFRVT
AFVYC
AFXHP
AGDLA
AGLNM
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMEWO
AQRUH
AQTUD
AQUVI
AVBZW
AWYRJ
AZQEC
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BVXVI
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWQXO
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
K9-
KYCEM
L6V
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
NA5
NHB
NUSFT
NY~
O9-
OK1
P-O
P2P
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UKHRP
UPT
UT5
UU3
VH1
VOH
WH7
WZA
YQT
YXB
YYM
YYP
ZGI
ZGOLN
~S~
ADYSH
AFSUE
ALIPV
AMPGV
07G
AAAVZ
AAFWJ
AAIKQ
AAKBW
AAYXX
ABRLO
ACGEE
ACTCW
ADXHL
AEOZL
AEUMN
AFFHD
AFQQW
AGCQS
AGLEN
AMATQ
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
E.L
HF~
IPNFZ
IVXBP
KQ8
LJTGL
MW2
OFU
RIG
SJN
TAQ
TFMCV
UB9
UQL
WHG
ZCG
ZUP
ZXP
IQODW
8BJ
FQK
JBE
ID FETCH-LOGICAL-c315t-49e26f69d0a7c791b8307e9f98f06f5f22afbf4fc0b3623afdce8bd5567c24d03
IEDL.DBID TFW
ISSN 0162-1459
IngestDate Tue Oct 21 13:27:50 EDT 2025
Mon Jul 21 09:15:47 EDT 2025
Sat Nov 29 03:56:32 EST 2025
Tue Nov 18 21:37:34 EST 2025
Thu Jun 19 14:56:25 EDT 2025
Mon Oct 20 23:44:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 438
Keywords Error estimation
Error prediction
Asymptotic behavior
Prediction
Samplings
Error rate
Non parametric method
Cross validation
Discriminant function
Prediction rule
Classification
Classification problem
Bootstrap
Numerical simulation
Fisher function
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c315t-49e26f69d0a7c791b8307e9f98f06f5f22afbf4fc0b3623afdce8bd5567c24d03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 38570676
PQPubID 23473
PageCount 13
ParticipantIDs jstor_primary_10_2307_2965703
crossref_citationtrail_10_1080_01621459_1997_10474007
crossref_primary_10_1080_01621459_1997_10474007
proquest_miscellaneous_38570676
pascalfrancis_primary_2812655
informaworld_taylorfrancis_310_1080_01621459_1997_10474007
PublicationCentury 1900
PublicationDate 19970601
PublicationDateYYYYMMDD 1997-06-01
PublicationDate_xml – month: 06
  year: 1997
  text: 19970601
  day: 01
PublicationDecade 1990
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
PublicationTitle Journal of the American Statistical Association
PublicationYear 1997
Publisher Taylor & Francis Group
American Statistical Association
Publisher_xml – name: Taylor & Francis Group
– name: American Statistical Association
References Breiman L. (CIT0002) 1994
Stone M. (CIT0023) 1977; 39
Davison A. C. (CIT0008) 1986; 73
Mallows C. (CIT0020) 1973; 15
Geisser S. (CIT0017) 1975; 70
Breiman L. (CIT0003) 1984
Stone M. (CIT0022) 1974; 36
Jain A. (CIT0018) 1987; 9
Breiman L. (CIT0004) 1992; 60
Chernick M. (CIT0006) 1986; 4
Zhang P. (CIT0025) 1993; 21
Zhang P. (CIT0026) 1995; 22
McLachlan G. (CIT0021) 1992
Efron B. (CIT0013) 1983; 37
Friedman J. (CIT0016) 1994
Efron B. (CIT0011) 1986; 81
Chernick M. (CIT0005) 1985; 4
Efron B. (CIT0015) 1995
Allen D. M. (CIT0001) 1974; 16
Efron B. (CIT0012) 1992
Kohavi R. (CIT0019) 1995
Efron B. (CIT0009) 1979; 7
Efron B. (CIT0010) 1983; 78
Efron B. (CIT0014) 1993
CIT0024
CIT0007
References_xml – volume: 16
  start-page: 125
  year: 1974
  ident: CIT0001
  publication-title: Technometrics
  doi: 10.1080/00401706.1974.10489157
– start-page: 83
  year: 1992
  ident: CIT0012
  publication-title: Journal of the Royal Statistical Society
– volume: 81
  start-page: 461
  year: 1986
  ident: CIT0011
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1986.10478291
– volume: 73
  start-page: 555
  year: 1986
  ident: CIT0008
  publication-title: Biometrika
  doi: 10.2307/2336519
– volume: 22
  start-page: 83
  year: 1995
  ident: CIT0026
  publication-title: Scandinavian Journal of Statistics
– volume: 70
  start-page: 320
  year: 1975
  ident: CIT0017
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1975.10479865
– volume: 36
  start-page: 111
  year: 1974
  ident: CIT0022
  publication-title: Journal of the Royal Statistical Society
– volume-title: Discriminant Analysis and Statistical Pattern Recognition
  year: 1992
  ident: CIT0021
  doi: 10.1002/0471725293
– volume: 39
  start-page: 44
  year: 1977
  ident: CIT0023
  publication-title: Journal of the Royal Statistical Society
– volume: 9
  start-page: 628
  year: 1987
  ident: CIT0018
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1987.4767957
– volume: 37
  start-page: 36
  year: 1983
  ident: CIT0013
  publication-title: The American Statistician
– volume-title: Classification and Regression Trees
  year: 1984
  ident: CIT0003
– volume: 4
  start-page: 133
  year: 1986
  ident: CIT0006
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(86)90035-8
– volume: 7
  start-page: 1
  year: 1979
  ident: CIT0009
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344552
– volume-title: “A Study of Cross-Validation and Bootstrap for Accuracy Assessment and model selection,”
  year: 1995
  ident: CIT0019
– volume: 15
  start-page: 661
  year: 1973
  ident: CIT0020
  publication-title: Technometrics
– volume-title: “Flexible Metric Nearest-Neighbor Classification,”
  year: 1994
  ident: CIT0016
– volume: 4
  start-page: 167
  year: 1985
  ident: CIT0005
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(85)90049-2
– volume-title: “Cross-Validation and the Bootstrap: Estimating the Error Rate of a Prediction Rule,”
  year: 1995
  ident: CIT0015
– ident: CIT0024
– ident: CIT0007
– volume: 60
  start-page: 291
  year: 1992
  ident: CIT0004
  publication-title: International Statistical Review
  doi: 10.2307/1403680
– volume: 78
  start-page: 316
  year: 1983
  ident: CIT0010
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1983.10477973
– volume: 21
  start-page: 299
  year: 1993
  ident: CIT0025
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176349027
– volume-title: “Bagging Predictors,”
  year: 1994
  ident: CIT0002
– volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: CIT0014
  doi: 10.1007/978-1-4899-4541-9
SSID ssj0000788
Score 2.196224
Snippet A training set of data has been used to construct a rule for predicting future responses. What is the error rate of this rule? This is an important question...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 548
SubjectTerms Bootstrap resampling
Classification
Cross-validation bootstrap
Error rates
Estimation bias
Estimation methods
Estimators
Exact sciences and technology
Mathematics
Multivariate analysis
Nonparametric inference
Point estimators
Prediction rule
Probability and statistics
Sciences and techniques of general use
Simulation training
Standard deviation
Standard error
Statistical methods
Statistical variance
Statistics
Theory and Methods
Title Improvements on Cross-Validation: The 632+ Bootstrap Method
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.1997.10474007
https://www.jstor.org/stable/2965703
https://www.proquest.com/docview/38570676
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 7WY
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: M0C
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Consumer Health Database
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: M0R
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/familyhealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: M7S
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 7X7
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: M0T
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: BENPR
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 8C1
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: M2O
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: M2P
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5R6IFLW_pQl8I2h96qiMSO7ZieyopVLyyIbsv2FNlOfKoSxC79_czYCewKVRzayyhRMnEyHo8_O_MA-KQt54VuTIpgAxcoTIq0LAubulpLj3DfeRGLTajZrFws9HosDLlV0hrax0QRwVbT4DZ2OXjEHSFKofzamiLtFP2kVEUMKMe5n8bmfHr1YIxVKD1JLCnxDEHCf33Mxvy0kb108Fgk90mzRAn6WPrikRUPU9P05f_4qFfwogemydeoSXuw1bSvYZewaEzl_Aa-xA2IsJ-4TLo2mdAXpD8RycfCTMcJKl0iOfucnHTdijZRrpOzUKL6LfyYns4n39K-9kLqeC5WKfYfk17qOjPKKZ3bEo1Bo70ufSa98IwZb33hXWZxCuTG164pbS2EVI4VdcbfwXbbtc17SPARXnICRrUobJNb4-rcFKgHRmnB1AjEIPHK9YnJqT7G7yof8pf2sqlINtUgmxEc3fNdx9QcT3Icr3dotQqbIn03Vvwp5sPQ_ettkRd9xTS5D3G8vqEW9_cxxFBSiBF8HNSkwiFM_2VM23S32DAVGZBK7v_L632AXcRyFJCGhu8Atlc3t80hPHd_UEtuxvBMXf0iulBIy0k-hp2T09nFJZ6dZZNA4_GcKDsP9IKo-j4OQ-oO19wNgw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9wwDLYQQ4KXARuIG7vRh72himvSJM3taTtxYgJOPByDtyhNmyfUIjj2-2cnLXBCEw_w3DppbcdxHPszwHddcp7r2qbobOABhUmRFkVepq7S0qO777yIzSbUbFZcX-uLFZj0tTCUVklnaB-BIoKtpsVNweg-Je4I3RQC2NZUaqfollLloaL8g8DNlgD059OrJ3OsQvNJokmJqC8T_u84SzvUEn5pn7NICZT2HnnoY_OLF3Y8bE7TzXf5rS342Pmmyc-oTNuwUjefYIPc0Yjm_Bl-xBhECCneJ22TTOgX0j_ozMfeTOME9S6RnB0mv9p2QXGU2-Q8dKnegcvp8XxyknbtF1LHM7FIUYRMeqmrkVVO6aws0B7U2uvCj6QXnjHrS597NypxF-TWV64uykoIqRzLqxHfhdWmbeo9SHAILzn5RpXIyzorrasym6MqWKUFUwMQPcuN67DJqUXGjcl6CNOON4Z4Y3reDODoke42onO8SjF-LlGzCHGRTo6Gv0Y8DPJ_Phcl0humKYOI4_MlvXh8j6EbJYUYwEGvJwZXMV3N2KZuH3Bi6jMglfzyls87gPWT-fmZOfs9O92HjQi0S_Gir7C6uHuoh7Dm_qLG3H0LK-QfThsHyQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECZGjfHi27g-e_BmGrdQoOjJ10ajbjz4uhFKy8m0m3X19zsDre7GGA96bgfamWH4GOZByL7KGUtVaWIAG3BAoYLHWZbmsS2UcAD3reOh2YTs97PnZzWeC4NhlXiGdqFQhLfVuLgHhWsj4g4BpWB9bYWZdhIvKWXqE8pnADsL1PL73tOXNZa-9yTSxEjUZgn_OM7EBjVRvrQNWcT4SfMKLHSh98U3M-73pt7if_zVEllokGl0ElRpmUyV1QqZRzAaajmvkuPggfAOxdeorqIz_IP4EaB86Mx0FIHWRYLRg-i0rkfoRRlEt75H9Rp56F3cn13GTfOF2LKEj2IQIBVOqKJrpJUqyTOwBqVyKnNd4bij1Ljcpc52c9gDmXGFLbO84FxIS9Oiy9bJdFVX5QaJYAgnGCKjgqd5meTGFolJQRGMVJzKDuEtx7VtKpNjg4wXnbQFTBveaOSNbnnTIYefdINQm-NXiqNxgeqR94o0YtTsN-IdL_7xuTCMXlOF8UMMnk-oxed7FECU4LxD9lo10bCG8WLGVGX9BhNjlwEhxeZfPm-PzN2d9_TNVf96i8yHKrvoLNom06PhW7lDZu07KMxw16-PDx4QBns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvements+on+cross-validation%3A+the+.632%2B+bootstrap+method&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Efron%2C+Bradley&rft.au=Tibshirani%2C+Robert&rft.date=1997-06-01&rft.issn=0162-1459&rft.volume=92&rft.issue=438&rft.spage=548&rft.epage=560&rft_id=info:doi/10.1080%2F01621459.1997.10474007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon