Maximum likelihood based recursive parameter estimation for controlled autoregressive ARMA systems using the data filtering technique

Using the maximum likelihood principle, a filtering based maximum likelihood recursive least squares parameter estimation algorithm is derived for controlled autoregressive ARMA systems. The basic idea is to use the noise transfer function to filter the input–output data and to replace the unmeasura...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Franklin Institute Ročník 352; číslo 12; s. 5882 - 5896
Hlavní autoři: Chen, Feiyan, Ding, Feng, Sheng, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2015
ISSN:0016-0032, 1879-2693
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Using the maximum likelihood principle, a filtering based maximum likelihood recursive least squares parameter estimation algorithm is derived for controlled autoregressive ARMA systems. The basic idea is to use the noise transfer function to filter the input–output data and to replace the unmeasurable noise terms in the information vectors with their estimates. The simulation results indicate that the proposed estimation algorithm can effectively estimate the parameters of such systems and can generate more precise parameter estimates than the recursive maximum likelihood and the recursive generalized extended least squares algorithms.
ISSN:0016-0032
1879-2693
DOI:10.1016/j.jfranklin.2015.09.021