Optimization of speckle pattern based on integer programming method
•A mathematical model for finding the subset with the largest sum of square of subset intensity gradients is established.•The optimized speckle patterns for digital image correlation are produced with the integer programming method.•Both the simulations and experiments show that the proposed optimiz...
Uložené v:
| Vydané v: | Optics and lasers in engineering Ročník 133; s. 106100 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2020
|
| Predmet: | |
| ISSN: | 0143-8166 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A mathematical model for finding the subset with the largest sum of square of subset intensity gradients is established.•The optimized speckle patterns for digital image correlation are produced with the integer programming method.•Both the simulations and experiments show that the proposed optimized speckle patterns have a stronger anti-nose ability than random patterns.
The performance of digital image correlation (DIC) method heavily depends on the quality of the speckle pattern. Extensive studies have been conducted to evaluate the speckle pattern, in order to reduce the errors of DIC. It is generally understood that the sum of square of subset intensity gradients (SSSIG) is the most relevant metric to the accuracy of the DIC; and the higher SSSIG indicates the better quality of the speckle pattern. However, there are few works on the optimization of the speckle pattern. In this work, we propose an integer programming method (IPM) to obtain the subset having the highest SSSIG. The speckle pattern derived from the proposed IPM has a relatively high SSSIG and has a strong anti-noise capability. The regular patterns (e.g. checkerboard-type) can also be avoided by the proposed method. Both the simulation and experiment have been conducted to validate the effectiveness of the proposed method. The simulation results show that the standard deviation (STD) of the displacements obtained by using the proposed speckle pattern in this study is reduced by 25.2% and 10.7%, respectively, comparing with the results obtained by the conventional random speckle pattern and the optimized speckle pattern in our earlier work. In addition, the experimental results from a tensile testing also agreed to the results from the simulation. |
|---|---|
| AbstractList | •A mathematical model for finding the subset with the largest sum of square of subset intensity gradients is established.•The optimized speckle patterns for digital image correlation are produced with the integer programming method.•Both the simulations and experiments show that the proposed optimized speckle patterns have a stronger anti-nose ability than random patterns.
The performance of digital image correlation (DIC) method heavily depends on the quality of the speckle pattern. Extensive studies have been conducted to evaluate the speckle pattern, in order to reduce the errors of DIC. It is generally understood that the sum of square of subset intensity gradients (SSSIG) is the most relevant metric to the accuracy of the DIC; and the higher SSSIG indicates the better quality of the speckle pattern. However, there are few works on the optimization of the speckle pattern. In this work, we propose an integer programming method (IPM) to obtain the subset having the highest SSSIG. The speckle pattern derived from the proposed IPM has a relatively high SSSIG and has a strong anti-noise capability. The regular patterns (e.g. checkerboard-type) can also be avoided by the proposed method. Both the simulation and experiment have been conducted to validate the effectiveness of the proposed method. The simulation results show that the standard deviation (STD) of the displacements obtained by using the proposed speckle pattern in this study is reduced by 25.2% and 10.7%, respectively, comparing with the results obtained by the conventional random speckle pattern and the optimized speckle pattern in our earlier work. In addition, the experimental results from a tensile testing also agreed to the results from the simulation. |
| ArticleNumber | 106100 |
| Author | Ren, Xiangyun Quan, Chenggen Zhong, Fuqiang He, Xiaoyuan Xu, Xiangyang |
| Author_xml | – sequence: 1 givenname: Xiangyang surname: Xu fullname: Xu, Xiangyang organization: Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing 211189, China – sequence: 2 givenname: Xiangyun surname: Ren fullname: Ren, Xiangyun organization: Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing 211189, China – sequence: 3 givenname: Fuqiang surname: Zhong fullname: Zhong, Fuqiang organization: Department of Mechanical Engineering, National University of Singapore, Singapore – sequence: 4 givenname: Chenggen surname: Quan fullname: Quan, Chenggen organization: Department of Mechanical Engineering, National University of Singapore, Singapore – sequence: 5 givenname: Xiaoyuan surname: He fullname: He, Xiaoyuan email: mmhxy@seu.edu.cn organization: Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing 211189, China |
| BookMark | eNqNj71OwzAUhT0UibbwDPgFUuw4sZ2Boar4kyp1gdlynJvgkNiRbSHB05NSxMAC05XOPd-RvhVaOO8AoStKNpRQft1v_JQGHcF1m5zkx5RTQhZoSWjBMkk5P0erGHsytwtKl2h3mJId7YdO1jvsWxwnMK8D4EmnBMHhel5r8PyzLkEHAU_Bd0GPo3UdHiG9-OYCnbV6iHD5fdfo-e72afeQ7Q_3j7vtPjOMliljUOZCk4oBKQQRDeE6b0ESKWjOOZVcGCkYBwH53KurupQV43VFDC0bWdRsjcRp1wQfY4BWTcGOOrwrStTRX_Xqx18d_dXJfyZvfpHGpi_lFLQd_sFvTzzMem8WgorGgjPQ2AAmqcbbPzc-ASJMgI0 |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2021_109082 crossref_primary_10_1364_AO_540467 crossref_primary_10_1016_j_measurement_2022_112366 crossref_primary_10_1016_j_measurement_2020_108570 crossref_primary_10_1088_1361_6501_ad8941 crossref_primary_10_1364_AO_465070 crossref_primary_10_1016_j_istruc_2025_109306 crossref_primary_10_1088_1361_6501_abdf9f crossref_primary_10_1364_AO_423269 crossref_primary_10_1016_j_optcom_2021_127397 crossref_primary_10_1016_j_engstruct_2022_114282 crossref_primary_10_1364_AO_423350 crossref_primary_10_1016_j_measurement_2023_113590 |
| Cites_doi | 10.1007/978-3-540-68279-0 10.1016/j.optlaseng.2017.06.019 10.1057/jors.1979.78 10.1016/j.optlaseng.2005.10.004 10.1007/s11340-015-0054-9 10.1364/OL.36.003070 10.1016/j.optlaseng.2007.01.012 10.1088/0957-0233/20/6/062001 10.1088/0957-0233/22/12/125501 10.1016/j.optlaseng.2009.08.010 10.1016/j.optlaseng.2016.11.001 10.1088/0957-0233/23/2/025403 10.1088/0957-0233/25/1/015401 10.1016/j.optlaseng.2016.11.005 10.1007/978-0-387-78747-3 10.1016/j.optlastec.2010.04.010 10.1088/0957-0233/17/6/045 10.1016/j.optlaseng.2014.03.015 10.1111/j.1475-1305.2008.00592.x 10.1016/0262-8856(83)90064-1 10.1016/j.optlaseng.2008.10.015 10.1364/OE.23.019242 10.1016/j.measurement.2018.06.022 10.1016/j.optlaseng.2015.03.005 10.1364/AO.57.000884 10.1007/s11340-006-9005-9 10.1016/j.optlaseng.2016.05.019 10.1007/s11340-014-9886-y |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optlaseng.2020.106100 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| ExternalDocumentID | 10_1016_j_optlaseng_2020_106100 S0143816619319566 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABDPE ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ABXRA ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSH SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c315t-3e527a093e04707d06a2fe808712661867c8736e7e227ab9b58936b90c15d84b3 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538096000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-8166 |
| IngestDate | Sat Nov 29 07:24:21 EST 2025 Tue Nov 18 22:36:35 EST 2025 Sun Apr 06 06:54:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Speckle pattern optimization Digital image correlation Integer programming method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c315t-3e527a093e04707d06a2fe808712661867c8736e7e227ab9b58936b90c15d84b3 |
| ParticipantIDs | crossref_primary_10_1016_j_optlaseng_2020_106100 crossref_citationtrail_10_1016_j_optlaseng_2020_106100 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2020_106100 |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics and lasers in engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhong, Indurkar, Quan (bib0012) 2018; 128 Hua, Xie, Wang, Hu, Chen, Zhang (bib0018) 2011; 43 Xu, Su, Cai, Cheng, Zhang (bib0011) 2015; 55 Reu, Sweatt, Miller, Fleming (bib0013) 2015; 55 Pan, Qian, Xie, Asundi (bib0003) 2009; 20 Pan, Lu, Xie (bib0017) 2010; 48 Yu, Guo, Xia, Yan, Zhang, He (bib0019) 2014; 60 Bomarito, Hochhalter, Ruggles, Cannon (bib0025) 2017; 91 Ma, Pang, Ma (bib0016) 2012; 23 Lecompte, Smits, Bossuyt, Sol, Vantomme, Van (bib0010) 2006; 44 Schreier, Braasch, Sutton (bib0008) 2000 Pan, Xie, Xu, Dai (bib0007) 2006; 17 Luu, Wang, Vo, Hoang, Ma (bib0004) 2011; 36 Vajda, Chung (bib0032) 1965; 49 Park, Yoon, Kwon, Park (bib0020) 2017; 91 Yaofeng, Pang (bib0029) 2007; 45 Jünger M., Naddef D., Pulleyblank W.R., Rinaldi G., Liebling T.M., Nemhauser G.L., et al. 50 years of integer programming 1958-2008: from the early years to the state-of-the-art. 2010. 10.1007/978-3-540-68279-0. Schreier H., Orteu J.J., Sutton M.A.Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. 2009. doi:10.1007/978-0-387-78747-3. Chen, Shao, Xu, He (bib0024) 2018; 57 Pan, Wang (bib0026) 2012; 4 Wang, Sutton, Bruck, Schreier (bib0015) 2009; 45 Su, Zhang, Gao, Xu, Wu (bib0006) 2015; 23 Zhong, Quan (bib0005) 2017; 98 Shih (bib0031) 1979; 30 . Shao, Dai, He (bib0027) 2015; 71 Wang, Li, Tong, Ruan (bib0014) 2007; 47 Sutton M., Wolters W., Peters W., Ranson W., McNeill S.Determination of displacements using an improved digital correlation method. vol. 1. 1983. doi:10.1016/0262-8856(83)90064-1. Su, Zhang, Xu, Gao (bib0009) 2016; 86 Chen, Quan, Zhu, He (bib0021) 2015 Kammers, Daly (bib0022) 2011; 22 Triconnet, Derrien, Hild, Baptiste (bib0028) 2009; 47 Guery, Latourte, Hild, Roux (bib0023) 2014; 25 Correlated Solutions I. Correlated Solutions – VIC-3D2018. Pan (10.1016/j.optlaseng.2020.106100_bib0017) 2010; 48 Pan (10.1016/j.optlaseng.2020.106100_bib0007) 2006; 17 10.1016/j.optlaseng.2020.106100_bib0002 10.1016/j.optlaseng.2020.106100_bib0001 Wang (10.1016/j.optlaseng.2020.106100_bib0014) 2007; 47 Wang (10.1016/j.optlaseng.2020.106100_bib0015) 2009; 45 Su (10.1016/j.optlaseng.2020.106100_bib0009) 2016; 86 Reu (10.1016/j.optlaseng.2020.106100_bib0013) 2015; 55 Shao (10.1016/j.optlaseng.2020.106100_bib0027) 2015; 71 Su (10.1016/j.optlaseng.2020.106100_bib0006) 2015; 23 Zhong (10.1016/j.optlaseng.2020.106100_bib0012) 2018; 128 Pan (10.1016/j.optlaseng.2020.106100_bib0003) 2009; 20 Bomarito (10.1016/j.optlaseng.2020.106100_bib0025) 2017; 91 Lecompte (10.1016/j.optlaseng.2020.106100_bib0010) 2006; 44 Guery (10.1016/j.optlaseng.2020.106100_bib0023) 2014; 25 Vajda (10.1016/j.optlaseng.2020.106100_bib0032) 1965; 49 Pan (10.1016/j.optlaseng.2020.106100_bib0026) 2012; 4 Shih (10.1016/j.optlaseng.2020.106100_bib0031) 1979; 30 Yu (10.1016/j.optlaseng.2020.106100_bib0019) 2014; 60 Chen (10.1016/j.optlaseng.2020.106100_bib0024) 2018; 57 10.1016/j.optlaseng.2020.106100_bib0033 Triconnet (10.1016/j.optlaseng.2020.106100_bib0028) 2009; 47 Hua (10.1016/j.optlaseng.2020.106100_bib0018) 2011; 43 Luu (10.1016/j.optlaseng.2020.106100_bib0004) 2011; 36 Ma (10.1016/j.optlaseng.2020.106100_bib0016) 2012; 23 Schreier (10.1016/j.optlaseng.2020.106100_bib0008) 2000 10.1016/j.optlaseng.2020.106100_bib0030 Chen (10.1016/j.optlaseng.2020.106100_bib0021) 2015 Zhong (10.1016/j.optlaseng.2020.106100_bib0005) 2017; 98 Xu (10.1016/j.optlaseng.2020.106100_bib0011) 2015; 55 Yaofeng (10.1016/j.optlaseng.2020.106100_bib0029) 2007; 45 Park (10.1016/j.optlaseng.2020.106100_bib0020) 2017; 91 Kammers (10.1016/j.optlaseng.2020.106100_bib0022) 2011; 22 |
| References_xml | – reference: Sutton M., Wolters W., Peters W., Ranson W., McNeill S.Determination of displacements using an improved digital correlation method. vol. 1. 1983. doi:10.1016/0262-8856(83)90064-1. – volume: 47 start-page: 701 year: 2007 end-page: 707 ident: bib0014 article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images publication-title: Exp Mech – volume: 128 start-page: 23 year: 2018 end-page: 33 ident: bib0012 article-title: Three-dimensional digital image correlation with improved efficiency and accuracy publication-title: Meas J Int Meas Confed – volume: 47 start-page: 728 year: 2009 end-page: 737 ident: bib0028 article-title: Parameter choice for optimized digital image correlation publication-title: Opt Lasers Eng – volume: 48 start-page: 469 year: 2010 end-page: 477 ident: bib0017 article-title: Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation publication-title: Opt Lasers Eng – volume: 91 start-page: 62 year: 2017 end-page: 72 ident: bib0020 article-title: Assessment of speckle-pattern quality in digital image correlation based on gray intensity and speckle morphology publication-title: Opt Lasers Eng – volume: 23 start-page: 25403 year: 2012 ident: bib0016 article-title: The systematic error in digital image correlation induced by self-heating of a digital camera publication-title: Meas Sci Technol – volume: 43 start-page: 9 year: 2011 end-page: 13 ident: bib0018 article-title: Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation publication-title: Opt Laser Technol – reference: Jünger M., Naddef D., Pulleyblank W.R., Rinaldi G., Liebling T.M., Nemhauser G.L., et al. 50 years of integer programming 1958-2008: from the early years to the state-of-the-art. 2010. 10.1007/978-3-540-68279-0. – volume: 23 start-page: 19242 year: 2015 ident: bib0006 article-title: Fourier-based interpolation bias prediction in digital image correlation publication-title: Opt Express – start-page: 26 year: 2015 ident: bib0021 article-title: A method to transfer speckle patterns for digital image correlation publication-title: Meas Sci Technol – volume: 25 start-page: 5401 year: 2014 ident: bib0023 article-title: Characterization of SEM speckle pattern marking and imaging distortion by digital image correlation publication-title: Meas Sci Technol – reference: Schreier H., Orteu J.J., Sutton M.A.Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. 2009. doi:10.1007/978-0-387-78747-3. – volume: 4 start-page: 317 year: 2012 end-page: 326 ident: bib0026 article-title: Recent progress in digital image correlation publication-title: Conf Proc Soc Exp Mech Ser – volume: 98 start-page: 153 year: 2017 end-page: 158 ident: bib0005 article-title: Digital image correlation in polar coordinate robust to a large rotation publication-title: Opt Lasers Eng – volume: 55 start-page: 1575 year: 2015 end-page: 1590 ident: bib0011 article-title: Effects of various shape functions and subset size in local deformation measurements using DIC publication-title: Exp Mech – volume: 86 start-page: 132 year: 2016 end-page: 142 ident: bib0009 article-title: Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors publication-title: Opt Lasers Eng – volume: 22 year: 2011 ident: bib0022 article-title: Small-scale patterning methods for digital image correlation under scanning electron microscopy publication-title: Meas Sci Technol – volume: 57 start-page: 884 year: 2018 ident: bib0024 article-title: Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency publication-title: Appl Opt – volume: 45 start-page: 967 year: 2007 end-page: 974 ident: bib0029 article-title: Study of optimal subset size in digital image correlation of speckle pattern images publication-title: Opt Lasers Eng – volume: 44 start-page: 1132 year: 2006 end-page: 1145 ident: bib0010 article-title: Quality assessment of speckle patterns for digital image correlation publication-title: Opt Lasers Eng – volume: 60 start-page: 32 year: 2014 end-page: 37 ident: bib0019 article-title: Application of the mean intensity of the second derivative in evaluating the speckle patterns in digital image correlation publication-title: Opt Lasers Eng – start-page: 39 year: 2000 ident: bib0008 article-title: Systematic errors in digital image correlation caused by intensity interpolation publication-title: Opt Eng – volume: 91 start-page: 73 year: 2017 end-page: 85 ident: bib0025 article-title: Increasing accuracy and precision of digital image correlation through pattern optimization publication-title: Opt Lasers Eng – reference: . – volume: 49 year: 1965 ident: bib0032 publication-title: Linear programming – reference: Correlated Solutions I. Correlated Solutions – VIC-3D2018. – volume: 17 start-page: 1615 year: 2006 end-page: 1621 ident: bib0007 article-title: Performance of sub-pixel registration algorithms in digital image correlation publication-title: Meas Sci Technol – volume: 36 start-page: 3070 year: 2011 ident: bib0004 article-title: Accuracy enhancement of digital image correlation with B-spline interpolation publication-title: Opt Lett – volume: 45 start-page: 160 year: 2009 end-page: 178 ident: bib0015 article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements publication-title: Strain – volume: 55 start-page: 9 year: 2015 end-page: 25 ident: bib0013 article-title: Camera system resolution and its influence on digital image correlation publication-title: Exp Mech – volume: 30 start-page: 369 year: 1979 end-page: 378 ident: bib0031 article-title: A branch and bound method for the multiconstraint zero-one knapsack problem publication-title: J Oper Res Soc – volume: 71 start-page: 9 year: 2015 end-page: 19 ident: bib0027 article-title: Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation publication-title: Opt Lasers Eng – volume: 20 start-page: 152 year: 2009 end-page: 154 ident: bib0003 article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review publication-title: Meas Sci Technol – ident: 10.1016/j.optlaseng.2020.106100_bib0030 doi: 10.1007/978-3-540-68279-0 – volume: 98 start-page: 153 year: 2017 ident: 10.1016/j.optlaseng.2020.106100_bib0005 article-title: Digital image correlation in polar coordinate robust to a large rotation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2017.06.019 – volume: 30 start-page: 369 year: 1979 ident: 10.1016/j.optlaseng.2020.106100_bib0031 article-title: A branch and bound method for the multiconstraint zero-one knapsack problem publication-title: J Oper Res Soc doi: 10.1057/jors.1979.78 – volume: 44 start-page: 1132 year: 2006 ident: 10.1016/j.optlaseng.2020.106100_bib0010 article-title: Quality assessment of speckle patterns for digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2005.10.004 – volume: 55 start-page: 1575 year: 2015 ident: 10.1016/j.optlaseng.2020.106100_bib0011 article-title: Effects of various shape functions and subset size in local deformation measurements using DIC publication-title: Exp Mech doi: 10.1007/s11340-015-0054-9 – volume: 36 start-page: 3070 year: 2011 ident: 10.1016/j.optlaseng.2020.106100_bib0004 article-title: Accuracy enhancement of digital image correlation with B-spline interpolation publication-title: Opt Lett doi: 10.1364/OL.36.003070 – volume: 45 start-page: 967 year: 2007 ident: 10.1016/j.optlaseng.2020.106100_bib0029 article-title: Study of optimal subset size in digital image correlation of speckle pattern images publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2007.01.012 – ident: 10.1016/j.optlaseng.2020.106100_bib0033 – start-page: 39 year: 2000 ident: 10.1016/j.optlaseng.2020.106100_bib0008 article-title: Systematic errors in digital image correlation caused by intensity interpolation publication-title: Opt Eng – volume: 49 year: 1965 ident: 10.1016/j.optlaseng.2020.106100_bib0032 – volume: 20 start-page: 152 year: 2009 ident: 10.1016/j.optlaseng.2020.106100_bib0003 article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review publication-title: Meas Sci Technol doi: 10.1088/0957-0233/20/6/062001 – volume: 22 year: 2011 ident: 10.1016/j.optlaseng.2020.106100_bib0022 article-title: Small-scale patterning methods for digital image correlation under scanning electron microscopy publication-title: Meas Sci Technol doi: 10.1088/0957-0233/22/12/125501 – start-page: 26 year: 2015 ident: 10.1016/j.optlaseng.2020.106100_bib0021 article-title: A method to transfer speckle patterns for digital image correlation publication-title: Meas Sci Technol – volume: 48 start-page: 469 year: 2010 ident: 10.1016/j.optlaseng.2020.106100_bib0017 article-title: Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.08.010 – volume: 91 start-page: 62 year: 2017 ident: 10.1016/j.optlaseng.2020.106100_bib0020 article-title: Assessment of speckle-pattern quality in digital image correlation based on gray intensity and speckle morphology publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.11.001 – volume: 23 start-page: 25403 year: 2012 ident: 10.1016/j.optlaseng.2020.106100_bib0016 article-title: The systematic error in digital image correlation induced by self-heating of a digital camera publication-title: Meas Sci Technol doi: 10.1088/0957-0233/23/2/025403 – volume: 4 start-page: 317 year: 2012 ident: 10.1016/j.optlaseng.2020.106100_bib0026 article-title: Recent progress in digital image correlation publication-title: Conf Proc Soc Exp Mech Ser – volume: 25 start-page: 5401 year: 2014 ident: 10.1016/j.optlaseng.2020.106100_bib0023 article-title: Characterization of SEM speckle pattern marking and imaging distortion by digital image correlation publication-title: Meas Sci Technol doi: 10.1088/0957-0233/25/1/015401 – volume: 91 start-page: 73 year: 2017 ident: 10.1016/j.optlaseng.2020.106100_bib0025 article-title: Increasing accuracy and precision of digital image correlation through pattern optimization publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.11.005 – ident: 10.1016/j.optlaseng.2020.106100_bib0002 doi: 10.1007/978-0-387-78747-3 – volume: 43 start-page: 9 year: 2011 ident: 10.1016/j.optlaseng.2020.106100_bib0018 article-title: Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2010.04.010 – volume: 17 start-page: 1615 year: 2006 ident: 10.1016/j.optlaseng.2020.106100_bib0007 article-title: Performance of sub-pixel registration algorithms in digital image correlation publication-title: Meas Sci Technol doi: 10.1088/0957-0233/17/6/045 – volume: 60 start-page: 32 year: 2014 ident: 10.1016/j.optlaseng.2020.106100_bib0019 article-title: Application of the mean intensity of the second derivative in evaluating the speckle patterns in digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.03.015 – volume: 45 start-page: 160 year: 2009 ident: 10.1016/j.optlaseng.2020.106100_bib0015 article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements publication-title: Strain doi: 10.1111/j.1475-1305.2008.00592.x – ident: 10.1016/j.optlaseng.2020.106100_bib0001 doi: 10.1016/0262-8856(83)90064-1 – volume: 47 start-page: 728 year: 2009 ident: 10.1016/j.optlaseng.2020.106100_bib0028 article-title: Parameter choice for optimized digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2008.10.015 – volume: 23 start-page: 19242 year: 2015 ident: 10.1016/j.optlaseng.2020.106100_bib0006 article-title: Fourier-based interpolation bias prediction in digital image correlation publication-title: Opt Express doi: 10.1364/OE.23.019242 – volume: 128 start-page: 23 year: 2018 ident: 10.1016/j.optlaseng.2020.106100_bib0012 article-title: Three-dimensional digital image correlation with improved efficiency and accuracy publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2018.06.022 – volume: 71 start-page: 9 year: 2015 ident: 10.1016/j.optlaseng.2020.106100_bib0027 article-title: Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2015.03.005 – volume: 57 start-page: 884 year: 2018 ident: 10.1016/j.optlaseng.2020.106100_bib0024 article-title: Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency publication-title: Appl Opt doi: 10.1364/AO.57.000884 – volume: 47 start-page: 701 year: 2007 ident: 10.1016/j.optlaseng.2020.106100_bib0014 article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images publication-title: Exp Mech doi: 10.1007/s11340-006-9005-9 – volume: 86 start-page: 132 year: 2016 ident: 10.1016/j.optlaseng.2020.106100_bib0009 article-title: Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.05.019 – volume: 55 start-page: 9 year: 2015 ident: 10.1016/j.optlaseng.2020.106100_bib0013 article-title: Camera system resolution and its influence on digital image correlation publication-title: Exp Mech doi: 10.1007/s11340-014-9886-y |
| SSID | ssj0016411 |
| Score | 2.3540518 |
| Snippet | •A mathematical model for finding the subset with the largest sum of square of subset intensity gradients is established.•The optimized speckle patterns for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106100 |
| SubjectTerms | Digital image correlation Integer programming method Speckle pattern optimization |
| Title | Optimization of speckle pattern based on integer programming method |
| URI | https://dx.doi.org/10.1016/j.optlaseng.2020.106100 |
| Volume | 133 |
| WOSCitedRecordID | wos000538096000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0143-8166 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016411 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagBQkOCAqI8pIP3KqsvHESO9yqqhUgVB4qKOIS5WFvW9rs0k1Q-ffMxJPHQqWlBy7RyhvbSebL5PN4Hoy98mMRWhtaL8x96QWxmcI7Z3yvzG0plc6sbaPev75Xh4c6SeKPZFVatuUEVFXpy8t48V9FDW0gbAydvYa4-0GhAX6D0OEIYofjPwn-AyiBc4quRCqIsZTfzwxmUEXj3w5-t8qd1sOxNhjzSy5a52g0cAWlx4wVh6NEzkC0MdwXk4wMWQw7iSUNSisBtM1-ZUPzZ6fWXHvTI_HbMbkCHzQ_Tkanf2oy8gKAKWYUpkZGCViBdu5tg51SergluaJopRypSlyLtklK_9bizqBwOpkvaryzajbBOSZDj9W82X98z3ovw86B7TTtB0pxoNQNdJNt-iqMQRVu7r7dT971m09RMHVlLOkeVtwCr7ymq0nNiKgc3Wf3aIXBdx0yHrAbptpid0d5J7fY7dbvt1g-ZHtjtPC55YQWTmjhLVo4_Edo4SO0cIeWR-zLwf7R3huP6mp4hZyGtSdN6KtMxNKIQAlViijzrdEC1s5I13SkCq1kZOCdhfPyOA-B1EZ5LIppWOogl4_ZRjWvzBPGdRFlAjNZWNzy920misgGEjikzbSQwTaLugeTFpR0HmufnKVrhLPNRN9x4fKurO_yunvyKdFHRwtTwNW6zk-vP98zdmeA_nO2UV805gW7VfysT5YXLwlUvwH1XpX- |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+speckle+pattern+based+on+integer+programming+method&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Xu%2C+Xiangyang&rft.au=Ren%2C+Xiangyun&rft.au=Zhong%2C+Fuqiang&rft.au=Quan%2C+Chenggen&rft.date=2020-10-01&rft.issn=0143-8166&rft.volume=133&rft.spage=106100&rft_id=info:doi/10.1016%2Fj.optlaseng.2020.106100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlaseng_2020_106100 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |