Optimization of speckle pattern based on integer programming method

•A mathematical model for finding the subset with the largest sum of square of subset intensity gradients is established.•The optimized speckle patterns for digital image correlation are produced with the integer programming method.•Both the simulations and experiments show that the proposed optimiz...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics and lasers in engineering Ročník 133; s. 106100
Hlavní autori: Xu, Xiangyang, Ren, Xiangyun, Zhong, Fuqiang, Quan, Chenggen, He, Xiaoyuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2020
Predmet:
ISSN:0143-8166
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A mathematical model for finding the subset with the largest sum of square of subset intensity gradients is established.•The optimized speckle patterns for digital image correlation are produced with the integer programming method.•Both the simulations and experiments show that the proposed optimized speckle patterns have a stronger anti-nose ability than random patterns. The performance of digital image correlation (DIC) method heavily depends on the quality of the speckle pattern. Extensive studies have been conducted to evaluate the speckle pattern, in order to reduce the errors of DIC. It is generally understood that the sum of square of subset intensity gradients (SSSIG) is the most relevant metric to the accuracy of the DIC; and the higher SSSIG indicates the better quality of the speckle pattern. However, there are few works on the optimization of the speckle pattern. In this work, we propose an integer programming method (IPM) to obtain the subset having the highest SSSIG. The speckle pattern derived from the proposed IPM has a relatively high SSSIG and has a strong anti-noise capability. The regular patterns (e.g. checkerboard-type) can also be avoided by the proposed method. Both the simulation and experiment have been conducted to validate the effectiveness of the proposed method. The simulation results show that the standard deviation (STD) of the displacements obtained by using the proposed speckle pattern in this study is reduced by 25.2% and 10.7%, respectively, comparing with the results obtained by the conventional random speckle pattern and the optimized speckle pattern in our earlier work. In addition, the experimental results from a tensile testing also agreed to the results from the simulation.
AbstractList •A mathematical model for finding the subset with the largest sum of square of subset intensity gradients is established.•The optimized speckle patterns for digital image correlation are produced with the integer programming method.•Both the simulations and experiments show that the proposed optimized speckle patterns have a stronger anti-nose ability than random patterns. The performance of digital image correlation (DIC) method heavily depends on the quality of the speckle pattern. Extensive studies have been conducted to evaluate the speckle pattern, in order to reduce the errors of DIC. It is generally understood that the sum of square of subset intensity gradients (SSSIG) is the most relevant metric to the accuracy of the DIC; and the higher SSSIG indicates the better quality of the speckle pattern. However, there are few works on the optimization of the speckle pattern. In this work, we propose an integer programming method (IPM) to obtain the subset having the highest SSSIG. The speckle pattern derived from the proposed IPM has a relatively high SSSIG and has a strong anti-noise capability. The regular patterns (e.g. checkerboard-type) can also be avoided by the proposed method. Both the simulation and experiment have been conducted to validate the effectiveness of the proposed method. The simulation results show that the standard deviation (STD) of the displacements obtained by using the proposed speckle pattern in this study is reduced by 25.2% and 10.7%, respectively, comparing with the results obtained by the conventional random speckle pattern and the optimized speckle pattern in our earlier work. In addition, the experimental results from a tensile testing also agreed to the results from the simulation.
ArticleNumber 106100
Author Ren, Xiangyun
Quan, Chenggen
Zhong, Fuqiang
He, Xiaoyuan
Xu, Xiangyang
Author_xml – sequence: 1
  givenname: Xiangyang
  surname: Xu
  fullname: Xu, Xiangyang
  organization: Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing 211189, China
– sequence: 2
  givenname: Xiangyun
  surname: Ren
  fullname: Ren, Xiangyun
  organization: Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing 211189, China
– sequence: 3
  givenname: Fuqiang
  surname: Zhong
  fullname: Zhong, Fuqiang
  organization: Department of Mechanical Engineering, National University of Singapore, Singapore
– sequence: 4
  givenname: Chenggen
  surname: Quan
  fullname: Quan, Chenggen
  organization: Department of Mechanical Engineering, National University of Singapore, Singapore
– sequence: 5
  givenname: Xiaoyuan
  surname: He
  fullname: He, Xiaoyuan
  email: mmhxy@seu.edu.cn
  organization: Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing 211189, China
BookMark eNqNj71OwzAUhT0UibbwDPgFUuw4sZ2Boar4kyp1gdlynJvgkNiRbSHB05NSxMAC05XOPd-RvhVaOO8AoStKNpRQft1v_JQGHcF1m5zkx5RTQhZoSWjBMkk5P0erGHsytwtKl2h3mJId7YdO1jvsWxwnMK8D4EmnBMHhel5r8PyzLkEHAU_Bd0GPo3UdHiG9-OYCnbV6iHD5fdfo-e72afeQ7Q_3j7vtPjOMliljUOZCk4oBKQQRDeE6b0ESKWjOOZVcGCkYBwH53KurupQV43VFDC0bWdRsjcRp1wQfY4BWTcGOOrwrStTRX_Xqx18d_dXJfyZvfpHGpi_lFLQd_sFvTzzMem8WgorGgjPQ2AAmqcbbPzc-ASJMgI0
CitedBy_id crossref_primary_10_1016_j_measurement_2021_109082
crossref_primary_10_1364_AO_540467
crossref_primary_10_1016_j_measurement_2022_112366
crossref_primary_10_1016_j_measurement_2020_108570
crossref_primary_10_1088_1361_6501_ad8941
crossref_primary_10_1364_AO_465070
crossref_primary_10_1016_j_istruc_2025_109306
crossref_primary_10_1088_1361_6501_abdf9f
crossref_primary_10_1364_AO_423269
crossref_primary_10_1016_j_optcom_2021_127397
crossref_primary_10_1016_j_engstruct_2022_114282
crossref_primary_10_1364_AO_423350
crossref_primary_10_1016_j_measurement_2023_113590
Cites_doi 10.1007/978-3-540-68279-0
10.1016/j.optlaseng.2017.06.019
10.1057/jors.1979.78
10.1016/j.optlaseng.2005.10.004
10.1007/s11340-015-0054-9
10.1364/OL.36.003070
10.1016/j.optlaseng.2007.01.012
10.1088/0957-0233/20/6/062001
10.1088/0957-0233/22/12/125501
10.1016/j.optlaseng.2009.08.010
10.1016/j.optlaseng.2016.11.001
10.1088/0957-0233/23/2/025403
10.1088/0957-0233/25/1/015401
10.1016/j.optlaseng.2016.11.005
10.1007/978-0-387-78747-3
10.1016/j.optlastec.2010.04.010
10.1088/0957-0233/17/6/045
10.1016/j.optlaseng.2014.03.015
10.1111/j.1475-1305.2008.00592.x
10.1016/0262-8856(83)90064-1
10.1016/j.optlaseng.2008.10.015
10.1364/OE.23.019242
10.1016/j.measurement.2018.06.022
10.1016/j.optlaseng.2015.03.005
10.1364/AO.57.000884
10.1007/s11340-006-9005-9
10.1016/j.optlaseng.2016.05.019
10.1007/s11340-014-9886-y
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlaseng.2020.106100
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_optlaseng_2020_106100
S0143816619319566
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABDPE
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSH
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c315t-3e527a093e04707d06a2fe808712661867c8736e7e227ab9b58936b90c15d84b3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538096000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Sat Nov 29 07:24:21 EST 2025
Tue Nov 18 22:36:35 EST 2025
Sun Apr 06 06:54:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Speckle pattern optimization
Digital image correlation
Integer programming method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-3e527a093e04707d06a2fe808712661867c8736e7e227ab9b58936b90c15d84b3
ParticipantIDs crossref_primary_10_1016_j_optlaseng_2020_106100
crossref_citationtrail_10_1016_j_optlaseng_2020_106100
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2020_106100
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Optics and lasers in engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhong, Indurkar, Quan (bib0012) 2018; 128
Hua, Xie, Wang, Hu, Chen, Zhang (bib0018) 2011; 43
Xu, Su, Cai, Cheng, Zhang (bib0011) 2015; 55
Reu, Sweatt, Miller, Fleming (bib0013) 2015; 55
Pan, Qian, Xie, Asundi (bib0003) 2009; 20
Pan, Lu, Xie (bib0017) 2010; 48
Yu, Guo, Xia, Yan, Zhang, He (bib0019) 2014; 60
Bomarito, Hochhalter, Ruggles, Cannon (bib0025) 2017; 91
Ma, Pang, Ma (bib0016) 2012; 23
Lecompte, Smits, Bossuyt, Sol, Vantomme, Van (bib0010) 2006; 44
Schreier, Braasch, Sutton (bib0008) 2000
Pan, Xie, Xu, Dai (bib0007) 2006; 17
Luu, Wang, Vo, Hoang, Ma (bib0004) 2011; 36
Vajda, Chung (bib0032) 1965; 49
Park, Yoon, Kwon, Park (bib0020) 2017; 91
Yaofeng, Pang (bib0029) 2007; 45
Jünger M., Naddef D., Pulleyblank W.R., Rinaldi G., Liebling T.M., Nemhauser G.L., et al. 50 years of integer programming 1958-2008: from the early years to the state-of-the-art. 2010. 10.1007/978-3-540-68279-0.
Schreier H., Orteu J.J., Sutton M.A.Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. 2009. doi:10.1007/978-0-387-78747-3.
Chen, Shao, Xu, He (bib0024) 2018; 57
Pan, Wang (bib0026) 2012; 4
Wang, Sutton, Bruck, Schreier (bib0015) 2009; 45
Su, Zhang, Gao, Xu, Wu (bib0006) 2015; 23
Zhong, Quan (bib0005) 2017; 98
Shih (bib0031) 1979; 30
.
Shao, Dai, He (bib0027) 2015; 71
Wang, Li, Tong, Ruan (bib0014) 2007; 47
Sutton M., Wolters W., Peters W., Ranson W., McNeill S.Determination of displacements using an improved digital correlation method. vol. 1. 1983. doi:10.1016/0262-8856(83)90064-1.
Su, Zhang, Xu, Gao (bib0009) 2016; 86
Chen, Quan, Zhu, He (bib0021) 2015
Kammers, Daly (bib0022) 2011; 22
Triconnet, Derrien, Hild, Baptiste (bib0028) 2009; 47
Guery, Latourte, Hild, Roux (bib0023) 2014; 25
Correlated Solutions I. Correlated Solutions – VIC-3D2018.
Pan (10.1016/j.optlaseng.2020.106100_bib0017) 2010; 48
Pan (10.1016/j.optlaseng.2020.106100_bib0007) 2006; 17
10.1016/j.optlaseng.2020.106100_bib0002
10.1016/j.optlaseng.2020.106100_bib0001
Wang (10.1016/j.optlaseng.2020.106100_bib0014) 2007; 47
Wang (10.1016/j.optlaseng.2020.106100_bib0015) 2009; 45
Su (10.1016/j.optlaseng.2020.106100_bib0009) 2016; 86
Reu (10.1016/j.optlaseng.2020.106100_bib0013) 2015; 55
Shao (10.1016/j.optlaseng.2020.106100_bib0027) 2015; 71
Su (10.1016/j.optlaseng.2020.106100_bib0006) 2015; 23
Zhong (10.1016/j.optlaseng.2020.106100_bib0012) 2018; 128
Pan (10.1016/j.optlaseng.2020.106100_bib0003) 2009; 20
Bomarito (10.1016/j.optlaseng.2020.106100_bib0025) 2017; 91
Lecompte (10.1016/j.optlaseng.2020.106100_bib0010) 2006; 44
Guery (10.1016/j.optlaseng.2020.106100_bib0023) 2014; 25
Vajda (10.1016/j.optlaseng.2020.106100_bib0032) 1965; 49
Pan (10.1016/j.optlaseng.2020.106100_bib0026) 2012; 4
Shih (10.1016/j.optlaseng.2020.106100_bib0031) 1979; 30
Yu (10.1016/j.optlaseng.2020.106100_bib0019) 2014; 60
Chen (10.1016/j.optlaseng.2020.106100_bib0024) 2018; 57
10.1016/j.optlaseng.2020.106100_bib0033
Triconnet (10.1016/j.optlaseng.2020.106100_bib0028) 2009; 47
Hua (10.1016/j.optlaseng.2020.106100_bib0018) 2011; 43
Luu (10.1016/j.optlaseng.2020.106100_bib0004) 2011; 36
Ma (10.1016/j.optlaseng.2020.106100_bib0016) 2012; 23
Schreier (10.1016/j.optlaseng.2020.106100_bib0008) 2000
10.1016/j.optlaseng.2020.106100_bib0030
Chen (10.1016/j.optlaseng.2020.106100_bib0021) 2015
Zhong (10.1016/j.optlaseng.2020.106100_bib0005) 2017; 98
Xu (10.1016/j.optlaseng.2020.106100_bib0011) 2015; 55
Yaofeng (10.1016/j.optlaseng.2020.106100_bib0029) 2007; 45
Park (10.1016/j.optlaseng.2020.106100_bib0020) 2017; 91
Kammers (10.1016/j.optlaseng.2020.106100_bib0022) 2011; 22
References_xml – reference: Sutton M., Wolters W., Peters W., Ranson W., McNeill S.Determination of displacements using an improved digital correlation method. vol. 1. 1983. doi:10.1016/0262-8856(83)90064-1.
– volume: 47
  start-page: 701
  year: 2007
  end-page: 707
  ident: bib0014
  article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images
  publication-title: Exp Mech
– volume: 128
  start-page: 23
  year: 2018
  end-page: 33
  ident: bib0012
  article-title: Three-dimensional digital image correlation with improved efficiency and accuracy
  publication-title: Meas J Int Meas Confed
– volume: 47
  start-page: 728
  year: 2009
  end-page: 737
  ident: bib0028
  article-title: Parameter choice for optimized digital image correlation
  publication-title: Opt Lasers Eng
– volume: 48
  start-page: 469
  year: 2010
  end-page: 477
  ident: bib0017
  article-title: Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation
  publication-title: Opt Lasers Eng
– volume: 91
  start-page: 62
  year: 2017
  end-page: 72
  ident: bib0020
  article-title: Assessment of speckle-pattern quality in digital image correlation based on gray intensity and speckle morphology
  publication-title: Opt Lasers Eng
– volume: 23
  start-page: 25403
  year: 2012
  ident: bib0016
  article-title: The systematic error in digital image correlation induced by self-heating of a digital camera
  publication-title: Meas Sci Technol
– volume: 43
  start-page: 9
  year: 2011
  end-page: 13
  ident: bib0018
  article-title: Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation
  publication-title: Opt Laser Technol
– reference: Jünger M., Naddef D., Pulleyblank W.R., Rinaldi G., Liebling T.M., Nemhauser G.L., et al. 50 years of integer programming 1958-2008: from the early years to the state-of-the-art. 2010. 10.1007/978-3-540-68279-0.
– volume: 23
  start-page: 19242
  year: 2015
  ident: bib0006
  article-title: Fourier-based interpolation bias prediction in digital image correlation
  publication-title: Opt Express
– start-page: 26
  year: 2015
  ident: bib0021
  article-title: A method to transfer speckle patterns for digital image correlation
  publication-title: Meas Sci Technol
– volume: 25
  start-page: 5401
  year: 2014
  ident: bib0023
  article-title: Characterization of SEM speckle pattern marking and imaging distortion by digital image correlation
  publication-title: Meas Sci Technol
– reference: Schreier H., Orteu J.J., Sutton M.A.Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. 2009. doi:10.1007/978-0-387-78747-3.
– volume: 4
  start-page: 317
  year: 2012
  end-page: 326
  ident: bib0026
  article-title: Recent progress in digital image correlation
  publication-title: Conf Proc Soc Exp Mech Ser
– volume: 98
  start-page: 153
  year: 2017
  end-page: 158
  ident: bib0005
  article-title: Digital image correlation in polar coordinate robust to a large rotation
  publication-title: Opt Lasers Eng
– volume: 55
  start-page: 1575
  year: 2015
  end-page: 1590
  ident: bib0011
  article-title: Effects of various shape functions and subset size in local deformation measurements using DIC
  publication-title: Exp Mech
– volume: 86
  start-page: 132
  year: 2016
  end-page: 142
  ident: bib0009
  article-title: Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors
  publication-title: Opt Lasers Eng
– volume: 22
  year: 2011
  ident: bib0022
  article-title: Small-scale patterning methods for digital image correlation under scanning electron microscopy
  publication-title: Meas Sci Technol
– volume: 57
  start-page: 884
  year: 2018
  ident: bib0024
  article-title: Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency
  publication-title: Appl Opt
– volume: 45
  start-page: 967
  year: 2007
  end-page: 974
  ident: bib0029
  article-title: Study of optimal subset size in digital image correlation of speckle pattern images
  publication-title: Opt Lasers Eng
– volume: 44
  start-page: 1132
  year: 2006
  end-page: 1145
  ident: bib0010
  article-title: Quality assessment of speckle patterns for digital image correlation
  publication-title: Opt Lasers Eng
– volume: 60
  start-page: 32
  year: 2014
  end-page: 37
  ident: bib0019
  article-title: Application of the mean intensity of the second derivative in evaluating the speckle patterns in digital image correlation
  publication-title: Opt Lasers Eng
– start-page: 39
  year: 2000
  ident: bib0008
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
– volume: 91
  start-page: 73
  year: 2017
  end-page: 85
  ident: bib0025
  article-title: Increasing accuracy and precision of digital image correlation through pattern optimization
  publication-title: Opt Lasers Eng
– reference: .
– volume: 49
  year: 1965
  ident: bib0032
  publication-title: Linear programming
– reference: Correlated Solutions I. Correlated Solutions – VIC-3D2018.
– volume: 17
  start-page: 1615
  year: 2006
  end-page: 1621
  ident: bib0007
  article-title: Performance of sub-pixel registration algorithms in digital image correlation
  publication-title: Meas Sci Technol
– volume: 36
  start-page: 3070
  year: 2011
  ident: bib0004
  article-title: Accuracy enhancement of digital image correlation with B-spline interpolation
  publication-title: Opt Lett
– volume: 45
  start-page: 160
  year: 2009
  end-page: 178
  ident: bib0015
  article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements
  publication-title: Strain
– volume: 55
  start-page: 9
  year: 2015
  end-page: 25
  ident: bib0013
  article-title: Camera system resolution and its influence on digital image correlation
  publication-title: Exp Mech
– volume: 30
  start-page: 369
  year: 1979
  end-page: 378
  ident: bib0031
  article-title: A branch and bound method for the multiconstraint zero-one knapsack problem
  publication-title: J Oper Res Soc
– volume: 71
  start-page: 9
  year: 2015
  end-page: 19
  ident: bib0027
  article-title: Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation
  publication-title: Opt Lasers Eng
– volume: 20
  start-page: 152
  year: 2009
  end-page: 154
  ident: bib0003
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
– ident: 10.1016/j.optlaseng.2020.106100_bib0030
  doi: 10.1007/978-3-540-68279-0
– volume: 98
  start-page: 153
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106100_bib0005
  article-title: Digital image correlation in polar coordinate robust to a large rotation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2017.06.019
– volume: 30
  start-page: 369
  year: 1979
  ident: 10.1016/j.optlaseng.2020.106100_bib0031
  article-title: A branch and bound method for the multiconstraint zero-one knapsack problem
  publication-title: J Oper Res Soc
  doi: 10.1057/jors.1979.78
– volume: 44
  start-page: 1132
  year: 2006
  ident: 10.1016/j.optlaseng.2020.106100_bib0010
  article-title: Quality assessment of speckle patterns for digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2005.10.004
– volume: 55
  start-page: 1575
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106100_bib0011
  article-title: Effects of various shape functions and subset size in local deformation measurements using DIC
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-0054-9
– volume: 36
  start-page: 3070
  year: 2011
  ident: 10.1016/j.optlaseng.2020.106100_bib0004
  article-title: Accuracy enhancement of digital image correlation with B-spline interpolation
  publication-title: Opt Lett
  doi: 10.1364/OL.36.003070
– volume: 45
  start-page: 967
  year: 2007
  ident: 10.1016/j.optlaseng.2020.106100_bib0029
  article-title: Study of optimal subset size in digital image correlation of speckle pattern images
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2007.01.012
– ident: 10.1016/j.optlaseng.2020.106100_bib0033
– start-page: 39
  year: 2000
  ident: 10.1016/j.optlaseng.2020.106100_bib0008
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
– volume: 49
  year: 1965
  ident: 10.1016/j.optlaseng.2020.106100_bib0032
– volume: 20
  start-page: 152
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106100_bib0003
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/20/6/062001
– volume: 22
  year: 2011
  ident: 10.1016/j.optlaseng.2020.106100_bib0022
  article-title: Small-scale patterning methods for digital image correlation under scanning electron microscopy
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/22/12/125501
– start-page: 26
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106100_bib0021
  article-title: A method to transfer speckle patterns for digital image correlation
  publication-title: Meas Sci Technol
– volume: 48
  start-page: 469
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106100_bib0017
  article-title: Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.08.010
– volume: 91
  start-page: 62
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106100_bib0020
  article-title: Assessment of speckle-pattern quality in digital image correlation based on gray intensity and speckle morphology
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.11.001
– volume: 23
  start-page: 25403
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106100_bib0016
  article-title: The systematic error in digital image correlation induced by self-heating of a digital camera
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/23/2/025403
– volume: 4
  start-page: 317
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106100_bib0026
  article-title: Recent progress in digital image correlation
  publication-title: Conf Proc Soc Exp Mech Ser
– volume: 25
  start-page: 5401
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106100_bib0023
  article-title: Characterization of SEM speckle pattern marking and imaging distortion by digital image correlation
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/25/1/015401
– volume: 91
  start-page: 73
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106100_bib0025
  article-title: Increasing accuracy and precision of digital image correlation through pattern optimization
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.11.005
– ident: 10.1016/j.optlaseng.2020.106100_bib0002
  doi: 10.1007/978-0-387-78747-3
– volume: 43
  start-page: 9
  year: 2011
  ident: 10.1016/j.optlaseng.2020.106100_bib0018
  article-title: Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2010.04.010
– volume: 17
  start-page: 1615
  year: 2006
  ident: 10.1016/j.optlaseng.2020.106100_bib0007
  article-title: Performance of sub-pixel registration algorithms in digital image correlation
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/17/6/045
– volume: 60
  start-page: 32
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106100_bib0019
  article-title: Application of the mean intensity of the second derivative in evaluating the speckle patterns in digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.03.015
– volume: 45
  start-page: 160
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106100_bib0015
  article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2008.00592.x
– ident: 10.1016/j.optlaseng.2020.106100_bib0001
  doi: 10.1016/0262-8856(83)90064-1
– volume: 47
  start-page: 728
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106100_bib0028
  article-title: Parameter choice for optimized digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2008.10.015
– volume: 23
  start-page: 19242
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106100_bib0006
  article-title: Fourier-based interpolation bias prediction in digital image correlation
  publication-title: Opt Express
  doi: 10.1364/OE.23.019242
– volume: 128
  start-page: 23
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106100_bib0012
  article-title: Three-dimensional digital image correlation with improved efficiency and accuracy
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2018.06.022
– volume: 71
  start-page: 9
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106100_bib0027
  article-title: Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2015.03.005
– volume: 57
  start-page: 884
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106100_bib0024
  article-title: Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency
  publication-title: Appl Opt
  doi: 10.1364/AO.57.000884
– volume: 47
  start-page: 701
  year: 2007
  ident: 10.1016/j.optlaseng.2020.106100_bib0014
  article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images
  publication-title: Exp Mech
  doi: 10.1007/s11340-006-9005-9
– volume: 86
  start-page: 132
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106100_bib0009
  article-title: Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.05.019
– volume: 55
  start-page: 9
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106100_bib0013
  article-title: Camera system resolution and its influence on digital image correlation
  publication-title: Exp Mech
  doi: 10.1007/s11340-014-9886-y
SSID ssj0016411
Score 2.3540518
Snippet •A mathematical model for finding the subset with the largest sum of square of subset intensity gradients is established.•The optimized speckle patterns for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106100
SubjectTerms Digital image correlation
Integer programming method
Speckle pattern optimization
Title Optimization of speckle pattern based on integer programming method
URI https://dx.doi.org/10.1016/j.optlaseng.2020.106100
Volume 133
WOSCitedRecordID wos000538096000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016411
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagBQkOCAqI8pIP3KqsvHESO9yqqhUgVB4qKOIS5WFvW9rs0k1Q-ffMxJPHQqWlBy7RyhvbSebL5PN4Hoy98mMRWhtaL8x96QWxmcI7Z3yvzG0plc6sbaPev75Xh4c6SeKPZFVatuUEVFXpy8t48V9FDW0gbAydvYa4-0GhAX6D0OEIYofjPwn-AyiBc4quRCqIsZTfzwxmUEXj3w5-t8qd1sOxNhjzSy5a52g0cAWlx4wVh6NEzkC0MdwXk4wMWQw7iSUNSisBtM1-ZUPzZ6fWXHvTI_HbMbkCHzQ_Tkanf2oy8gKAKWYUpkZGCViBdu5tg51SergluaJopRypSlyLtklK_9bizqBwOpkvaryzajbBOSZDj9W82X98z3ovw86B7TTtB0pxoNQNdJNt-iqMQRVu7r7dT971m09RMHVlLOkeVtwCr7ymq0nNiKgc3Wf3aIXBdx0yHrAbptpid0d5J7fY7dbvt1g-ZHtjtPC55YQWTmjhLVo4_Edo4SO0cIeWR-zLwf7R3huP6mp4hZyGtSdN6KtMxNKIQAlViijzrdEC1s5I13SkCq1kZOCdhfPyOA-B1EZ5LIppWOogl4_ZRjWvzBPGdRFlAjNZWNzy920misgGEjikzbSQwTaLugeTFpR0HmufnKVrhLPNRN9x4fKurO_yunvyKdFHRwtTwNW6zk-vP98zdmeA_nO2UV805gW7VfysT5YXLwlUvwH1XpX-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+speckle+pattern+based+on+integer+programming+method&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Xu%2C+Xiangyang&rft.au=Ren%2C+Xiangyun&rft.au=Zhong%2C+Fuqiang&rft.au=Quan%2C+Chenggen&rft.date=2020-10-01&rft.issn=0143-8166&rft.volume=133&rft.spage=106100&rft_id=info:doi/10.1016%2Fj.optlaseng.2020.106100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlaseng_2020_106100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon