Exponentiated Gradient versus Gradient Descent for Linear Predictors

We consider two algorithms for on-line prediction based on a linear model. The algorithms are the well-known gradient descent (GD) algorithm and a new algorithm, which we call EG ±. They both maintain a weight vector using simple updates. For the GD algorithm, the update is based on subtracting the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information and computation Ročník 132; číslo 1; s. 1 - 63
Hlavní autoři: Kivinen, Jyrki, Warmuth, Manfred K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 10.01.1997
Elsevier
Témata:
ISSN:0890-5401, 1090-2651
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider two algorithms for on-line prediction based on a linear model. The algorithms are the well-known gradient descent (GD) algorithm and a new algorithm, which we call EG ±. They both maintain a weight vector using simple updates. For the GD algorithm, the update is based on subtracting the gradient of the squared error made on a prediction. The EG ±algorithm uses the components of the gradient in the exponents of factors that are used in updating the weight vector multiplicatively. We present worst-case loss bounds for EG ±and compare them to previously known bounds for the GD algorithm. The bounds suggest that the losses of the algorithms are in general incomparable, but EG ±has a much smaller loss if only few components of the input are relevant for the predictions. We have performed experiments which show that our worst-case upper bounds are quite tight already on simple artificial data.
ISSN:0890-5401
1090-2651
DOI:10.1006/inco.1996.2612