AutoRevDock: An open‐source toolkit for scalable reverse docking
Reverse docking is a pivotal computational strategy for drug repurposing and polypharmacology studies, yet existing tools often suffer from limitations in throughput, accuracy, and reliance on centralized servers. To overcome these challenges, we present AutoRevDock, an open‐source Python toolkit de...
Saved in:
| Published in: | Protein science Vol. 34; no. 11; pp. e70358 - n/a |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2025
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0961-8368, 1469-896X, 1469-896X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Reverse docking is a pivotal computational strategy for drug repurposing and polypharmacology studies, yet existing tools often suffer from limitations in throughput, accuracy, and reliance on centralized servers. To overcome these challenges, we present AutoRevDock, an open‐source Python toolkit designed to streamline and enhance the reverse docking workflow. Key features include: (1) support for two established docking engines (AutoDock Vina and idock) with a hybrid scoring scheme (Vina_SFCT, combining the Vina score with a scoring function correction term (SFCT)); (2) pre‐processed target libraries covering the human proteome and DrugBank pharmacologically active targets; (3) support for custom target libraries and fully automated local execution. Benchmark evaluations demonstrate that idock operates over 40 times faster than AutoDock Vina. For multiple‐target drugs, Vina_SFCT outperforms the default scoring function in identifying biologically relevant targets. Furthermore, incorporating protein family information leads to increased hit rates, suggesting enhanced predictive power for real‐world applications. By combining robust methodology with user‐centric design, AutoRevDock offers a scalable solution for high‐throughput target fishing in drug discovery. The toolkit is freely available at https://github.com/AI4Bio-GuoLAB/AutoRevDock.git. |
|---|---|
| AbstractList | Reverse docking is a pivotal computational strategy for drug repurposing and polypharmacology studies, yet existing tools often suffer from limitations in throughput, accuracy, and reliance on centralized servers. To overcome these challenges, we present AutoRevDock, an open‐source Python toolkit designed to streamline and enhance the reverse docking workflow. Key features include: (1) support for two established docking engines (AutoDock Vina and idock) with a hybrid scoring scheme (Vina_SFCT, combining the Vina score with a scoring function correction term (SFCT)); (2) pre‐processed target libraries covering the human proteome and DrugBank pharmacologically active targets; (3) support for custom target libraries and fully automated local execution. Benchmark evaluations demonstrate that idock operates over 40 times faster than AutoDock Vina. For multiple‐target drugs, Vina_SFCT outperforms the default scoring function in identifying biologically relevant targets. Furthermore, incorporating protein family information leads to increased hit rates, suggesting enhanced predictive power for real‐world applications. By combining robust methodology with user‐centric design, AutoRevDock offers a scalable solution for high‐throughput target fishing in drug discovery. The toolkit is freely available at https://github.com/AI4Bio-GuoLAB/AutoRevDock.git. Reverse docking is a pivotal computational strategy for drug repurposing and polypharmacology studies, yet existing tools often suffer from limitations in throughput, accuracy, and reliance on centralized servers. To overcome these challenges, we present AutoRevDock, an open-source Python toolkit designed to streamline and enhance the reverse docking workflow. Key features include: (1) support for two established docking engines (AutoDock Vina and idock) with a hybrid scoring scheme (Vina_SFCT, combining the Vina score with a scoring function correction term (SFCT)); (2) pre-processed target libraries covering the human proteome and DrugBank pharmacologically active targets; (3) support for custom target libraries and fully automated local execution. Benchmark evaluations demonstrate that idock operates over 40 times faster than AutoDock Vina. For multiple-target drugs, Vina_SFCT outperforms the default scoring function in identifying biologically relevant targets. Furthermore, incorporating protein family information leads to increased hit rates, suggesting enhanced predictive power for real-world applications. By combining robust methodology with user-centric design, AutoRevDock offers a scalable solution for high-throughput target fishing in drug discovery. The toolkit is freely available at https://github.com/AI4Bio-GuoLAB/AutoRevDock.git.Reverse docking is a pivotal computational strategy for drug repurposing and polypharmacology studies, yet existing tools often suffer from limitations in throughput, accuracy, and reliance on centralized servers. To overcome these challenges, we present AutoRevDock, an open-source Python toolkit designed to streamline and enhance the reverse docking workflow. Key features include: (1) support for two established docking engines (AutoDock Vina and idock) with a hybrid scoring scheme (Vina_SFCT, combining the Vina score with a scoring function correction term (SFCT)); (2) pre-processed target libraries covering the human proteome and DrugBank pharmacologically active targets; (3) support for custom target libraries and fully automated local execution. Benchmark evaluations demonstrate that idock operates over 40 times faster than AutoDock Vina. For multiple-target drugs, Vina_SFCT outperforms the default scoring function in identifying biologically relevant targets. Furthermore, incorporating protein family information leads to increased hit rates, suggesting enhanced predictive power for real-world applications. By combining robust methodology with user-centric design, AutoRevDock offers a scalable solution for high-throughput target fishing in drug discovery. The toolkit is freely available at https://github.com/AI4Bio-GuoLAB/AutoRevDock.git. |
| Author | Guo, Jingjing Zheng, Liangzhen Mu, Yuguang Luo, Qing |
| Author_xml | – sequence: 1 givenname: Qing surname: Luo fullname: Luo, Qing organization: Macao Polytechnic University, Macao – sequence: 2 givenname: Yuguang surname: Mu fullname: Mu, Yuguang organization: School of Biological Sciences, Nanyang Technological University – sequence: 3 givenname: Liangzhen surname: Zheng fullname: Zheng, Liangzhen email: zhenglz@zelixir.com organization: Shenzhen Zelixir Biotech Company Ltd., Shenzhen – sequence: 4 givenname: Jingjing orcidid: 0000-0002-4632-4364 surname: Guo fullname: Guo, Jingjing email: jguo@mpu.edu.mo organization: Macao Polytechnic University, Macao |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41123282$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10M1Kw0AQB_BFKvZDD76ABLzoIe1udpPseqv1EwqVouAtbJKJpE2zdTep9OYj-Iw-iRtTPQhedlj4zTDz76NOqUpA6JjgIcHYG621GoaY-nwP9QgLhMtF8NxBPSwC4nIa8C7qG7PAGDPi0QPUZcRWj3s9dDmuKzWHzZVKlhfOuHTUGsrP9w-jap2AUylVLPPKyZR2TCILGRfgaNiANuCkticvXw7RfiYLA0e7OkBPN9ePkzt3Oru9n4ynbkKJz13gaRrGGIjwBZPgZSwD6YVZyhKfs5j5jMc4xMwXiWSQESlS0jxxnGaCxCkdoLN2rj33tQZTRavcJFAUsgRVm4h6ARUYUyosPf1DF_ae0m7XqCAkosEDdLJTdbyCNFrrfCX1NvpJx4LzFiRaGaMh-yUER03y9q-i7-StHbX2LS9g-z-MHuaztuMLhXKEgQ |
| Cites_doi | 10.1093/bib/bbae480 10.1021/ci300073m 10.1186/1471-2105-9-104 10.3389/fmolb.2023.1243970 10.1186/1471-2105-13-S17-S6 10.1093/nar/gks496 10.1016/j.jmgm.2010.05.008 10.1093/nar/gkl114 10.1080/17460441.2016.1190706 10.1038/s41586-024-07487-w 10.1093/bib/bbac051 10.1002/jcc.21334 10.1002/chem.202400871 10.1021/ci500130e 10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G 10.1002/jcc.21256 10.1002/pro.5167 10.1097/j.pbj.0000000000000095 10.18632/oncotarget.7015 10.1021/ci100062n |
| ContentType | Journal Article |
| Copyright | 2025 The Protein Society. 2025 The Protein Society |
| Copyright_xml | – notice: 2025 The Protein Society. – notice: 2025 The Protein Society |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 |
| DOI | 10.1002/pro.70358 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Immunology Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1469-896X |
| EndPage | n/a |
| ExternalDocumentID | 41123282 10_1002_pro_70358 PRO70358 |
| Genre | methodAndProtocol Journal Article |
| GrantInformation_xml | – fundername: Macao Polytechnic University funderid: RP/CAI‐01/2023 – fundername: Science and Technology Development Fund of Macau (FDCT) funderid: 0004/2025/RIA1 – fundername: Science and Technology Development Fund of Macau (FDCT) grantid: 0004/2025/RIA1 – fundername: Macao Polytechnic University grantid: RP/CAI-01/2023 |
| GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A8Z AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN ESTFP F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W PQQKQ QRW RCA ROL RPM SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c3158-e8dd7b0e19594ae2f4fea27fd4c584b4548b070459ca4ef1a9d11a9dbbdf91bd3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598851000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0961-8368 1469-896X |
| IngestDate | Sat Oct 25 04:53:17 EDT 2025 Wed Nov 12 03:41:50 EST 2025 Sat Oct 25 11:10:48 EDT 2025 Thu Nov 20 00:37:31 EST 2025 Thu Oct 30 09:47:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | drug‐target interaction target fishing target prediction drug repurposing reverse docking |
| Language | English |
| License | 2025 The Protein Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3158-e8dd7b0e19594ae2f4fea27fd4c584b4548b070459ca4ef1a9d11a9dbbdf91bd3 |
| Notes | Nir Ben‐Tal Review Editor ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4632-4364 |
| PMID | 41123282 |
| PQID | 3266719326 |
| PQPubID | 1016442 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_3263900339 proquest_journals_3266719326 pubmed_primary_41123282 crossref_primary_10_1002_pro_70358 wiley_primary_10_1002_pro_70358_PRO70358 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Bethesda |
| PublicationTitle | Protein science |
| PublicationTitleAlternate | Protein Sci |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2023; 10 2020; 5 2010; 31 2016; 7 2009; 30 2012 2006; 34 2010; 29 2019; 11 2008; 9 2022; 23 2024; 30 2024; 33 2024; 630 2024; 25 2012; 13 2018; 10 2014; 6 2012; 52 2010; 50 2014; 54 2001; 43 2016; 11 2012; 40 e_1_2_9_20_1 e_1_2_9_11_1 Hongjian Li H (e_1_2_9_7_1) 2012 e_1_2_9_13_1 e_1_2_9_24_1 e_1_2_9_12_1 e_1_2_9_23_1 e_1_2_9_8_1 Vasseur R (e_1_2_9_21_1) 2014; 6 e_1_2_9_6_1 Wang F (e_1_2_9_22_1) 2019; 11 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_25_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 Kriv'ak R (e_1_2_9_10_1) 2018; 10 |
| References_xml | – volume: 6 start-page: 325 issue: 3–4 year: 2014 end-page: 337 article-title: Amide‐automatic molecular inverse docking engine for large‐scale protein targets identification publication-title: Int J Adv Life Sci – volume: 50 start-page: 771 issue: 5 year: 2010 end-page: 784 article-title: Large‐scale systematic analysis of 2d fingerprint methods and parameters to improve virtual screening enrichments publication-title: J Chem Inf Model – volume: 10 start-page: 1 year: 2018 end-page: 12 article-title: P2rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure publication-title: J Chem – volume: 13 start-page: 1 year: 2012 end-page: 10 article-title: Large‐scale reverse docking profiles and their applications publication-title: BMC Bioinformatics – volume: 40 start-page: W393 issue: W1 year: 2012 end-page: W399 article-title: idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide‐and‐conquer docking approach publication-title: Nucleic Acids Res – volume: 29 start-page: 157 issue: 2 year: 2010 end-page: 170 article-title: Analysis and comparison of 2d fingerprints: insights into database screening performance using eight fingerprint methods publication-title: J Mol Graph Model – volume: 23 issue: 3 year: 2022 article-title: Improving protein–ligand docking and screening accuracies by incorporating a scoring function correction term publication-title: Brief Bioinform – volume: 11 start-page: 707 issue: 7 year: 2016 end-page: 715 article-title: Using reverse docking for target identification and its applications for drug discovery publication-title: Expert Opin Drug Discovery – volume: 34 start-page: W219 issue: Supp 2 year: 2006 end-page: W224 article-title: Tarfisdock: a web server for identifying drug targets with docking approach publication-title: Nucleic Acids Res – volume: 5 issue: 6 year: 2020 article-title: Identification of afzelin potential targets in inhibiting triple‐negative breast cancer cell migration using reverse docking publication-title: Porto Biomedical Journal – volume: 7 start-page: 10015 issue: 9 year: 2016 end-page: 10022 article-title: Actp: a webserver for predicting potential targets and relevant pathways of autophagy‐modulating compounds publication-title: Oncotarget – volume: 9 year: 2008 article-title: PDTD: a web‐accessible protein database for drug target identification publication-title: BMC Bioinformatics – volume: 30 start-page: 2785 issue: 16 year: 2009 end-page: 2791 article-title: Autodock4 and autodocktools4: automated docking with selective receptor flexibility publication-title: J Comput Chem – volume: 31 start-page: 455 issue: 2 year: 2010 end-page: 461 article-title: Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J Comput Chem – volume: 33 issue: 10 year: 2024 article-title: Benchmarking reverse docking through alphafold2 human proteome publication-title: Protein Sci – volume: 10 year: 2023 article-title: Reversedock: a web server for blind docking of a single ligand to multiple protein targets using autodock vina publication-title: Front Mol Biosci – volume: 43 start-page: 217 issue: 2 year: 2001 end-page: 226 article-title: Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule publication-title: Proteins: Structure, Function, and Bioinformatics – start-page: 77 year: 2012 end-page: 84 – volume: 30 issue: 42 year: 2024 article-title: Identification of potential drug targets of calix [4] arene by reverse docking publication-title: Chem A Eur J – volume: 630 start-page: 493 issue: 8016 year: 2024 end-page: 500 article-title: Accurate structure prediction of biomolecular interactions with alphafold 3 publication-title: Nature – volume: 25 issue: 6 year: 2024 article-title: Protein language models are performant in structure‐free virtual screening publication-title: Brief Bioinform – volume: 54 start-page: 1676 issue: 6 year: 2014 end-page: 1686 article-title: Facing the challenges of structure‐based target prediction by inverse virtual screening publication-title: J Chem Inf Model – volume: 11 start-page: 1 year: 2019 end-page: 11 article-title: Acid: a free tool for drug repurposing using consensus inverse docking strategy publication-title: J Chem – volume: 52 start-page: 2192 issue: 8 year: 2012 end-page: 2203 article-title: Virtual target screening: validation using kinase inhibitors publication-title: J Chem Inf Model – volume: 6 start-page: 325 issue: 3 year: 2014 ident: e_1_2_9_21_1 article-title: Amide‐automatic molecular inverse docking engine for large‐scale protein targets identification publication-title: Int J Adv Life Sci – ident: e_1_2_9_8_1 doi: 10.1093/bib/bbae480 – ident: e_1_2_9_17_1 doi: 10.1021/ci300073m – ident: e_1_2_9_5_1 doi: 10.1186/1471-2105-9-104 – ident: e_1_2_9_9_1 doi: 10.3389/fmolb.2023.1243970 – ident: e_1_2_9_12_1 doi: 10.1186/1471-2105-13-S17-S6 – ident: e_1_2_9_23_1 doi: 10.1093/nar/gks496 – ident: e_1_2_9_4_1 doi: 10.1016/j.jmgm.2010.05.008 – ident: e_1_2_9_13_1 doi: 10.1093/nar/gkl114 – ident: e_1_2_9_11_1 doi: 10.1080/17460441.2016.1190706 – volume: 10 start-page: 1 year: 2018 ident: e_1_2_9_10_1 article-title: P2rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure publication-title: J Chem – ident: e_1_2_9_2_1 doi: 10.1038/s41586-024-07487-w – ident: e_1_2_9_25_1 doi: 10.1093/bib/bbac051 – ident: e_1_2_9_20_1 doi: 10.1002/jcc.21334 – ident: e_1_2_9_6_1 doi: 10.1002/chem.202400871 – ident: e_1_2_9_19_1 doi: 10.1021/ci500130e – ident: e_1_2_9_3_1 doi: 10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G – start-page: 77 volume-title: 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) year: 2012 ident: e_1_2_9_7_1 – ident: e_1_2_9_15_1 doi: 10.1002/jcc.21256 – ident: e_1_2_9_14_1 doi: 10.1002/pro.5167 – ident: e_1_2_9_16_1 doi: 10.1097/j.pbj.0000000000000095 – ident: e_1_2_9_24_1 doi: 10.18632/oncotarget.7015 – volume: 11 start-page: 1 year: 2019 ident: e_1_2_9_22_1 article-title: Acid: a free tool for drug repurposing using consensus inverse docking strategy publication-title: J Chem – ident: e_1_2_9_18_1 doi: 10.1021/ci100062n |
| SSID | ssj0004123 |
| Score | 2.4830143 |
| Snippet | Reverse docking is a pivotal computational strategy for drug repurposing and polypharmacology studies, yet existing tools often suffer from limitations in... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | e70358 |
| SubjectTerms | Drug Repositioning drug repurposing drug‐target interaction Humans Molecular Docking Simulation - methods Proteins - chemistry Proteomes reverse docking Software target fishing target prediction Toolkits |
| Title | AutoRevDock: An open‐source toolkit for scalable reverse docking |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.70358 https://www.ncbi.nlm.nih.gov/pubmed/41123282 https://www.proquest.com/docview/3266719326 https://www.proquest.com/docview/3263900339 |
| Volume | 34 |
| WOSCitedRecordID | wos001598851000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-896X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004123 issn: 0961-8368 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7BgtReWgqlDQVkEEJcArHj_LWnLe2KAwK0AmlvkR1PJESbVJssUm99hD4jT9Kxs1mEqkpIzSFyFFuOPB7P53HmG4CDLFQkZR6TfkvlS7p8RWbEN4WIUAaaJ4WT9HlycZFOJtnVEnzqY2E6foiFw81qhluvrYIr3Zw8kobSAnNM0zVKl2FF2MIAVr6MRzfnj2GRXHSZ5GPup2Gc9sRCgThZNH5qjv7CmE8hq7M5o9f_9bVr8GoONdmwmxtvYAmrddgYVrTN_v6THTL386fzqq_Di9M-8dsGfB7O2nqM92R_7j6yYcVshq2HX787Pz9r6_rb3W3LCO2yhiRsY6-YJYKaNsgMtSFj-BZuRl-vT8_8eaoFvwh5lPqYGpPoAC3VjFQoSlmiEklpZEEIRUva12haHGSUFUpiyVVmuL1pbcqMaxNuwqCqK3wPLECDJQaKK0IqZVxoUUSZiqQOpcEApQf7_YjnPzpGjbzjThb0XOdulDzY7mWRz5WqyQlpxokDnB7sLV7T4NgzDlVhPXN1QuucDTMP3nUyXPQiucWPqfDgyInq393nV-NLV9h6ftUP8FLY3MAuTnEbBu10hjuwWty3t810F5aTSbo7n6F_AHjU6Js |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB-sFuyLtVo1VdttKaUv0exm86_05bQ9LL1e5VDwLexmJyDWRO5yQt_8CH5GP0lnN5cTKUKheQgJ2WXDzszObyeZ3wC8z0JFUuYx2bdUvqTDV-RGfFOICGWgeVI4SQ-S4TA9O8uOF-BzlwvT8kPMA27WMtx6bQ3cBqT371lDaYXZI32N0iewJEmNSL-Xvoz6p4P7vEgu2lLyMffTME47ZqFA7M87P_RHf4HMh5jVOZ3-8_973VVYmYFN1mu14wUsYLUG672KNtqXv9kH5n7_dHH1NVg-7Eq_rcNBb9rUI7wmD3TxifUqZmts3d3ctpF-1tT1r4vzhhHeZROSsc2-YpYKajxBZqgPucOXcNr_enJ45M-KLfhFyKPUx9SYRAdoyWakQlHKEpVISiMLwiha0s5G0_Igo6xQEkuuMsPtSWtTZlybcAMWq7rCLWABGiwxUFwRVinjQosiylQkdSgNBig9eNdNeX7VcmrkLXuyoPs6d7PkwU4njHxmVpOcsGacOMjpwdv5Y5oc-5VDVVhPXZvQhmfDzIPNVojzUSS3CDIVHnx0snp8-Px49NNdvPr3pm9g-ejkxyAffBt-34ZnwlYKdlmLO7DYjKe4C0-L6-Z8Mn49U9Q_6Xzrow |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB_qVbQvVlu1sdWuIuJLbHaz-Se-XP8cLR7ncVjoW9jNTqBUk3KXK_jmR-hn7Cfp7OZypYggmIeQkF02zOzs_HaS-Q3A-yxUpGUek31L5Us6fEVuxDeFiFAGmieF0_QwGY3Ss7NsvAJfulyYlh9iGXCzluHWa2vgeGnKvTvWUFphPtF8jdIHsCptEZkerB5OBqfDu7xILtpS8jH30zBOO2ahQOwtO9_3R3-AzPuY1Tmdwfr_ve5TeLIAm6zfzo5nsILVBmz2K9po__zFPjD3-6eLq2_A44Ou9Nsm7PfnTT3BK_JAF59Zv2K2xtbN7-s20s-auv5xcd4wwrtsRjq22VfMUkFNZ8gM9SF3-BxOB0ffD479RbEFvwh5lPqYGpPoAC3ZjFQoSlmiEklpZEEYRUva2WhaHkjQhZJYcpUZbk9amzLj2oQvoFfVFW4BC9BgiYHiirBKGRdaFFGmIqlDaTBA6cG7TuT5ZcupkbfsyYLu69xJyYOdThn5wqxmOWHNOHGQ04O3y8ckHPuVQ1VYz12b0IZnw8yDl60Sl6NIbhFkKjz46HT19-Hz8eSbu3j170134dH4cJAPT0Zft2FN2ELBLmlxB3rNdI6v4WFx1ZzPpm8W8_QWk0XrHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoRevDock%3A+An+open%E2%80%90source+toolkit+for+scalable+reverse+docking&rft.jtitle=Protein+science&rft.au=Luo%2C+Qing&rft.au=Mu%2C+Yuguang&rft.au=Zheng%2C+Liangzhen&rft.au=Guo%2C+Jingjing&rft.date=2025-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1002%2Fpro.70358&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |